Abstract
This work presents a compact printed MIMO antenna specifically designed for portable wireless applications, offering strong isolation between its elements. The antenna consists of two ultra-low-profile inverted-F antenna (IFA) elements placed back to back with a close spacing of just 0.05λ at the resonance frequency (2.4 GHz). To improve isolation, a parasitic structure is strategically positioned between the two IFAs. Additionally, a slot is introduced into the ground plane, which excites an extra resonance, effectively broadening the antenna’s operational bandwidth. The proposed design was successfully fabricated and tested, with measurement results closely matching the simulations. The antenna demonstrates a good impedance bandwidth ranging from 2.28 to 2.85 GHz, maintaining a return loss better than 10 dB, and achieving excellent isolation levels exceeding 40 dB. It also delivers a high peak efficiency of 90% and a realized gain pattern of around 2 dBi over the band of interest. In addition, the inclusion of the parasitic element further enhances the antenna’s performance by promoting pattern diversity and reducing the correlation between radiation patterns, ensuring robust MIMO and diversity characteristics.