Abstract
We present an adaptive governance engine for blockchain-enabled Vehicular Ad Hoc Networks (VANETs) that regulates the latency–energy–coherence trade-off under rapid topology changes. The core contribution is an Ideal Information Cycle (an operational abstraction of information injection/validation) and a modular VANET Engine implemented as a real-time control loop in NS-3.35. At runtime, the Engine monitors normalized Shannon entropies—informational entropy S over active transactions and spatial entropy over occupancy bins (both on )—and adapts the consensus mode (latency-feasible PoW versus signature/quorum-based modes such as PoS/FBA) together with rigor parameters via calibrated policy maps. Governance is formulated as a constrained operational objective that trades per-block resource expenditure (radio + cryptography) against a Quality-of-Information (QoI) proxy derived from delay/error tiers, while maintaining timeliness and ledger-coherence pressure. Cryptographic cost is traced through counted operations, , and coherence is tracked using the LCP-normalized definition computed from the longest common prefix (LCP) length across nodes. We evaluate the framework under urban/highway mobility, scheduled partitions, and bounded adversarial stressors (Sybil identities and Byzantine proposers), using 600 s runs with 30 matched random seeds per configuration and 95% bias-corrected and accelerated (BCa) bootstrap confidence intervals. In high-disorder regimes ( ), the Engine reduces total per-block energy (radio + cryptography) by more than 90% relative to a fixed-parameter PoW baseline tuned to the same agreement latency target. A consensus-first triggering policy further lowers agreement latency and improves throughput compared with broadcast-first baselines. In the emphasized urban setting under high mobility ( m/s), the Engine keeps agreement/commit latency in the sub-100 ms range while maintaining finality typically within sub-150 ms ranges, bounds orphaning (≤10%), and reduces average ledger divergence below at high spatial disorder. The main evaluation is limited to vehicles under full PHY/MAC fidelity. PoW targets are intentionally latency-feasible and are not intended to provide cryptocurrency-grade majority-hash security; operational security assumptions and mode transition safeguards are discussed in the manuscript.