Switching Noise Harmonic Reduction for EMI Improvement Through Rising and Falling Time Control Using Gate Resistance
Abstract
1. Introduction
2. Theoretical Modeling Based on MOSFET Device
2.1. Transient Response of Gate-Source Voltage
2.2. Frequency Component Calcaulted by Fourier Coefficient
2.3. Determination of RG Considering Switching Loss
3. Low-Side Buck Converter with RG Control
3.1. Configuration of the Low-Side Buck Converter
3.2. Simulation Results
4. Experimental Validation
4.1. Fabricated Low-Side Buck Converter and Measurement Setup
4.2. Expermental Results
5. Discussions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Radhakrishnan, K.; Swaminathan, M.; Bhattacharyya, B.K. Power delivery for high-performance microprocessors—Challenges, solutions, and future trends. IEEE Trans. Compon. Packag. Manuf. Technol. 2021, 11, 655–671. [Google Scholar] [CrossRef]
- Yao, J.; Lai, Y.; Ma, Z.; Wang, S. Investigation of noise spectrum and radiated EMI in high switching frequency flyback converters. In Proceedings of the 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, AZ, USA, 14–17 June 2021. [Google Scholar] [CrossRef]
- Lu, R.; Wu, Z.; Zhang, G.; Hu, X.; Liu, Y.; Jiang, X.; Ni, Z.; Yi, H. Electromagnetic interference rejection strategy for 50-mT portable unshielded whole-body magnetic resonance imaging with a convolutional neural network incorporating attention mechanism. IEEE Trans. Instrum. Meas. 2025, 74, 4506408. [Google Scholar] [CrossRef]
- Huang, Y.; Qu, S.; Xie, Y.; Wang, H.; Zhang, X.L.; Zhang, X.T. Inter-channel correlation-based EMI noise removal (ICER) for shielding-free low-field MRI. IEEE Trans. Biomed. Eng. 2025; in press. [Google Scholar] [CrossRef]
- Woo, S.; Shin, Y.; Rhee, J.; Huh, S.; Ahn, S. Design of Resonant Circuit Components to Suppress both EMF and EMI in Wireless Power Transfer Systems for Electric Vehicles. IEEE J. Emerg. Sel. Top. Power Electron. 2025; in press. [Google Scholar] [CrossRef]
- Sulejmani, E.; Beltle, M.; Tenbohlen, S. EMC of Inductive Automotive Charging Systems According to Standard SAE J2954. Vehicles 2023, 5, 1532–1552. [Google Scholar] [CrossRef]
- Jie, H.; Zhao, Z.; Li, H.; Gan, T.H.; See, K.Y. A Systematic Three-Stage Safety Enhancement Approach for Motor Drive and Gimbal Systems in Unmanned Aerial Vehicles. IEEE Trans. Power Electron. 2025, 40, 9329–9342. [Google Scholar] [CrossRef]
- Rad, S.S.; Zheng, Z.; Kheirollahi, R.; Mostafa, A.; Zhao, S.; Wang, Y.; Chevinly, J.; Nadi, E.; Bensala, T.; Zhang, H.; et al. Electromagnetic Interference on Unmanned Aerial Vehicles (UAVs): A Case Study of High Power Transmission Line Impacts. IEEE Trans. Transp. Electrif. 2025, 11, 7501–7513. [Google Scholar] [CrossRef]
- Darisi, M.; Caldognetto, T.; Biadene, D.; Stellini, M. Digital active EMI filter for smart electronic power converters. Electronics 2024, 13, 3889. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, H.; Shi, Y. Electromagnetic interference filter design for a 100 kW silicon carbide photovoltaic inverter without switching harmonics filter. IEEE Trans. Ind. Electron. 2022, 69, 6925–6934. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.; Jeong, S.; Lee, S.; Cho, Y.; Kim, D.; Kim, J. EMI reduction in wireless power transfer system using spread spectrum frequency dithering. In Proceedings of the 2016 IEEE Wireless Power Transfer Conference (WPTC), Aveiro, Portugal, 5–6 May 2016. [Google Scholar] [CrossRef]
- Chowdhury, S.A.; Kim, S.-W.; Kim, S.-M.; Moon, J.; Cho, I.-K.; Ahn, D. Automatic tuning receiver for improved efficiency and EMI suppression in spread-spectrum wireless power transfer. IEEE Trans. Ind. Electron. 2023, 70, 352–363. [Google Scholar] [CrossRef]
- Chowdhury, S.A.; Kim, S.; Kim, S.; Moon, J.; Cho, I.; Ahn, D. Reducing/increasing tuning capacitor for frequency-modulated spread-spectrum inductive power transfer. IEEE Trans. Power Electron. 2023, 38, 13384–13395. [Google Scholar] [CrossRef]
- Yang, X.; Xu, M.; Li, Q.; Wang, Z.; He, M. Analytical method for RC snubber optimization design to eliminate switching oscillations of SiC MOSFET. IEEE Trans. Power Electron. 2022, 37, 4673–4684. [Google Scholar] [CrossRef]
- Yang, Y.; Wen, Y.; Gao, Y. A novel active gate driver for improving switching performance of high-power SiC MOSFET modules. IEEE Trans. Power Electron. 2019, 34, 7775–7787. [Google Scholar] [CrossRef]
- González-Vizuete, P.; Bernal-Méndez, J.; Martín-Prats, M.A. Reducing conducted emissions at the output of full-bridge DC-DC converters with high voltage steps. Electronics 2021, 10, 1373. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, S.; Yang, C.; Xin, Q.; Liang, J.; Han, X. A ripple compensation auxiliary half-bridge for coupled inductor multiphase buck converter. IEEE Trans. Power Electron. 2025, 40, 9452–9462. [Google Scholar] [CrossRef]
- Shih, Y.-T.; Huang, L.-J.; Wu, X.-Q.; Hung, W.-C.; Hsu, T.-H.; Zheng, K.-L.; Chen, K.-H.; Lin, Y.-H.; Lin, S.-R.; Tsai, T.-Y. A 24 V-to-1 V low input current ripple SC hybrid converter with conducted EMI noise precompensation filter and current-modulated gate driver for automotive application. IEEE Solid-State Circuits Lett. 2025, 8, 89–92. [Google Scholar] [CrossRef]
- Fei, C.; Yang, Y.; Li, Q.; Lee, F.C. Shielding Technique for Planar Matrix Transformers to Suppress Common-Mode EMI Noise and Improve Efficiency. IEEE Trans. Ind. Electron. 2018, 65, 1263–1272. [Google Scholar] [CrossRef]
- Jia, N.; Xue, L.; Cui, H. Mitigating EMI Noise in Propagation Paths: Review of Parasitic and Coupling Effects in Power Electronic Packages, Filters, and Systems. IEEE Open J. Power Electron. 2024, 5, 352–368. [Google Scholar] [CrossRef]
- Brown, J.; Moxey, G. Power MOSFET Basics: Understanding MOSFET Characteristics Associated with the Figure of Merit. Application Note. Available online: https://www.vishay.com/docs/71933/71933.pdf (accessed on 24 April 2025).
- Lin, P.-Y.; Liang, T.-J.; Chang, C.-W.; Chen, K.-H.; Huang, B.-K. Buck-type wide-range dimmable LED driver. In Proceedings of the 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA, 26–30 March 2017. [Google Scholar] [CrossRef]
- He, J.; Zhao, P.; Wang, W.; Wang, H. Far-field radiation prediction and analysis of a power converter with V-shaped flat cables based on PEEC. IEEE Trans. Power Electron. 2023, 38, 3246–3256. [Google Scholar] [CrossRef]
- Raviola, E.; Fiori, F. An adaptive method to reduce undershoots and overshoots in power switching transistors through a low-complexity active gate driver. IEEE Trans. Power Electron. 2023, 38, 3235–3245. [Google Scholar] [CrossRef]
- Liu, S.; Song, S.; Xie, N.; Chen, H.; Wu, X.; Zhao, M. Miller plateau corrected with displacement currents and its use in analyzing the switching process and switching loss. Electronics 2021, 10, 2013. [Google Scholar] [CrossRef]
- Ma, Z.; Pei, Y.; Wang, L.; Yang, Q.; Qi, Z.; Zeng, G. An Accurate Analytical Model of SiC MOSFETs for Switching Speed and Switching Loss Calculation in High-Voltage Pulsed Power Supplies. IEEE Trans. Power Electron. 2023, 38, 3281–3297. [Google Scholar] [CrossRef]
- Christen, D.; Biela, J. Analytical Switching Loss Modeling Based on Datasheet Parameters for mosfets in a Half-Bridge. IEEE Trans. Power Electron. 2019, 34, 3700–3710. [Google Scholar] [CrossRef]
- Jiang, X.; Jiang, H.; Zhong, X.; Mao, H.; Wu, Z.; Tang, L.; Chen, H.; Cheng, J.; Ran, L. Impact of Gate Resistance on Improving the Dynamic Overcurrent Stress of the Si/SiC Hybrid Switch. IEEE Trans. Power Electron. 2022, 37, 13319–13331. [Google Scholar] [CrossRef]
- Aman, A.; Chanekar, A.; Anand, S.; Agarwal, A. Impact of Operational Parameters on dVDS/dt of SiC MOSFET and a Scheme for Gate Driver Resistance Selection to Limit dVDS/dt. In Proceedings of the 2024 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 25–29 February 2024; pp. 1159–1165. [Google Scholar] [CrossRef]
- ON Semiconductor. Gate Resistor Design Guidelines for SupreMOS MOSFETs. Application Note. Available online: https://www.onsemi.com/download/application-notes/pdf/an-9068.pdf (accessed on 10 June 2025).
- Lakkas, G. MOSFET power losses and how they affect power-supply efficiency. Analog Appl. J. 2016, 10, 22–26. [Google Scholar]
- Infineon Technologies. IRF530NPbF HEXFET Power MOSFET Datasheet. Available online: https://www.infineon.com/dgdl/Infineon-IRF530N-DataSheet-v01_01-EN.pdf?fileId=5546d462533600a4015355e386b1199a (accessed on 24 April 2025).
- Infineon Technologies. IR2184(4)(S) & (PbF) Half-Bridge Driver Datasheet. Available online: https://www.infineon.com/dgdl/Infineon-IR2184(4)(S)-DataSheet-v01_00-EN.pdf?fileId=5546d462533600a4015355c955e616d4 (accessed on 24 April 2025).
- Wu, Y.; Li, C.; Zheng, Z.; Wang, L.; Zhao, W.; Zou, Q. A Behavior Model of SiC DMOSFET Considering Thermal-Runaway Failures in Short-Circuit and Avalanche Breakdown Faults. Electronics 2024, 13, 996. [Google Scholar] [CrossRef]
- Morel, C.; Morel, J.-Y. Impact of Chaos on MOSFET Thermal Stress and Lifetime. Electronics 2024, 13, 1649. [Google Scholar] [CrossRef]
Symbols | Expressions |
---|---|
RG | Gate resistance |
VG | Gate signal high level |
VGS | Gate-source voltage |
VGS,on | Gate-source voltage during turn-on state |
VGS,off | Gate-source voltage during turn-off state |
VGS,on,max | Maximum value of VGS,on |
VDS | Drain-source voltage |
Vth | Threshold voltage of MOSFET |
CGS | Gate-source capacitance |
CGD | Gate-drain capacitance |
IG | Gate current |
IGS | Gate-source current |
IGD | Gate-drain current |
ich | MOSFET channel current |
fsw | MOSFET gate switching frequency |
PLoss | Switching losses of MOSFETs |
a0 | Magnitude of DC component |
an | Fourier coefficient of cosine term |
bn | Fourier coefficient of sine term |
cn | Magnitude of harmonic components |
n | Harmonic order |
T | MOSFET switching period |
φ | Phase difference between sine and cosine terms |
τ | Rising and falling times of VGS,on and VGS,off |
Case 1 | Case 2 | Case 3 | |
---|---|---|---|
RG | 1 Ω | 100 Ω | 1 kΩ |
VG | 12 V | 12 V | 12 V |
VDS | 5 V | 5 V | 5 V |
fsw | 10 kHz | 10 kHz | 10 kHz |
CGS | 0.89 nF | 0.89 nF | 0.89 nF |
CGD | 0.45 nF | 0.45 nF | 0.45 nF |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheon, J.; Kim, D. Switching Noise Harmonic Reduction for EMI Improvement Through Rising and Falling Time Control Using Gate Resistance. Electronics 2025, 14, 2729. https://doi.org/10.3390/electronics14132729
Cheon J, Kim D. Switching Noise Harmonic Reduction for EMI Improvement Through Rising and Falling Time Control Using Gate Resistance. Electronics. 2025; 14(13):2729. https://doi.org/10.3390/electronics14132729
Chicago/Turabian StyleCheon, Jeonghyeon, and Dongwook Kim. 2025. "Switching Noise Harmonic Reduction for EMI Improvement Through Rising and Falling Time Control Using Gate Resistance" Electronics 14, no. 13: 2729. https://doi.org/10.3390/electronics14132729
APA StyleCheon, J., & Kim, D. (2025). Switching Noise Harmonic Reduction for EMI Improvement Through Rising and Falling Time Control Using Gate Resistance. Electronics, 14(13), 2729. https://doi.org/10.3390/electronics14132729