Self-Supervised Infrared Image Denoising via Adaptive Gradient-Perception Network for FPN Suppression
Abstract
1. Introduction
- A self-supervised localization strategy combining Gaussian-blurred references with gradient-variance analysis to decouple stripe-random noise mixtures without clean-image supervision.
- An adaptive TV-regularization framework with spatially variant weight assignment, achieving texture-aware smoothing while preserving structural edges.
- A lightweight edge-preserving module integrated into the denoising pipeline, enabling simultaneous noise suppression and high-frequency detail retention for hardware-efficient deployment.
2. Related Work
2.1. Mixed Noise Modeling Using Prior Knowledge
2.2. Modeling Mixed Noise Using Neural Networks
3. Proposed Method
3.1. Denoising Method
3.2. Model Training Methodology
3.3. Loss Term Design
3.3.1. Noise Estimation Term
3.3.2. Edge Preservation with TV Regularization
4. Experiments
4.1. Experimental Design
- (1)
- LLVIP (subset): Uniform random sampling is performed from all sequences, using only the infrared modality. A total of 300 images are obtained for training, and 200 are obtained for testing. The same sequence only appears in one subset. After partitioning, we perform near duplicate checks across subsets: if the SSIM of two images is ≥0.95, we remove the test side image to eliminate potential leaks.
- (2)
- CVC09/DLS-NUC/Self Captured Set: Used as an external test set, each containing 100/100/100 images. Not participating in training.
- (3)
- Preprocessing and Sampling: During the training phase, the image is uniformly scaled to 256 × 256 and only 256 × 256 non-overlapping patches are extracted from the original training image. During the verification/testing phase, the entire image is evaluated, patches do not cross subsets, and data augmentation is not performed on the test set.
- (4)
- Synthetic noise evaluation (optional): To analyze the robustness of the model to stripe and Gaussian components, we only use stripe-Gaussian noise data augmentation during the training phase. We construct another synthetic test set for additional analysis. The real test sets do not add additional noise.
4.2. Visual Experiments
4.3. Quantitative Experiments
4.4. Ablation Study
4.4.1. Impact of Individual Loss Terms
4.4.2. Impact of Edge Detection Weighting
4.4.3. Impact of Different Network Architectures
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tang, W.; He, F.Z.; Liu, Y. TCCFusion: An infrared and visible image fusion method based on transformer and cross correlation. Pattern Recognit. 2023, 137, 109295. [Google Scholar] [CrossRef]
- Xia, C.Q.; Chen, S.H.; Huang, R.S.; Hu, J.; Chen, Z.M. Separable spatial-temporal patch-tensor pair completion for infrared small target detection. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–20. [Google Scholar] [CrossRef]
- Tang, W.; He, F.Z.; Liu, Y.; Duan, Y.S.; Si, T.Z. DATFuse: Infrared and visible image fusion via dual attention transformer. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 3159–3172. [Google Scholar] [CrossRef]
- Luo, Y.; Li, X.R.; Chen, S.H.; Xia, C.Q. LEC-MTNN: A novelmulti-frame infrared small target detection method based on spatial-temporal patch-tensor. In Earth and Space: From Infrared to Terahertz, ESIT 2022; SPIE: Bellingham, WA, USA, 2023; Volume 12505, pp. 144–154. [Google Scholar]
- Zhang, C.; Zhao, W.Y. Scene-based nonuniformity correction using local constant statistics. J. Opt. Soc. Am. A 2008, 25, 1444–1453. [Google Scholar] [CrossRef]
- Li, Z.; Luo, S.J.; Chen, M.; Wu, H.; Wang, T.; Cheng, L. Infrared thermal imaging denoising method based on second-order channel attention mechanism. Infrared Phys. Technol. 2021, 116, 103789. [Google Scholar] [CrossRef]
- Yang, P.F.; Wu, H.; Cheng, L.L.; Luo, S.J. Infrared image denoising via adversarial learning with multi-level feature attention network. Infrared Phys. Technol. 2023, 128, 104527. [Google Scholar] [CrossRef]
- Feng, T.; Jin, W.Q.; Si, J.J. Spatial-noise subdivision evaluation model of uncooled infrared detector. Infrared Phys. Technol. 2021, 119, 103954. [Google Scholar] [CrossRef]
- Wang, E.; Liu, Z.; Wang, B.; Cao, Z.Y.; Zhang, S.W. Infrared image stripe noise removal using wavelet analysis and parameter estimation. J. Mod. Opt. 2023, 70, 170–180. [Google Scholar] [CrossRef]
- He, Y.F.; Zhang, C.M.; Zhang, B.Y.; Chen, Z.Y. FsPnP: Plug-and-Play frequency-spatial-domain hybrid denoiser for thermal infrared image. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5000416. [Google Scholar] [CrossRef]
- Li, J.; Liu, K.Y.; Hu, Y.T.; Zhang, H.C.; Heidari, A.A.; Chen, H.; Zhang, W.J.; Algarni, A.D.; Elmanna, H. Eres-UNet plus Liver CT image segmentation based on high efficiency channel attention and Res-UNet plus. Comput. Biol. Med. 2023, 158, 106501. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.W.; Lin, F.W.; Wu, W.Q.; Chen, Z.M.; Heidari, A.A.A.; Chen, H.L. DSEUNet: A lightweight UNet for dynamic space grouping enhancement for skin lesion segmentation. Expert Syst. Appl. 2024, 255, 124544. [Google Scholar] [CrossRef]
- Li, J.; Kang, J.R.; Qi, J.; Fu, H.K.; Liu, B.Q.; Lin, X.L.; Zhao, J.W.; Guan, H.X.; Chang, J. Soybean yield estimation using improved deep learning models with integrated multisource and multitemporal remote sensing data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 18450–18477. [Google Scholar] [CrossRef]
- Yang, F.; Chen, X.; Chai, L. Hyperspectral image destriping and denoising using stripe and spectral low-rank matrix recovery and global spatial–spectral total variation. Remote Sens. 2021, 13, 827. [Google Scholar] [CrossRef]
- Kang, M.; Jung, M. Nonconvex fractional-order total variation based image denoising model under mixed stripe and Gaussian noise. AIMS Math. 2024, 9, 21094–21124. [Google Scholar] [CrossRef]
- Ding, D.; Li, Y.; Zhao, P.; Li, K.T.; Jiang, S.; Liu, Y.X. Single infrared image stripe removal via residual attention network. Sensors 2022, 22, 8734. [Google Scholar] [CrossRef]
- Wu, X.B.; Zheng, L.L.; Liu, C.Y.; Gao, T.; Zhang, Z.; Yang, B. Single-image simultaneous destriping and denoising: Double low-rank property. Remote Sens. 2023, 15, 5710. [Google Scholar] [CrossRef]
- Chang, Y.; Yan, L.X.; Liu, L.; Fang, H.; Zhong, S. Infrared aerothermal nonuniform correction via deep multiscale residual network. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1120–1124. [Google Scholar] [CrossRef]
- Kuang, X.D.; Sui, X.B.; Liu, Y.; Liu, C.W.; Chen, Q.; Gu, G.H. Robust destriping method based on data-driven learning. Infrared Phys. Technol. 2018, 94, 142–150. [Google Scholar] [CrossRef]
- Yuan, S.; Qin, H.L.; Yan, X.; Yang, S.Q.; Yang, S.W.; Akhtar, N.; Zhou, H.X. AscNet: Asymmetric sampling correction network for infrared image destriping. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5001815. [Google Scholar] [CrossRef]
- Zhang, K.; Zuo, W.M.; Chen, Y.J.; Meng, D.Y.; Zhang, L. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Li, Y.W.; Zuo, W.M.; Zhang, L.; Van Gool, L.; Timofte, R. Plug-and-play image restoration with deep denoiser prior. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 6360–6376. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.W.; Qin, F.W.; Ge, R.Q.; Wang, C.M.; Zhang, K.; Huang, J. IDTransformer: Infrared image denoising method based on convolutional transposed self-attention. Alex. Eng. J. 2025, 110, 310–321. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, T.Z.; Zhao, X.L.; Deng, L.J.; Huang, J. Stripe noise removal of remote sensing images by total variation regularization and group sparsity constraint. Remote Sens. 2017, 9, 559. [Google Scholar] [CrossRef]
- Yang, J.H.; Zhao, X.L.; Ma, T.H.; Chen, Y.; Huang, T.Z.; Ding, M. Remote sensing images destriping using unidirectional hybrid total variation and nonconvex low-rank regularization. J. Comput. Appl. Math. 2020, 363, 124–144. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, L.; Liu, T.T.; Sun, X.C.; Liu, H. Flexible infrared image destriping algorithm with L1-based sparse regularization for wide-field astronomical images. Infrared Phys. Technol. 2022, 125, 104297. [Google Scholar] [CrossRef]
- Hu, X.R.; Luo, S.J.; He, C.H.; Wu, W.H.; Wu, H. Infrared thermal image denoising with symmetric multi-scale sampling network. Infrared Phys. Technol. 2023, 134, 104909. [Google Scholar] [CrossRef]
- Lee, H.; Kang, M.G. Infrared image deconvolution considering fixed pattern noise. Sensors 2023, 23, 3033. [Google Scholar] [CrossRef]
- Pan, E.; Ma, Y.; Mei, X.G.; Huang, J.; Chen, Q.H.; Ma, J.Y. Hyperspectral image destriping and denoising from a task decomposition view. Pattern Recognit. 2023, 144, 109832. [Google Scholar] [CrossRef]
- Wang, M.H.; Yuan, P.; Qiu, S.; Jin, W.Q.; Li, L.; Wang, X. Dual-encoder UNet-based narrowband uncooled infrared imaging denoising network. Sensors 2025, 25, 1476. [Google Scholar] [CrossRef]
- Huang, Z.H.; Zhu, Z.F.; Wang, Z.C.; Li, X.; Xu, B.Y.; Zhang, Y.Z.; Fang, H. D3cNNs: Dual denoiser driven convolutional neural networks for mixed noise removal in remotely sensed images. Remote Sens. 2023, 15, 443. [Google Scholar] [CrossRef]
- Liu, K.; Chen, H.L.; Bao, W.Z.; Wang, J.L. Thermal imaging spatial noise removal via deep image prior and step-variable total variation regularization. Infrared Phys. Technol. 2023, 134, 104888. [Google Scholar] [CrossRef]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Min, C.B.; Shao, M.C.; Zheng, H.J.; Lv, Q.F. Low-Light Image Enhancement via Regularized Gaussian Fields Model. Neural Process. Lett. 2023, 55, 12017–12037. [Google Scholar] [CrossRef]













| Lev. | Index | Degraded | AscNet [20] | DruNet [22] | ID [23] | DnCNN [21] | GTV [34] | SNRCNN [16] | BM3D [33] | DDLSR [19] | Ours |
|---|---|---|---|---|---|---|---|---|---|---|---|
| LLVIP | |||||||||||
| 6 | PSNR↑ | 34.75 ± 0.14 | 33.14 ± 1.01 | 36.74 ± 1.20 | 37.15 ± 2.13 | 37.86 ± 1.74 | 33.14 ± 2.57 | 38.79 ± 1.56 | 37.15 ± 1.37 | 37.41 ± 1.86 | 40.41 ± 0.74 |
| SSIM↑ | 0.8389 ± 0.0236 | 0.9382 ± 0.0236 | 0.9173 ± 0.0127 | 0.9243 ± 0.0296 | 0.9433 ± 0.0139 | 0.9137 ± 0.0204 | 0.9527 ± 0.0032 | 0.9269 ± 0.0114 | 0.9453 ± 0.0285 | 0.9705 ± 0.0050 | |
| LPIPS↓ | 0.3220 ± 0.0833 | 0.0451 ± 0.0253 | 0.2207 ± 0.0372 | 0.2110 ± 0.0322 | 0.1564 ± 0.0224 | 0.1079 ± 0.0252 | 0.0581 ± 0.0227 | 0.2301 ± 0.0121 | 0.0569 ± 0.0139 | 0.0879 ± 0.0294 | |
| 10 | PSNR↑ | 33.18 ± 0.14 | 34.12 ± 0.31 | 36.49 ± 1.78 | 36.89 ± 1.44 | 36.43 ± 0.76 | 31.04 ± 2.60 | 36.46 ± 1.06 | 35.42 ± 2.19 | 35.05 ± 1.51 | 37.30 ± 0.83 |
| SSIM↑ | 0.8204 ± 0.0449 | 0.9071 ± 0.0308 | 0.9189 ± 0.0488 | 0.9222 ± 0.0363 | 0.9179 ± 0.0236 | 0.8874 ± 0.0320 | 0.9051 ± 0.0078 | 0.8985 ± 0.0232 | 0.9009 ± 0.0281 | 0.9275 ± 0.0094 | |
| LPIPS↓ | 0.4353 ± 0.0934 | 0.0451 ± 0.0806 | 0.2981 ± 0.0340 | 0.2110 ± 0.0322 | 0.3153 ± 0.0200 | 0.1079 ± 0.0226 | 0.0581 ± 0.0612 | 0.1852 ± 0.0210 | 0.2699 ± 0.0697 | 0.1036 ± 0.0361 | |
| 15 | PSNR↑ | 30.45 ± 0.10 | 31.13 ± 0.17 | 34.62 ± 1.97 | 35.10 ± 2.25 | 34.59 ± 1.95 | 28.93 ± 2.46 | 33.41 ± 0.43 | 33.53 ± 1.96 | 31.08 ± 1.09 | 34.93 ± 1.58 |
| SSIM↑ | 0.7738 ± 0.0610 | 0.8300 ± 0.0488 | 0.9099 ± 0.0316 | 0.9136 ± 0.0392 | 0.9082 ± 0.0282 | 0.8778 ± 0.0381 | 0.8698 ± 0.0352 | 0.8889 ± 0.0346 | 0.8544 ± 0.0493 | 0.9192 ± 0.0514 | |
| LPIPS↓ | 0.5922 ± 0.0988 | 0.0485 ± 0.0967 | 0.1899 ± 0.0360 | 0.1988 ± 0.0430 | 0.3153 ± 0.0335 | 0.1042 ± 0.0531 | 0.0446 ± 0.0895 | 0.1852 ± 0.0179 | 0.4584 ± 0.0986 | 0.0941 ± 0.0263 | |
| CVC09 | |||||||||||
| 6 | PSNR↑ | 34.27 ± 0.0101 | 34.59 ± 0.41 | 38.08 ± 0.66 | 38.00 ± 0.79 | 37.87 ± 0.67 | 18.43 ± 5.27 | 35.83 ± 0.27 | 36.40 ± 0.77 | 34.32 ± 1.60 | 38.26 ± 0.49 |
| SSIM↑ | 0.7899 ± 0.14 | 0.8374 ± 0.0066 | 0.9112 ± 0.0093 | 0.9098 ± 0.0115 | 0.9088 ± 0.0099 | 0.7969 ± 0.0336 | 0.8405 ± 0.0030 | 0.9002 ± 0.0101 | 0.8594 ± 0.0040 | 0.9201 ± 0.0091 | |
| LPIPS↓ | 0.2996 ± 0.0179 | 0.1033 ± 0.0066 | 0.3806 ± 0.0166 | 0.4056 ± 0.0220 | 0.3768 ± 0.0200 | 0.2217 ± 0.0321 | 0.1791 ± 0.0174 | 0.4098 ± 0.0181 | 0.1394 ± 0.0201 | 0.1259 ± 0.0179 | |
| 10 | PSNR↑ | 32.97 ± 0.04 | 33.77 ± 0.22 | 37.31 ± 0.24 | 36.18 ± 0.76 | 37.68 ± 0.64 | 18.50 ± 4.73 | 36.39 ± 0.12 | 36.21 ± 0.67 | 35.69 ± 1.12 | 37.85 ± 0.70 |
| SSIM↑ | 0.7463 ± 0.0178 | 0.8027 ± 0.0138 | 0.9063 ± 0.0064 | 0.8948 ± 0.0114 | 0.9086 ± 0.0096 | 0.7994 ± 0.0419 | 0.8741 ± 0.0068 | 0.8989 ± 0.0100 | 0.8699 ± 0.0142 | 0.9241 ± 0.0113 | |
| LPIPS↓ | 0.4720 ± 0.0261 | 0.2257 ± 0.0156 | 0.4917 ± 0.0234 | 0.4421 ± 0.0213 | 0.3910 ± 0.0195 | 0.2740 ± 0.0624 | 0.2295 ± 0.0182 | 0.4368 ± 0.0161 | 0.2840 ± 0.0324 | 0.2659 ± 0.0205 | |
| 15 | PSNR↑ | 30.07 ± 0.04 | 32.27 ± 0.13 | 34.00 ± 0.10 | 35.90 ± 0.18 | 36.52 ± 0.14 | 18.29 ± 4.93 | 32.40 ± 0.04 | 35.73 ± 0.29 | 31.88 ± 0.55 | 36.75 ± 0.38 |
| SSIM↑ | 0.6207 ± 0.0206 | 0.7326 ± 0.0199 | 0.8023 ± 0.0133 | 0.8886 ± 0.0139 | 0.8934 ± 0.0066 | 0.7784 ± 0.0789 | 0.7245 ± 0.174 | 0.8948 ± 0.0083 | 0.8385 ± 0.0263 | 0.9056 ± 0.0156 | |
| LPIPS↓ | 0.6431 ± 0.0290 | 0.4080 ± 0.0285 | 0.6562 ± 0.0201 | 0.5272 ± 0.0274 | 0.5570 ± 0.0286 | 0.4360 ± 0.0784 | 0.4646 ± 0.0226 | 0.5170 ± 0.0233 | 0.4958 ± 0.0387 | 0.4659 ± 0.0241 | |
| DLS-NUC | |||||||||||
| 6 | PSNR↑ | 35.93 ± 0.17 | 37.58 ± 0.86 | 36.98 ± 2.62 | 36.89 ± 2.69 | 36.88 ± 2.63 | 30.51 ± 3.84 | 38.34 ± 1.88 | 36.38 ± 3.24 | 37.23 ± 1.62 | 38.41 ± 1.74 |
| SSIM↑ | 0.8722 ± 0.0278 | 0.9315 ± 0.0154 | 0.8728 ± 0.0644 | 0.8751 ± 0.0708 | 0.8736 ± 0.0659 | 0.8503 ± 0.0629 | 0.9258 ± 0.0404 | 0.8580 ± 0.0685 | 0.9237 ± 0.0347 | 0.9317 ± 0.0124 | |
| LPIPS↓ | 0.3094 ± 0.1014 | 0.1385 ± 0.0602 | 0.2366 ± 0.1273 | 0.2778 ± 0.1365 | 0.2519 ± 0.1273 | 0.2066 ± 0.1030 | 0.1426 ± 0.0418 | 0.2837 ± 0.1347 | 0.1642 ± 0.0554 | 0.1654 ± 0.0760 | |
| 10 | PSNR↑ | 32.12 ± 0.15 | 33.01 ± 0.49 | 33.82 ± 1.37 | 34.44 ± 2.41 | 33.86 ± 2.25 | 27.43 ± 3.45 | 33.75 ± 1.14 | 33.30 ± 2.75 | 32.22 ± 1.16 | 34.88 ± 1.01 |
| SSIM↑ | 0.8180 ± 0.0491 | 0.8634 ± 0.0344 | 0.8447 ± 0.0553 | 0.8516 ± 0.0686 | 0.8440 ± 0.0634 | 0.8207 ± 0.0585 | 0.8614 ± 0.0310 | 0.8280 ± 0.0668 | 0.8494 ± 0.0329 | 0.8902 ± 0.0131 | |
| LPIPS↓ | 0.4600 ± 0.1147 | 0.2548 ± 0.0848 | 0.3905 ± 0.1027 | 0.2901 ± 0.1350 | 0.2683 ± 0.1193 | 0.2402 ± 0.0862 | 0.2226 ± 0.0663 | 0.3025 ± 0.1304 | 0.2849 ± 0.0771 | 0.2786 ± 0.0840 | |
| 15 | PSNR↑ | 30.17 ± 0.21 | 31.54 ± 0.33 | 31.12 ± 0.69 | 31.57 ± 1.34 | 30.88 ± 1.07 | 24.81 ± 2.40 | 31.12 ± 0.5472 | 30.57 ± 1.59 | 31.44 ± 0.91 | 32.13 ± 1.17 |
| SSIM↑ | 0.7893 ± 0.0573 | 0.8516 ± 0.0484 | 0.7970 ± 0.0477 | 0.8026 ± 0.0638 | 0.7936 ± 0.0516 | 0.7725 ± 0.0507 | 0.8135 ± 0.0332 | 0.7794 ± 0.0588 | 0.7966 ± 0.0448 | 0.8363 ± 0.0344 | |
| LPIPS↓ | 0.6093 ± 0.1120 | 0.4105 ± 0.0997 | 0.5711 ± 0.1001 | 0.4364 ± 0.1096 | 0.3768 ± 0.1003 | 0.3838 ± 0.0843 | 0.4447 ± 0.0990 | 0.4098 ± 0.1024 | 0.4606 ± 0.0991 | 0.5529 ± 0.0119 | |
| Index | Degraded | AscNet [20] | DruNet [22] | ID [23] | DnCNN [21] | GTV [34] | SNRCNN [16] | BM3D [33] | DDLSR [19] | Ours |
|---|---|---|---|---|---|---|---|---|---|---|
| NIQE↓ | 6.82 ± 0.68 | 6.97 ± 0.72 | 12.73 ± 1.42 | 12.69 ± 1.54 | 12.53 ± 1.29 | 10.56 ± 0.89 | 8.44 ± 0.89 | 12.11 ± 1.40 | 7.38 ± 0.88 | 8.61 ± 1.16 |
| BRISQUE↓ | 39.34 ± 9.41 | 41.51 ± 8.82 | 87.53 ± 5.66 | 86.28 ± 8.45 | 85.95 ± 5.09 | 71.71 ± 5.44 | 52.82 ± 8.65 | 81.95 ± 6.51 | 42.38 ± 11.91 | 55.57 ± 5.04 |
| Design | LLVIP | CVC09 | DLS-NUC-100 | |||
|---|---|---|---|---|---|---|
| PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | |
| 37.04 | 0.9284 | 34.76 | 0.8216 | 39.32 | 0.9436 | |
| 31.72 | 0.9284 | 34.28 | 0.9215 | 33.72 | 0.8889 | |
| 29.33 | 0.9567 | 26.01 | 0.9627 | 31.31 | 0.9750 | |
| 37.61 | 0.9131 | 36.74 | 0.9045 | 34.95 | 0.8306 | |
| 39.52 | 0.9748 | 39.07 | 0.9651 | 40.59 | 0.9765 | |
| Design | Weight | LLVIP | CVC09 | DLS-NUC-100 | |||
|---|---|---|---|---|---|---|---|
| PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | ||
| 37.41 | 0.9351 | 35.12 | 0.8361 | 39.82 | 0.9514 | ||
| √ | 39.52 | 0.9748 | 39.07 | 0.9651 | 40.59 | 0.9765 | |
| Structure | Parameters | Time (s) | PSNR | SSIM |
|---|---|---|---|---|
| / | / | / | 34.61 | 0.8343 |
| UNET | 13,056 | 0.698 | 37.89 | 0.9539 |
| DNCNN | 11,721 | 0.652 | 38.06 | 0.9622 |
| FFDNet | 13,069 | 0.793 | 36.41 | 0.8874 |
| DRUNet | 11,827 | 0.841 | 38.78 | 0.9603 |
| ResNet | 11,665 | 0.664 | 39.29 | 0.9654 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Min, C.; Miao, R.; Lu, J. Self-Supervised Infrared Image Denoising via Adaptive Gradient-Perception Network for FPN Suppression. Electronics 2025, 14, 4334. https://doi.org/10.3390/electronics14214334
Tang Y, Min C, Miao R, Lu J. Self-Supervised Infrared Image Denoising via Adaptive Gradient-Perception Network for FPN Suppression. Electronics. 2025; 14(21):4334. https://doi.org/10.3390/electronics14214334
Chicago/Turabian StyleTang, Yue, Chaobo Min, Runzhe Miao, and Jiajia Lu. 2025. "Self-Supervised Infrared Image Denoising via Adaptive Gradient-Perception Network for FPN Suppression" Electronics 14, no. 21: 4334. https://doi.org/10.3390/electronics14214334
APA StyleTang, Y., Min, C., Miao, R., & Lu, J. (2025). Self-Supervised Infrared Image Denoising via Adaptive Gradient-Perception Network for FPN Suppression. Electronics, 14(21), 4334. https://doi.org/10.3390/electronics14214334

