Design of High-Efficiency Concurrent Dual-Band Power Amplifier Based on Baseband and Harmonic Load Impedance Control for Wireless Communication
Abstract
1. Introduction
2. Design Considerations of High-Efficiency Concurrent DBPA
3. Design and Simulation of a Concurrent Dual-Band PA
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, Z.; Liu, H.; Yang, X.; Jiang, W.; Wu, H.; Li, X.; Feng, Z. Carrier aggregation enabled integrated sensing and communication signal design and processing. IEEE Trans. Veh. Technol. 2024, 73, 3580–3596. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Kong, W.; Qi, J.; Zheng, Z.; Xia, J. Design of wideband power amplifier using improved particle swarm optimization with output power and efficiency constraints. Electronics 2025, 14, 2813. [Google Scholar] [CrossRef]
- Barradas, F.M.; Nunes, L.C.; Louro, J.; Barros, D.R.; Cabral, P.M.; Pedro, J.C. The effect of IMD drain impedances in RF PA concurrent dual-band operation. IEEE Trans. Microw. Theory Tech. 2023, 71, 2920–2933. [Google Scholar] [CrossRef]
- Liu, K.; Shi, W.; Lu, N.; Li, Y.; Liu, J.; Zang, Y.; Hu, C.; Li, M. Broadband Doherty power amplifier with baseband impedance control for concurrent application. AEU-Int. J. Electron. Commun. 2025, 191, 155680. [Google Scholar] [CrossRef]
- Tao, M.; Chen, Y.; Kong, W.; Ni, S.; Zheng, Z.; Xia, J. Design of dual-mode multi-band Doherty power amplifier employing impedance-and-phase constrained optimization. Electronics 2025, 14, 2078. [Google Scholar] [CrossRef]
- Liu, W.; Liu, Q.; Du, G.; Li, G. Analytical dual-band matching approach for concurrent high-efficiency power amplifiers. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 4769–4773. [Google Scholar] [CrossRef]
- Der, A.T.; Barton, T.W. C/Ka concurrent dual-band GaN MMIC based on shorted quarter-wavelength line topology. IEEE J. Microw. 2024, 4, 372–380. [Google Scholar] [CrossRef]
- Han, K.; Geng, L. Design of 0.6–0.8-GHz and 1.6–1.9-GHz dual-band PA with peak PAEs of over 70% by NPE method with dynamical continuous-mode criteria. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 873–876. [Google Scholar] [CrossRef]
- Wei, L.; Chen, F.; Zhang, Z. Design of dual-band power amplifier based on microstrip coupled-line bandstop filter. AEU-Int. J. Electron. Commun. 2024, 183, 155381. [Google Scholar] [CrossRef]
- Cai, Q.; Che, W.; Ma, K.; Gu, L. A concurrent dual-band high-efficiency power amplifier with a novel harmonic control network. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 918–920. [Google Scholar] [CrossRef]
- Yang, Z.; Yao, Y.; Li, M.; Jin, Y.; Li, T.; Geng, Z.; Yu, Z. A precise harmonic control technique for high efficiency concurrent dual-band continuous class-F power amplifier. IEEE Access 2018, 6, 51864–51874. [Google Scholar] [CrossRef]
- Ahn, K.H.; Jeong, Y.H.; Lee, S.H. Effects of source and load impedance on the intermodulation products of GaAs FETs. IEEE MTT-S Int. Microw. Symp. Dig. 2000, 1, 469–472. [Google Scholar]
- Brinkhoff, J.; Parker, A.E. Effect of baseband impedance on FET intermodulation. IEEE Trans. Microw. Theory Techn. 2003, 51, 1045–1051. [Google Scholar] [CrossRef]
- Chen, X.; Chen, W.; Ghannouchi, F.M.; Feng, Z.; Liu, Y. Enhanced analysis and design method of concurrent dual-band power amplifiers with intermodulation impedance tuning. IEEE Trans. Microw. Theory Techn. 2013, 61, 4544–4558. [Google Scholar] [CrossRef]
- Nunes, L.C.; Barros, D.R.; Cabral, P.M.; Pedro, J.C. Efficiency degradation analysis in wideband power amplifiers. IEEE Trans. Microw. Theory Techn. 2018, 66, 5640–5651. [Google Scholar] [CrossRef]
- Barros, D.R.; Nunes, L.C.; Cabral, P.M.; Pedro, J.C. Impact of the input baseband terminations on the efficiency of wideband power amplifiers under concurrent band operation. IEEE Trans. Microw. Theory Techn. 2019, 67, 5127–5138. [Google Scholar] [CrossRef]
- Li, J.; Chen, W.; Huang, F.; Feng, Z. Multiband and multimode concurrent PA with novel intermodulation tuning network for linearity improvement. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 248–250. [Google Scholar] [CrossRef]
- Qi, T.; He, S.; Hu, B.; Liu, C.; Du, X.; Zhao, Y.; Helaoui, M.; Chen, W.; Ghannouchi, F.M. Efficiency analysis of concurrently driven power amplifiers. IEEE Access 2020, 8, 91379–91393. [Google Scholar] [CrossRef]
- Shariatifar, M.; Jalali, M.; Abdipour, A. Design of a high-efficiency dual-band class-J/J power amplifier considering concurrent mode input drive. Int. J. RF Microw. Comput. Aided Eng. 2019, 30, e22064. [Google Scholar] [CrossRef]
- Shariatifar, M.; Jalali, M.; Abdipour, A. A concurrent dual-band continuous Class-F power amplifier with intermodulation impedance tuning: Analysis and design technique. AEU-Int. J. Electron. Commun. 2019, 111, 152899. [Google Scholar] [CrossRef]
- Huang, H.; Yu, C.; Wu, Y.; Jin, Q.; Fan, C.; Gao, J.; Liu, Y. Analysis and design of a novel concurrent class B/J continuum power amplifier. Int. J. RF Microw. Comput. Aided Eng. 2020, 30, e22275. [Google Scholar] [CrossRef]
- Liu, J.; Shi, W.; Zang, Y.; Hua, J.; Xu, G.; Hu, C.; Liu, K.; Li, Y.; Li, M. Analysis and design of concurrent class-F2 power amplifier based on power-series technique. AEU-Int. J. Electron. Commun. 2025, 193, 155722. [Google Scholar] [CrossRef]
- Bunz, B.; Ahmed, A.; Kompa, G. Influence of envelope impedance termination on RF behaviour of GaN HEMT power devices. In Proceedings of the European Gallium Arsenide and Other Semiconductor Application Symposium, GAAS 2005, Paris, France, 3–4 October 2005; pp. 649–652. [Google Scholar]
- Dong, Y.; Mao, L.; Xie, S. Extended continuous inverse class-F power amplifiers with class-AB bias conditions. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 368–370. [Google Scholar] [CrossRef]
- Sun, Y.; Zhu, X.W.; Zhai, J.; Zhang, L.; Meng, F. Highly efficient concurrent power amplifier with controllable modes. IEEE Trans. Microw. Theory Tech. 2015, 63, 4051–4060. [Google Scholar] [CrossRef]
- Song, K.; He, A.; Li, Q. Hybrid continuous inverse class-F high-efficiency power amplifier based on phase shift analysis. Microw. Opt. Technol. Lett. 2023, 65, 567–572. [Google Scholar] [CrossRef]













| Ref. (Year) | Single-Tone | Concurrent Two-Tone | ||||||
|---|---|---|---|---|---|---|---|---|
| Frequency (GHz) | Power (dBm) | ηD (%) | Gain (dB) | Tone Spacing (MHz) | Power (dBm) | ηD (%) | Gain (dB) | |
| [3] 2023 | 1.8/2.2 | 43.6/44.4 * | 67/70 * | 12/12.2 * | 400 | 41.8 | 57 * | N/A |
| [14] 2013 | 1.9/2.6 | 41.5/41.5 * | 75/70 * | 10.2/11 * | 700 | 39.7 * | 63 * | N/A |
| [15] 2018 | 1.8–2.2 | 49.5–50.5 * | 70–74 * | N/A | 0–400 | N/A | 60–67 * | N/A |
| [18] 2020 | 2.5/3.7 | 41.8/41.2 | 77.5/71.9 | 10.3/11.2 * | 1200 | 40.1 | 62.6 | 10.7 * |
| [20] 2019 | 1.842/2.655 | 41/40.5 | 73.5/71.7 | 11/10.5 | 813 | 39.5 * | 60 | N/A |
| [21] 2020 | 1.9/2.35 | 43.7/43.1 | 73.9/60.3 | 12.3/10.6 | 450 | 42.1 | 60.4 | N/A |
| [22] 2025 | 1.8–2.2 | 41.1–42.4 | 61.8–67.3 | 14.8–16.3 | 0–400 | 40.0–40.6 | 60.0–64.0 | 14.9–17.8 |
| This Work | 1.8/2.6 | 41.1–42.4 | 61.8–67.3 | 14.8–16.3 | 800 | 39.9 | 67.4% | 9.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Liu, F.; Fan, S.; Liu, X.; Liu, X.; Shi, W. Design of High-Efficiency Concurrent Dual-Band Power Amplifier Based on Baseband and Harmonic Load Impedance Control for Wireless Communication. Electronics 2025, 14, 4242. https://doi.org/10.3390/electronics14214242
Ma X, Liu F, Fan S, Liu X, Liu X, Shi W. Design of High-Efficiency Concurrent Dual-Band Power Amplifier Based on Baseband and Harmonic Load Impedance Control for Wireless Communication. Electronics. 2025; 14(21):4242. https://doi.org/10.3390/electronics14214242
Chicago/Turabian StyleMa, Xiaomin, Fan Liu, Songhai Fan, Xi Liu, Xiaojiang Liu, and Weimin Shi. 2025. "Design of High-Efficiency Concurrent Dual-Band Power Amplifier Based on Baseband and Harmonic Load Impedance Control for Wireless Communication" Electronics 14, no. 21: 4242. https://doi.org/10.3390/electronics14214242
APA StyleMa, X., Liu, F., Fan, S., Liu, X., Liu, X., & Shi, W. (2025). Design of High-Efficiency Concurrent Dual-Band Power Amplifier Based on Baseband and Harmonic Load Impedance Control for Wireless Communication. Electronics, 14(21), 4242. https://doi.org/10.3390/electronics14214242

