Inertia Support Method for LFAC Enabled by Optimized Energy Utilization of Dual-Port Grid-Forming Modular Multilevel Matrix Converters
Abstract
1. Introduction
2. Dual-Side Grid-Forming Control of M3C
2.1. M3C Control Framework Based on Dual Transformation
2.2. Dual-Port Grid-Forming Control of M3C
2.3. Inertia Response Based on M3C Energy Utilization
3. Optimized Inertia Utilization Method for M3C-LFAC Systems
3.1. Maximized Inertia Support Based on M3C Energy Utilization
- (1)
- Stage I
- (2)
- Stage II


3.2. Frequency-Mapped Transmission of Grid Inertia Information
4. Simulation Verification
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vilmann, B.; Randewijk, P.J.; Jóhannsson, H.; Hjerrild, J.; Khalil, A. Frequency and Voltage Compliance Capabilities of Grid-Forming Wind Turbines in Offshore Wind Farms in Weak AC Grids. Electronics 2023, 12, 1114. [Google Scholar] [CrossRef]
- Imgart, P.; Narula, A.; Bongiorno, M.; Beza, M.; Svensson, J.R. External Inertia Emulation to Facilitate Active-Power Limitation in Grid-Forming Converters. IEEE Trans. Ind. Appl. 2024, 60, 9145–9156. [Google Scholar] [CrossRef]
- Struwe, J.; Wrede, H.; Vennegeerts, H. Validation Aspects for Grid-Forming Converters Based on System Characteristics and Inertia Impact. Energies 2023, 16, 7357. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, H.; Li, G.; Xin, Y.; Wang, L.; Xu, Y. A Novel Coordinated Control Strategy for Frequency Regulation of MMC-HVDC Connecting Offshore Wind Farms. IEEE Trans. Sustain. Energy 2024, 15, 1028–1038. [Google Scholar] [CrossRef]
- Rodríguez-Cabero, A.; Roldán-Pérez, J.; Prodanovic, M.; Suul, J.A.; D’Arco, S. Coupling of AC Grids via VSC-HVDC Interconnections for Oscillation Damping Based on Differential and Common Power Control. IEEE Trans. Power Electron. 2020, 35, 6548–6558. [Google Scholar] [CrossRef]
- Kabsha, M.M.; Rather, Z.H. A New Control Scheme for Fast Frequency Support From HVDC Connected Offshore Wind Farm in Low-Inertia System. IEEE Trans. Sustain. Energy 2020, 11, 1829–1837. [Google Scholar] [CrossRef]
- Wang, J.; Huang, W.; Tai, N.; Yu, M.; Li, R.; Li, C. An Adaptive Inertia Transferring Control Scheme for Interconnected Offshore-Platform Microgrids. IEEE Trans. Power Deliv. 2024, 39, 591–600. [Google Scholar] [CrossRef]
- Zhang, H.; Xiang, W.; He, Y.; Wen, J. Optimal Energy Utilization of MMC-HVDC System Integrating Offshore Wind Farms for Onshore Weak Grid Inertia Support. IEEE Trans. Power Syst. 2024, 39, 1304–1318. [Google Scholar] [CrossRef]
- Zeng, W.; Li, R.; Huang, L.; Liu, C.; Cai, X. Approach to Inertial Compensation of HVdc Offshore Wind Farms by MMC with Ultracapacitor Energy Storage Integration. IEEE Trans. Ind. Electron. 2022, 69, 12988–12998. [Google Scholar] [CrossRef]
- Meng, Y.; Yan, S.; Wu, K.; Ning, L.; Li, X.; Wang, X.; Wang, X. Comparative economic analysis of low frequency AC transmission system for the integration of large offshore wind farms. Renew. Energy 2021, 179, 1955–1968. [Google Scholar] [CrossRef]
- Ibaceta, E.; Diaz, M.; Rajendran, S.; Arias, Y.; Cárdenas, R.; Rodriguez, J. Experimental Assessment of a Decentralized Control Strategy for a Back-to-Back Modular Multilevel Converter Operating in Low-Frequency AC Transmission. Processes 2024, 12, 155. [Google Scholar] [CrossRef]
- Al-Tameemi, M.; Liu, J.; Bevrani, H.; Ise, T. A Dual VSG-Based M3C Control Scheme for Frequency Regulation Support of a Remote AC Grid Via Low-Frequency AC Transmission System. IEEE Access 2020, 8, 66085–66094. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, Z.; Xu, Z. Electromechanical Transient Modeling of the Low-Frequency AC System with Modular Multilevel Matrix Converter Stations. IEEE Trans. Power Syst. 2024, 39, 921–933. [Google Scholar] [CrossRef]
- Zhang, Z.; Jin, Y.; Xu, Z. Modeling and Control of Modular Multilevel Matrix Converter for Low-Frequency AC Transmission. Energies 2023, 16, 3474. [Google Scholar] [CrossRef]
- Rosso, R.; Wang, X.; Liserre, M.; Lu, X.; Engelken, S. Grid-Forming Converters: Control Approaches, Grid-Synchronization, and Future Trends—A Review. IEEE Open J. Ind. Appl. 2021, 2, 93–109. [Google Scholar] [CrossRef]
- Han, F.; Zhang, X.; Li, M.; Li, F.; Zhao, W. Stability Control for Grid-Connected Inverters Based on Hybrid-Mode of Grid-Following and Grid-Forming. IEEE Trans. Ind. Electron. 2024, 71, 10750–10760. [Google Scholar] [CrossRef]
- Spier, D.W.; Prieto-Araujo, E.; López-Mestre, J.; Mehrjerdi, H.; Gomis-Bellmunt, O. On the Roles and Interactions of the MMC Internal Energy Balancing Degrees of Freedom for Three-Wire Three-Phase Connections. IEEE Trans. Power Del. 2023, 38, 1316–1328. [Google Scholar] [CrossRef]
- Zhang, H.; Xiang, W.; Wen, J. Dual Grid-Forming Control with Energy Regulation Capability of MMC-HVDC System Integrating Offshore Wind Farms and Weak Grids. IEEE Trans. Power Syst. 2024, 39, 261–272. [Google Scholar] [CrossRef]
- Yu, Z.; Song, Q.; Yuan, Z.; Zou, C.; Qiao, X.; Liu, W. Transmission Topology and Control for Ultra-Large Offshore Wind Bases Integrating Multiple Offshore Low-Frequency AC Links and Onshore HVDC Link. IEEE Trans. Power Deliv. 2024, 39, 2797–2809. [Google Scholar] [CrossRef]
- Fu, N.; Liu, B.; Xu, Y.; Zhu, S.; Wang, K.; Li, Y. Low-Frequency Offshore Wind Power Transmission System with Dual-End Grid-Forming Control. In Proceedings of the 2024 7th International Conference on Renewable Energy and Power Engineering (REPE), Beijing, China, 25–27 September 2024; pp. 256–261, ISSN 2771-7011. [Google Scholar]
- Zhang, H.; Xiang, W.; Lin, W.; Wen, J. Grid Forming Converters in Renewable Energy Sources Dominated Power Grid: Control Strategy, Stability, Application, and Challenges. J. Mod. Power Syst. Clean Energy 2021, 9, 1239–1256. [Google Scholar] [CrossRef]
- Wen, B.; Boroyevich, D.; Burgos, R.; Mattavelli, P.; Shen, Z. Analysis of D-Q Small-Signal Impedance of Grid-Tied Inverters. IEEE Trans. Power Electron. 2016, 31, 675–687. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, Z.; Wang, K.; Li, Y. Submodule Fault-Tolerant Control of Modular Multilevel Matrix Converters with Adaptive Optimum Common-Mode Voltage Injection. IEEE Trans. Power Electron. 2022, 37, 7548–7554. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, Z.; Xu, Z. Design and control of modular multilevel matrix converter with symmetrically integrated energy storage for low frequency AC system. Iet Renew. Power Gener. 2024, 18, 60–77. [Google Scholar] [CrossRef]
- Wang, J.; Huang, W.; Tai, N.; Yu, M.; Li, R.; Zhang, Y. A Bidirectional Virtual Inertia Control Strategy for the Interconnected Converter of Standalone AC/DC Hybrid Microgrids. IEEE Trans. Power Syst. 2024, 39, 745–754. [Google Scholar] [CrossRef]
- Soler, J.A.; Groß, D.; Araujo, E.P.; Bellmunt, O.G. Interconnecting Power Converter Control Role Assignment in Grids with Multiple AC and DC Subgrids. IEEE Trans. Power Deliv. 2023, 38, 2058–2071. [Google Scholar] [CrossRef]
- Arévalo-Soler, J.; Nahalparvari, M.; Groß, D.; Prieto-Araujo, E.; Norrga, S.; Gomis-Bellmunt, O. Small-Signal Stability and Hardware Validation of Dual-Port Grid-Forming Interconnecting Power Converters in Hybrid AC/DC Grids. IEEE J. Emerg. Sel. Top. Power Electron. 2024, 13, 809–826. [Google Scholar] [CrossRef]
- Fan, B.; Wang, K.; Zheng, Z.; Xu, L.; Li, Y. Optimized Branch Current Control of Modular Multilevel Matrix Converters Under Branch Fault Conditions. IEEE Trans. Power Electron. 2018, 33, 4578–4583. [Google Scholar] [CrossRef]
- Sanchez-Sanchez, E.; Prieto-Araujo, E.; Junyent-Ferre, A.; Gomis-Bellmunt, O. Analysis of MMC Energy-Based Control Structures for VSC-HVDC Links. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 1065–1076. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, J.; Shi, J.; Yang, B. Adaptive integrated control strategy for MMC-MTDC transmission system considering dynamic frequency response and power sharing. Int. J. Electr. Power Energy Syst. 2023, 147, 108858. [Google Scholar] [CrossRef]
- Ayalew, B.; Moursi, M.S.E.; Al-Durra, A.; El-Saadany, E.F. DC Inertia Support Scheme for MMCs in HVDC Transmission System Integrating Offshore Wind Farm. IEEE Trans. Power Delivery 2024, 39, 3374–3386. [Google Scholar] [CrossRef]














| System Parameter | Value | System Parameter | Value |
|---|---|---|---|
| Rated Capacity | 250 MW | Droop Coefficient for Energy Control | 0.2 |
| Rated Voltage | 220 kV | Energy Control Gain | 1.3 |
| Number of Bridge Submodules | 100 | Energy Control Time Constant | 0.05 |
| Bridge Submodule Capacitance | 50 mF | Voltage Loop Gain | 1.3 |
| Bridge Inductance | 6 mH | Voltage Loop Time Constant | 0.01 s |
| Output Inductance | 21 mH | Current Loop Gain | 1 |
| Equivalent Bridge Resistance | 0.03 | Current Loop Time Constant | 0.002 |
| Nominal Frequency on Grid Side | 50 Hz | Reactive Power Control Gain | 0.2 |
| Nominal Frequency on Low-Frequency Side | 50/3 Hz | Reactive Power Control Time Constant | 0.05 s |
| Simulation Time Step | 50 s |
| Comparison Item | Proposed Method | GFL M3C Scheme | GFM M3C Scheme |
|---|---|---|---|
| Voltage Construction | Grid-frequency side and low-frequency side | Low-frequency side | Grid-frequency side |
| Inertia Source | WTG and M3C capacitors | WTG only | WTG only |
| Communication System | Not required | Not required | Required |
| Resistance to Disturbance | Very high | High | Low |
| Performance under Weak Grid | High | Low | High |
| Required WTG Type | GFL | GFL | GFM |
| Control Complexity | Low | Medium | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Liu, J.; Li, R.; Wang, C.; Hua, W.; Sun, Q. Inertia Support Method for LFAC Enabled by Optimized Energy Utilization of Dual-Port Grid-Forming Modular Multilevel Matrix Converters. Electronics 2025, 14, 4173. https://doi.org/10.3390/electronics14214173
Ma J, Liu J, Li R, Wang C, Hua W, Sun Q. Inertia Support Method for LFAC Enabled by Optimized Energy Utilization of Dual-Port Grid-Forming Modular Multilevel Matrix Converters. Electronics. 2025; 14(21):4173. https://doi.org/10.3390/electronics14214173
Chicago/Turabian StyleMa, Junchao, Jianing Liu, Ruofan Li, Chenxu Wang, Wen Hua, and Qianhao Sun. 2025. "Inertia Support Method for LFAC Enabled by Optimized Energy Utilization of Dual-Port Grid-Forming Modular Multilevel Matrix Converters" Electronics 14, no. 21: 4173. https://doi.org/10.3390/electronics14214173
APA StyleMa, J., Liu, J., Li, R., Wang, C., Hua, W., & Sun, Q. (2025). Inertia Support Method for LFAC Enabled by Optimized Energy Utilization of Dual-Port Grid-Forming Modular Multilevel Matrix Converters. Electronics, 14(21), 4173. https://doi.org/10.3390/electronics14214173

