Comparison Analysis of Radiation Effects on 1.2 kV SiC Metal-Oxide-Semiconductor Field-Effect Transistors with Gamma-Ray and Proton Irradiation
Abstract
:1. Introduction
2. Experimental Details
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Millan, J.; Godignon, P.; Perpina, X.; P-Tomas, A.; Rebollo, J. A survey of wide bandgap power semiconductor devices. IEEE Trans. Power Electron. 2014, 29, 2155–2163. [Google Scholar] [CrossRef]
- Cooper, J.A. Advances in SiC MOS technology. Phys. Status Solidi A 1997, 162, 305–320. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Kannan, R.; CheKiong, C.; Ibrahim, T.B.; Abdullah, Y. Impact of gamma-ray irradiation on dynamic characteristics of Si and SiC power MOSFETs. Int. J. Electr. Comput. Eng. Syst. 2019, 9, 1453–1460. [Google Scholar]
- Sheridan, D.C.; Chung, G.; Clark, S.; Cressler, J.D. The effects of high-dose gamma irradiation on high-voltage 4H-SiC Schottky diodes and the SiC-SiO2 interface. IEEE Trans. Nucl. Sci. 2001, 48, 2229–2232. [Google Scholar] [CrossRef]
- Akturk, A.; McGarrity, J.M.; Potbhare, S.; Goldsman, N. Radiation Effects in Commercial 1200 V 24 A Silicon Carbide Power MOSFETs. IEEE Trans. Nucl. Sci. 2012, 59, 3258–3264. [Google Scholar] [CrossRef]
- Galloway, K.F.; Witulski, A.F.; Schrimpf, R.D.; Sternberg, A.L.; Ball, D.R.; Javanainen, A.; Reed, R.A.; Sierawski, B.D.; Lauenstein, J.-M. Failure Estimates for SiC Power MOSFETs in Space Electronics. Aerospace 2018, 5, 67. [Google Scholar] [CrossRef]
- Galloway, K.F.; Witulski, A.F.; Schrimpf, R.D.; Sternberg, A.L.; Ball, D.R.; Javanainen, A.; Reed, R.A.; Sierawski, B.D.; Lauenstein, J.-M. Reliability Concerns for Flying SiC Power MOSFETs in Space. In Proceedings of the Hardened Electronics and Radiation Technology, Tucson, AZ, USA, 16–20 April 2018; pp. 1–4. [Google Scholar]
- Felix, J.A.; Shaneyfelt, M.R.; Schwank, J.R.; Dalton, S.M.; Witcher, J.B. Enhanced Degradation in Power MOSFET Devices Due to Heavy Ion Irradiation. IEEE Trans. Nucl. Sci. 2007, 54, 2181–2189. [Google Scholar] [CrossRef]
- Bourdarie, S.; Xapsos, M. The Near-Earth space radiation environment. IEEE Trans. Nucl. Sci. 2008, 55, 1810–1832. [Google Scholar] [CrossRef]
- Lauenstein, J.M.; Casey, M.C.; Ladbury, R.L.; Kim, H.S.; Phan, A.M.; Topper, A.D. Space Radiation Effects on SiC Power Device Reliability. In Proceedings of the IEEE International Reliability Physics Symposium, Monterey, CA, USA, 21–25 March 2021; pp. 1–8. [Google Scholar] [CrossRef]
- Niskanen, K.; Touboul, A.D.; Germanicus, R.C.; Michez, A.; Javanainen, A.; Wrobel, F.; Boch, J.; Pouget, V.; Saigne, F. Impact of Electrical Stress and Neutron Irradiation on Reliability of Silicon Carbide Power MOSFET. IEEE Trans. Nucl. Sci. 2020, 67, 1365–1373. [Google Scholar] [CrossRef]
- Hull, B.; Allen, S.; Zhang, Q.; Gajewski, D.; Pala, V.; Richmond, J.; Ryu, S.; O’Loughlin, M.; VanBrunt, E.; Cheng, L.; et al. Reliability and stability of SiC power MOSFETs and Next-Generation SiC MOSFETs. In Proceedings of the IEEE Workshop on Wide Bandgap Power Devices and Applications, Knoxville, TN, USA, 13–15 October 2014; pp. 139–142. [Google Scholar] [CrossRef]
- Assaf, J. Characterization of Commercial P-MOSFETs for Using as a Gamma-Rays Dosimeter. Silicon 2021, 14, 1767–1774. [Google Scholar] [CrossRef]
- Sakai, T.; Yachi, T. Effects of gamma-ray irradiation on thin-gate-oxide VDMOSFET characteristics. IEEE Trans. Electron. Devices 1991, 38, 1510–1515. [Google Scholar] [CrossRef]
- Gnana Prakash, A.P.; Pradeep, T.M.; Hegde, V.N.; Pushpa, N.; Bajpai, P.K.; Patel, S.P.; Trivedi, T.; Bhushan, K.G. Comparison of effect of 5MeV proton and Co-60 gamma irradiation on silicon NPN rf power transistors and N–channel depletion MOSFETs. Radiat. Eff. Defects Solids 2017, 172, 11–12. [Google Scholar] [CrossRef]
- Citterio, M.; Rescia, S.; Radeka, V. Radiation effects at cryogenic temperatures in Si-JFET, GaAs MESFET, and MOSFET devices. IEEE Trans. Nucl. Sci. 1995, 42, 2266–2270. [Google Scholar] [CrossRef]
- Jupina, M.A.; Lenahan, P.M. Spin dependent recombination: A 29Si hyperfine study of radiation-induced Pb centers at the Si/SiO2 interface. IEEE Trans. Nucl. Sci. 1990, 37, 1650–1657. [Google Scholar] [CrossRef]
- Galloway, K.F. A Brief Review of Heavy-Ion Radiation Degradation and Failure of Silicon UMOS Power Transistors. Electronics 2014, 3, 582–593. [Google Scholar] [CrossRef]
- Sharov, F.V.; Moxim, S.J.; Haase, G.S.; Hughart, D.R.; Lenahan, P.M. A Comparison of Radiation-Induced and High-Field Electrically Stress-Induced Interface Defects in Si/SiO2 MOSFETs via Electrically Detected Magnetic Resonance. IEEE Trans. Nucl. Sci. 2022, 69, 208–215. [Google Scholar] [CrossRef]
- Kaushal, G.; Rathod, S.S.; Maheshwaram, S.; Manhas, S.K.; Saxena, A.K.; Dasgupta, S. Radiation Effects in Si-NW GAA FET and CMOS Inverter: A TCAD Simulation Study. IEEE Trans. Electron. Devices 2012, 59, 1563–1566. [Google Scholar] [CrossRef]
- Ahyi, A.C.; Wanga, S.R.; Williams, J.R. Gamma irradiation effects on 4H-SiC MOS capacitors and MOSFETs. Mater. Sci. Forum 2006, 527–529, 1063–1066. [Google Scholar] [CrossRef]
- Harman, R.; Kruckmeyer, K. Radiation Handbook for Electronics; Texas Instruments: Dallas, TX, USA, 2020; pp. 38–46. [Google Scholar]
- Kelly, J.G.; Luera, T.F.; Posey, L.D.; Vehara, D.W.; Brown, D.B.; Dozierb, C.M. Dose Enhancement Effects in MOSFET IC’s Exposed in Typical 60Co Facilities. IEEE Trans. Nucl. Sci. 1983, 30, 4388. [Google Scholar] [CrossRef]
- McWhorter, P.J.; Winokur, P.S. Simple technique for separating the effects of interface traps and trapped-oxide charge in metal-oxide-semiconductor transistors. Appl. Phys. Lett. 1986, 48, 133–135. [Google Scholar] [CrossRef]
- Habersat, D.B.; Lelis, A.J.; Lopez, G.; McGarrity, J.; McLean, F.B. On Separating Oxide Charges and Interface Charges in 4H-SiC Metal-Oxide-Semiconductor Devices. Mater. Sci. Forum 2006, 527–529, 1007–1010. [Google Scholar] [CrossRef]
- Baliga, B.J. Power MOSFETs. In Fundamentals of Power Semiconductor Devices; Springer: New York, NY, USA, 2009; pp. 331–333. [Google Scholar]
- Baliga, B.J. Breakdown Voltage. In Fundamentals of Power Semiconductor Devices; Springer: New York, NY, USA, 2009; pp. 157–159. [Google Scholar]
- Schroder, D.K. Semiconductor Material and Device Characterization, 3rd ed.; Wiley: Piscataway, NJ, USA, 2006; pp. 319–374. [Google Scholar]
- Kimoto, T.; Cooper, J.A. Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications; John Wiley & Sons: Singapore, 2014; pp. 427–429. [Google Scholar]
- Kim, C.; Yoon, H.; Park, Y.; Kim, D.S.; Seok, O. Analysis of the effects of Gamma-ray irradiation on SiC MOSFETs. In Proceedings of the International Conference on Compound Semiconductor Manufacturing Technology, Orlando, FL, USA, 15–18 May 2023; pp. 1–5. [Google Scholar]
Sample ID | Radiation Type | Energy (MeV) | Dose (Mrad) | Fluence (cm−2) |
---|---|---|---|---|
Sample 1 | Gamma-ray | 1.33 | 1 | - |
Sample 2 | 3 | - | ||
Sample 3 | 5 | - | ||
Sample 4 | Proton | 45 | - | 1 × 1012 |
Sample 5 | - | 1 × 1013 |
Radiation Type | Dose (Mrad) | Fluence (cm−2) | ΔVT (V) | ΔRon (mΩ) | ΔBV (V) |
---|---|---|---|---|---|
Gamma-ray | Virgin | - | 0 | 0 | 0 |
1 | - | −0.498 | −10 | −58 | |
3 | - | −0.697 | −14 | −64 | |
5 | - | −0.797 | −19 | −71 | |
Proton | - | Virgin | 0 | 0 | 0 |
- | 1 × 1012 | −0.398 | −9 | −30 | |
- | 1 × 1013 | −0.776 | −23 | −44 |
Radiation Type | Dose (Mrad) | Fluence (cm−2) | ΔVFB (V) | QF (cm−2) |
---|---|---|---|---|
Gamma-ray | Virgin | - | 1.306 | 5.42 × 1011 |
1 | - | 1.806 | 7.04 × 1011 | |
3 | - | 2.636 | 9.04 × 1011 | |
5 | - | 2.065 | 9.78 × 1011 | |
Proton | - | Virgin | 1.876 | 5.61 × 1011 |
- | 1 × 1012 | 2.986 | 1.03 × 1012 | |
- | 1 × 1013 | 3.966 | 1.40 × 1012 |
LJTE (μm) | tox (μm) | QF (cm−2) | Sample ID |
---|---|---|---|
50 | 0.865 | 5.42 × 1011 | Device A |
7.04 × 1011 | Device B | ||
9.04 × 1011 | Device C | ||
9.78 × 1011 | Device D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, C.; Yoon, H.; Kim, D.-S.; Seok, O. Comparison Analysis of Radiation Effects on 1.2 kV SiC Metal-Oxide-Semiconductor Field-Effect Transistors with Gamma-Ray and Proton Irradiation. Electronics 2024, 13, 1352. https://doi.org/10.3390/electronics13071352
Kim C, Yoon H, Kim D-S, Seok O. Comparison Analysis of Radiation Effects on 1.2 kV SiC Metal-Oxide-Semiconductor Field-Effect Transistors with Gamma-Ray and Proton Irradiation. Electronics. 2024; 13(7):1352. https://doi.org/10.3390/electronics13071352
Chicago/Turabian StyleKim, Chaeyun, Hyowon Yoon, Dong-Seok Kim, and Ogyun Seok. 2024. "Comparison Analysis of Radiation Effects on 1.2 kV SiC Metal-Oxide-Semiconductor Field-Effect Transistors with Gamma-Ray and Proton Irradiation" Electronics 13, no. 7: 1352. https://doi.org/10.3390/electronics13071352
APA StyleKim, C., Yoon, H., Kim, D.-S., & Seok, O. (2024). Comparison Analysis of Radiation Effects on 1.2 kV SiC Metal-Oxide-Semiconductor Field-Effect Transistors with Gamma-Ray and Proton Irradiation. Electronics, 13(7), 1352. https://doi.org/10.3390/electronics13071352