Two-Dimensional Fin-Shaped Carbon Nanotube Field Emission Structure with High Current Density Capability
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, J.S.; Lee, S.H.; Go, H.; Kim, S.J.; Noh, J.H.; Lee, C.J. High-performance cold cathode X-ray tubes using a carbon nanotube field electron emitter. ACS Nano 2022, 16, 10231–10241. [Google Scholar] [CrossRef] [PubMed]
- Puett, C.; Inscoe, C.; Hartman, A.; Calliste, J.; Franceschi, D.K.; Lu, J.; Zhou, O.; Lee, Y.Z. An update on carbon nanotube-enabled X-ray sources for biomedical imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 10, e1475. [Google Scholar] [CrossRef]
- Yuan, X.; Zhu, W.; Zhang, Y.; Xu, N.; Yan, Y.; Wu, J.; Shen, Y.; Chen, J.; She, J.; Deng, S. A fully-sealed carbon-nanotube cold-cathode terahertz gyrotron. Sci. Rep. 2016, 6, 32936. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Zhang, Y.; Ke, Y.; Jiang, J.; She, J.; Deng, S. A W-Band backward wave oscillator based on carbon nanotube cold cathode. IEEE Trans. Electron Devices 2024, 72, 859–865. [Google Scholar] [CrossRef]
- Yuan, X.; Chen, Q.; Xu, X.; Cole, M.T.; Zhang, Y.; Chen, Z.; Yan, Y. A carbon nanotube-based hundred watt-level Ka-band backward wave oscillator. IEEE Trans. Electron Devices 2021, 68, 2467–2472. [Google Scholar] [CrossRef]
- Xu, N.S.; Huq, S.E. Novel cold cathode materials and applications. Mat. Sci. Eng. R Rep. 2005, 48, 47–189. [Google Scholar] [CrossRef]
- Verma, P.; Gautam, S.; Kumar, P.; Chaturvedi, P.; Rawat, J.S.; Pal, S.; Chaubey, R.; Harsh; Vyas, H.P.; Bhatnagar, P.K. Carbon nanotube tip melting with vacuum breakdown in cold cathode. J. Vac. Sci. Technol. B 2007, 25, 1584–1587. [Google Scholar] [CrossRef]
- Huang, N.Y.; She, J.C.; Chen, J.; Deng, S.Z.; Xu, N.S.; Bishop, H.; Huq, S.E.; Wang, L.; Zhong, D.Y.; Wang, F.E.; et al. Mechanism responsible for initiating carbon nanotube vacuum breakdown. Phys. Rev. Lett. 2004, 93, 075501. [Google Scholar] [CrossRef]
- Chen, J.; Chang, X.; Ma, G.; Zhu, Y.; Yang, B.; Zhao, Y.; Chen, J.; Li, Y. Boosting field electron emission of carbon nanotubes through small-hole-patterning design of the substrate. J. Phys. D Appl. Phys. 2023, 57, 095302. [Google Scholar] [CrossRef]
- Chen, J.; Chang, X.; Wu, S.; Ren, H.; Zhu, Y.; Yang, B.; Zhao, Y.; Chen, J.; Li, Y. “Double-high” field electron emission of screen-printed carbon nanotube cathodes. Vacuum 2023, 217, 112517. [Google Scholar] [CrossRef]
- Liu, J.A.; Wang, J.; Cheraghi, E.; Chen, S.; Sun, Y.; Yeow, J.T. Improvement of field emission performances by DMSO and PEDOT: PSS treated freestanding CNT clusters. Nanoscale 2022, 14, 15364–15372. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.; Gupta, H.; Ghosh, S.; Srivastava, P. Highly enhanced field emission from vertically aligned carbon nanotubes grown on a patterned substrate via non-lithographic method. Phys. E Low-Dimens. Syst. Nanostruct. 2022, 135, 114946. [Google Scholar] [CrossRef]
- Neupane, S.; Lastres, M.; Chiarella, M.; Li, W.; Su, Q.; Du, G. Synthesis and field emission properties of vertically aligned carbon nanotube arrays on copper. Carbon 2012, 50, 2641–2650. [Google Scholar] [CrossRef]
- Li, M.; Wang, Q.; Xu, J.; Zhang, J.; Qi, Z.; Zhang, X. Optically induced field-emission source based on aligned vertical carbon nanotube arrays. Nanomaterials 2021, 11, 1810. [Google Scholar] [CrossRef] [PubMed]
- Fairchild, S.B.; Zhang, P.; Park, J.; Back, T.C.; Marincel, D.; Huang, Z.; Pasquali, M. Carbon nanotube fiber field emission array cathodes. IEEE Trans. Plasma Sci. 2019, 47, 2032–2038. [Google Scholar] [CrossRef]
- Cai, D.; Liu, L. The screening effects of carbon nanotube arrays and its field emission optimum density. AIP Adv. 2013, 3, 122103. [Google Scholar] [CrossRef]
- Suh, J.S.; Jeong, K.S.; Lee, J.S.; Han, I. Study of the field-screening effect of highly ordered carbon nanotube arrays. Appl. Phys. Lett. 2002, 80, 2392–2394. [Google Scholar] [CrossRef]
- Tang, X.; Yue, H.; Liu, L.; Luo, J.; Wu, X.; Zheng, R.; Cheng, G. Vertically aligned carbon nanotube microbundle arrays for field-emission applications. ACS Appl. Nano Mater. 2020, 3, 7659–7667. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Z.; Cole, M.T.; Wang, A.; Guo, X.; Liu, X.; Lyu, W.; Teng, H.; Qv, Y.; Liu, G.; et al. Nanocone-shaped carbon nanotubes field-emitter array fabricated by laser ablation. Nanomaterials 2021, 11, 3244. [Google Scholar] [CrossRef]
- Burtsev, A.A. Formation and focusing of converging sheet electron beam based on field emission. Electron. Lett. 2018, 54, 839–840. [Google Scholar] [CrossRef]
- Burtsev, A.A.; Pavlov, A.A.; Kitsyuk, E.P.; Grigor’ev, Y.A.; Danilushkin, A.V.; Shumikhin, K.V.E. Studying the field emission cathode–gate structure based on carbon nanotubes for electron-optical systems with a sheet beam. Tech. Phys. Lett. 2017, 43, 542–544. [Google Scholar] [CrossRef]
- Wang, S.; Aditya, S.; Miao, J.; Xia, X. Design of a Sheet-Beam Electron-Optical System for a Microfabricated W band traveling-wave tube using a cold cathode. IEEE Trans. Electron Devices 2016, 63, 3725–3732. [Google Scholar] [CrossRef]
- Zhang, C.; Pan, P.; Cai, J.; Chen, X.; Tian, H.; Su, S.; Zhou, K.; Meng, W.; Li, Y.; Song, B.; et al. Demonstration of a PCM-focused sheet beam TWT amplifier at G-band. IEEE Trans. Electron Devices 2023, 70, 2798–2803. [Google Scholar] [CrossRef]
- Latif, J.; Gong, H.; Wang, Z.; Jameel, A.; Wang, S.; Feng, J.; Gong, Y. Performance Evaluation and Experimental Study of a 0.34-THz Folded Waveguide Sheet Beam BWO. J. Infrared Millim. Terahertz Waves 2024, 45, 504–520. [Google Scholar] [CrossRef]
- Pop, E.; Mann, D.; Wang, Q.; Goodson, K.; Dai, H. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 2006, 6, 96–100. [Google Scholar] [CrossRef]
- Gao, Y.; Marconnet, A.M.; Xiang, R.; Maruyama, S.; Goodson, K.E. Heat capacity, thermal conductivity, and interface resistance extraction for single-walled carbon nanotube films using frequency-domain thermoreflectance. IEEE Trans. Compon. Packag. Manuf. Technol. 2013, 3, 1524–1532. [Google Scholar] [CrossRef]
- Jakubinek, M.B.; White, M.A.; Li, G.; Jayasinghe, C.; Cho, W.; Schulz, M.J.; Shanov, V. Thermal and electrical conductivity of tall, vertically aligned carbon nanotube arrays. Carbon 2010, 48, 3947–3952. [Google Scholar] [CrossRef]
- Sugime, H.; Esconjauregui, S.; D’Arsié, L.; Yang, J.; Robertson, A.W.; Oliver, R.A.; Bhardwaj, S.; Cepek, C.; Robertson, J. Low-temperature growth of carbon nanotube forests consisting of tubes with narrow inner spacing using Co/Al/Mo catalyst on conductive supports. ACS Appl. Mater. Interfaces 2015, 7, 16819–16827. [Google Scholar] [CrossRef]
- Laurent, C.; Flahaut, E.; Peigney, A. The weight and density of carbon nanotubes versus the number of walls and diameter. Carbon 2010, 48, 2994–2996. [Google Scholar] [CrossRef]
- Xu, Z.; Bai, X.D.; Wang, E.G.; Wang, Z.L. Field emission of individual carbon nanotube with in situ tip image and real work function. Appl. Phys. Lett. 2005, 87, 163106. [Google Scholar] [CrossRef]
- Giubileo, F.; Iemmo, L.; Luongo, G.; Martucciello, N.; Raimondo, M.; Guadagno, L.; Passacantando, M.; Lafdi, K.; Di Bartolomeo, A. Transport and field emission properties of buckypapers obtained from aligned carbon nanotubes. J. Mater. Sci. 2017, 52, 6459–6468. [Google Scholar] [CrossRef]
- Giubileo, F.; Capista, D.; Faella, E.; Pelella, A.; Kim, W.Y.; Benassi, P.; Passacantando, M.; Di Bartolomeo, A. Local characterization of field emission properties of graphene flowers. Adv. Electron. Mater. 2023, 9, 2200690. [Google Scholar] [CrossRef]
- Pelella, A.; Grillo, A.; Urban, F.; Giubileo, F.; Passacantando, M.; Pollmann, E.; Sleziona, S.; Schleberger, M.; Di Bartolomeo, A. Gate-Controlled Field Emission Current from MoS2 Nanosheets. Adv. Electron. Mater. 2021, 7, 2000838. [Google Scholar] [CrossRef]
- Thong, J.T.L.; Oon, C.H.; Eng, W.K.; Zhang, W.D.; Gan, L.M. High-current field emission from a vertically aligned carbon nanotube field emitter array. Appl. Phys. Lett. 2001, 79, 2811–2813. [Google Scholar] [CrossRef]
- Thapa, A.; Poudel, Y.R.; Guo, R.; Jungjohann, K.L.; Wang, X.; Li, W. Direct synthesis of micropillars of vertically aligned carbon nanotubes on stainless-steel and their excellent field emission properties. Carbon 2021, 171, 188–200. [Google Scholar] [CrossRef]
Cathodes | Area | Maximum Emission Current | Current Density | Field Enhancement Factor | Turn-On Field (V/μm) |
---|---|---|---|---|---|
Single CNT [30] | - | 14.5 μA | - | 1325 | - |
Buckypaper [31] | 1 μm2 | 10 μA | 1000 A/cm2 | 30 | 140 (0.01 nA) |
Vertical graphene [32] | 1 μm2 | 31 nA | 3.1 A/cm2 | 32 | 70 (1 pA) |
Single MoS2 nanosheet [33] | - | 20 nA | - | 17 | 100 |
Vertical CNT film [34] | 0.36 mm2 | 2 mA | 0.555 A/cm2 | 3000 | 1 V (10 μA/cm2) |
Vertical CNT array [13] | 1 cm2 | 1 mA | 0.001 A/cm2 | 1760 | 4.71 (1 μA/cm2) |
Vertical CNT array [35] | 0.803 cm2 | 26.5 mA | 0.033 A/cm2 | 4977 | 1.57 (1 μA/cm2) |
Cone-shaped CNT array [19] | 0.04 cm2 | 5.78 mA | 0.145 A/cm2 | - | 1.6 (1 μA) |
Single fin-shaped CNT emitter (this work) | 0.0015 mm2 | 16.55 mA | 1103.33 A/cm2 | 13,858 | 1.49 (10 μA) |
Fin-shaped CNT array (this work) | 0.25 cm2 | 87.29 mA | 0.349 A/cm2 | 12,140 | 0.81 (10 μA) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, X.; Ding, Y.; Jiang, J.; Liang, J.; Ke, Y.; She, J.; Zhang, Y.; Deng, S. Two-Dimensional Fin-Shaped Carbon Nanotube Field Emission Structure with High Current Density Capability. Electronics 2025, 14, 1268. https://doi.org/10.3390/electronics14071268
Qin X, Ding Y, Jiang J, Liang J, Ke Y, She J, Zhang Y, Deng S. Two-Dimensional Fin-Shaped Carbon Nanotube Field Emission Structure with High Current Density Capability. Electronics. 2025; 14(7):1268. https://doi.org/10.3390/electronics14071268
Chicago/Turabian StyleQin, Xiaoyu, Yulong Ding, Jun Jiang, Junzhong Liang, Yanlin Ke, Juncong She, Yu Zhang, and Shaozhi Deng. 2025. "Two-Dimensional Fin-Shaped Carbon Nanotube Field Emission Structure with High Current Density Capability" Electronics 14, no. 7: 1268. https://doi.org/10.3390/electronics14071268
APA StyleQin, X., Ding, Y., Jiang, J., Liang, J., Ke, Y., She, J., Zhang, Y., & Deng, S. (2025). Two-Dimensional Fin-Shaped Carbon Nanotube Field Emission Structure with High Current Density Capability. Electronics, 14(7), 1268. https://doi.org/10.3390/electronics14071268