Next Article in Journal
Laboratory Experiment of Blind Adaptive Array with Subcarrier Transmission Power Assignment in Spectrum Superposing Scenarios
Previous Article in Journal
Energy Saving in Data Centers
Article

Supercapacitors in Tandem with Batteries to Prolong the Range of UGV Systems

Danamio Research Facility, 7 Imperial Court, Monroe Township, NJ 08831, USA
*
Author to whom correspondence should be addressed.
Electronics 2018, 7(1), 6; https://doi.org/10.3390/electronics7010006
Received: 2 December 2017 / Revised: 18 December 2017 / Accepted: 4 January 2018 / Published: 10 January 2018
The purpose of this study was to explore a novel approach to power hybridization in relation to its effectiveness in an unmanned ground vehicle (UGV). This hybridization method is modeled after the power distribution methods found in living organisms, which utilize glycogen stores and adipose tissue to optimize power and energy density strengths and weaknesses. A UGV rover was constructed with an appropriate distribution of power storage elements creating separate power buffers. The primary buffer consisted of a 10 W solar panel array and a 600 F, 5.4 V supercapacitor bank, and the secondary buffer consisted of a 3.7 V 6 Ah lithium-ion battery pack. The primary buffer provided virtually limitless charge cycles with a superior power density juxtaposed with a secondary buffer that provided superior energy density and volumetric versatility. The design of this rover is presented in this paper; it was tested under manual and autonomous modes. The rover was found to be capable of effectively operating solely on the primary power buffer in high to low luminous conditions while being able to carry out basic extravehicular activities. The rover could travel roughly 22 km without any input power on a full charge of both buffers, and could smoothly switch between its own power buffers during operation, all while transmitting live first person video (FPV) and network data. The introduction of control algorithms on the onboard microcontroller unit (MCU) was also explored in both manual and autonomous configurations. The latter integrated linear regression to intelligently manage power and locomotion based on sensory data from photoresistors. View Full-Text
Keywords: supercapacitors; hybridization; rover; machine-learning; perturb-and-observe; solar; lithium-ion; Internet-of-Things; exploration; unmanned-ground-vehicle supercapacitors; hybridization; rover; machine-learning; perturb-and-observe; solar; lithium-ion; Internet-of-Things; exploration; unmanned-ground-vehicle
Show Figures

Figure 1

MDPI and ACS Style

Shah, N.; Czarkowski, D. Supercapacitors in Tandem with Batteries to Prolong the Range of UGV Systems. Electronics 2018, 7, 6. https://doi.org/10.3390/electronics7010006

AMA Style

Shah N, Czarkowski D. Supercapacitors in Tandem with Batteries to Prolong the Range of UGV Systems. Electronics. 2018; 7(1):6. https://doi.org/10.3390/electronics7010006

Chicago/Turabian Style

Shah, Namin, and Dariusz Czarkowski. 2018. "Supercapacitors in Tandem with Batteries to Prolong the Range of UGV Systems" Electronics 7, no. 1: 6. https://doi.org/10.3390/electronics7010006

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop