Joint User Scheduling and Resource Allocation in Distributed MIMO Systems with Multi-Carriers
Abstract
:1. Introduction
- 1.
- This paper comprehensively considers resource allocation and user scheduling for coherent multi-TRP systems with multi-carriers and generates a radio resource allocation scheme for coherently cooperative networks. We develop a mixed-integer programming model that jointly optimizes the user-RAU association and carrier allocation, as well as the downlink power allocation problems to maximize the system spectral efficiency under constraints of backhaul capacity and power consumption limits.
- 2.
- Owing to the NP-hardness of mixed-integer programming, we transform the original non-smooth non-convex optimization problem into a series of iterative convex optimization problems through penalty functions and the SCA method, and then a joint optimization algorithm of user scheduling and resource allocation for the coherent multi-TRP system with multi-carriers is proposed, of which the superiority in system spectral efficiency is verified by numerical results compared to the general multi-TRP system without channel selection.
2. System Model and Problem Formulation
3. Problem Analysis and Proposed Approach
3.1. Equivalent Reformulation of Binary Constraints
3.2. Approximation of the Objective Function
3.3. Convex Approximation of Constraints Involving Variable Products
Algorithm 1. Joint optimization of user scheduling and resource allocation | |
1: | Set m=0, generate initial values of , , , , , , , , |
with constraints satisfied. | |
2: | Repeat |
3: | Solve problem (42) to obtain the optimal solution , , , , , , , |
. | |
4: | Update parameters for the next iteration: , , , |
, , , , , | |
5: | Set . |
6: | Until Convergence |
3.4. Complexity Analysis
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- You, X.; Wang, C.X.; Huang, J.; Gao, X.; Zhang, Z.; Wang, M.; Huang, Y.; Zhang, C.; Jiang, Y.; Wang, J.; et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts. Sci. China Inf. Sci. 2021, 64, 1–74. [Google Scholar] [CrossRef]
- Zhang, J.; Björnson, E.; Matthaiou, M.; Ng, D.W.K.; Yang, H.; Love, D.J. Prospective multiple antenna technologies for beyond 5G. IEEE J. Sel. Areas Commun. 2020, 38, 1637–1660. [Google Scholar] [CrossRef]
- You, X.; Wang, D.; Wang, J. Distributed MIMO and Cell-Free Mobile Communication; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Roh, W.; Paulraj, A. MIMO channel capacity for the distributed antenna. In Proceedings of the IEEE 56th Vehicular Technology Conference, Vancouver, BC, Canada, 24–28 September 2002; IEEE: Piscataway, NJ, USA, 2002; Volume 2, pp. 706–709. [Google Scholar]
- Wang, D.; Wang, J.; You, X.; Wang, Y.; Chen, M.; Hou, X. Spectral efficiency of distributed MIMO systems. IEEE J. Sel. Areas Commun. 2013, 31, 2112–2127. [Google Scholar] [CrossRef]
- Choi, W.; Andrews, J.G. Downlink performance and capacity of distributed antenna systems in a multicell environment. IEEE Trans. Wirel. Commun. 2007, 6, 69–73. [Google Scholar] [CrossRef]
- Zhu, P.; Bao, J.; Zhang, L.; Li, J. A pilot allocation algorithm based on coalitional game theory for distributed MIMO systems. IEEE Access 2019, 7, 105996–106001. [Google Scholar] [CrossRef]
- Li, J.; Wang, D.; Zhu, P.; You, X. Impacts of practical channel impairments on the downlink spectral efficiency of large-scale distributed antenna systems. Sci. China Inf. Sci. 2019, 62, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Lv, Q.; Yang, J.; Zhu, P.; You, X. Spectral and Energy Efficiency of Distributed Massive MIMO with Low-Resolution ADC. Electronics 2018, 7, 391. [Google Scholar] [CrossRef] [Green Version]
- Lv, Q.; Li, J.; Zhu, P.; Wang, D.; You, X. Downlink Spectral Efficiency Analysis in Distributed Massive MIMO with Phase Noise. Electronics 2018, 7, 317. [Google Scholar] [CrossRef] [Green Version]
- Dao, H.T.; Kim, S. Power Allocation and User-AP Connection in Distributed Massive MIMO Systems. IEEE Commun. Lett. 2020, 25, 565–569. [Google Scholar] [CrossRef]
- Seki, Y.; Saito, T.; Adachi, F. A study on UE clustering and antenna selection for distributed MIMO cooperative transmission using multi-user MMSE-SVD. In Proceedings of the 2019 25th Asia-Pacific Conference on Communications (APCC), Ho Chi Minh City, Vietnam, 6–8 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 73–77. [Google Scholar]
- Dong, G.; Zhang, H.; Jin, S.; Yuan, D. Energy-efficiency-oriented joint user association and power allocation in distributed massive MIMO systems. IEEE Trans. Veh. Technol. 2019, 68, 5794–5808. [Google Scholar] [CrossRef]
- Bjornson, E.; Jalden, N.; Bengtsson, M.; Ottersten, B. Optimality properties, distributed strategies, and measurement-based evaluation of coordinated multicell OFDMA transmission. IEEE Trans. Signal Process. 2011, 59, 6086–6101. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Yu, G.; Yin, R.; Li, G.Y. Energy-efficient user association and resource allocation for multistream carrier aggregation. IEEE Trans. Veh. Technol. 2015, 65, 6366–6376. [Google Scholar] [CrossRef]
- Chavarria-Reyes, E.; Akyildiz, I.F.; Fadel, E. Energy-efficient multi-stream carrier aggregation for heterogeneous networks in 5G wireless systems. IEEE Trans. Wirel. Commun. 2016, 15, 7432–7443. [Google Scholar] [CrossRef]
- Tsinos, C.; Galanopoulos, A.; Foukalas, F. Low-complexity and low-feedback-rate channel allocation in CA MIMO systems with heterogeneous channel feedback. IEEE Trans. Veh. Technol. 2016, 66, 4396–4409. [Google Scholar] [CrossRef]
- Venturino, L.; Zappone, A.; Risi, C.; Buzzi, S. Energy-efficient scheduling and power allocation in downlink OFDMA networks with base station coordination. IEEE Trans. Wirel. Commun. 2014, 14, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.A.; Adve, R.S.; Yu, W. Optimizing downlink resource allocation in multiuser MIMO networks via fractional programming and the hungarian algorithm. IEEE Trans. Wirel. Commun. 2020, 19, 5162–5175. [Google Scholar] [CrossRef]
- Zarandi, S.; Khalili, A.; Rasti, M.; Tabassum, H. Multi-objective energy efficient resource allocation and user association for in-band full duplex small-cells. IEEE Trans. Green Commun. Netw. 2020, 4, 1048–1060. [Google Scholar] [CrossRef]
- Ammar, H.A.; Adve, R.; Shahbazpanahi, S.; Boudreau, G.; Srinivas, K.V. Downlink resource allocation in multiuser cell-free MIMO networks with user-centric clustering. IEEE Trans. Wirel. Commun. 2021. [Google Scholar] [CrossRef]
- Pan, C.; Ren, H.; Elkashlan, M.; Nallanathan, A.; Hanzo, L. The non-coherent ultra-dense C-RAN is capable of outperforming its coherent counterpart at a limited fronthaul capacity. IEEE J. Sel. Areas Commun. 2018, 36, 2549–2560. [Google Scholar] [CrossRef] [Green Version]
- Muruganathan, S.; Faxer, S.; Jarmyr, S.; Gao, S.; Frenne, M. On the system-level performance of coordinated multi-point transmission schemes in 5G NR deployment scenarios. In Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Shi, Z.; Chen, W.; Huang, Y.; Tian, J.; Fang, Y.; You, X.; Guo, L. Multiple-input multiple-output enhancement and beam management. In 5G NR and Enhancements; Elsevier: Amsterdam, The Netherlands, 2022; pp. 413–506. [Google Scholar]
- Lin, X. An Overview of 5G Advanced Evolution in 3GPP Release 18. arXiv 2022, arXiv:2201.01358. [Google Scholar]
- Nasir, A.A.; Tuan, H.D.; Ngo, H.Q.; Duong, T.Q.; Poor, H.V. Cell-free massive MIMO in the short blocklength regime for URLLC. IEEE Trans. Wirel. Commun. 2021, 20, 5861–5871. [Google Scholar] [CrossRef]
- Lucidi, S.; Rinaldi, F. Exact penalty functions for nonlinear integer programming problems. J. Optim. Theory Appl. 2010, 145, 479–488. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.D.; Duong, T.Q.; Tuan, H.D.; Shin, O.S.; Poor, H.V. Spectral and energy efficiencies in full-duplex wireless information and power transfer. IEEE Trans. Commun. 2017, 65, 2220–2233. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.; Zhu, P.; Li, J.; Wu, H.; Wang, D.; Xin, Y. Joint optimization of spectral efficiency for cell-free massive MIMO with network-assisted full duplexing. Sci. China Inf. Sci. 2021, 64, 1–16. [Google Scholar] [CrossRef]
- Beck, A.; Ben-Tal, A.; Tetruashvili, L. A sequential parametric convex approximation method with applications to nonconvex truss topology design problems. J. Glob. Optim. 2010, 47, 29–51. [Google Scholar] [CrossRef]
- Ye, Y. Interior Point Algorithms: Theory and Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 44. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bu, Y.; Zong, J.; Xia, X.; Liu, Y.; Yang, F.; Wang, D. Joint User Scheduling and Resource Allocation in Distributed MIMO Systems with Multi-Carriers. Electronics 2022, 11, 1836. https://doi.org/10.3390/electronics11121836
Bu Y, Zong J, Xia X, Liu Y, Yang F, Wang D. Joint User Scheduling and Resource Allocation in Distributed MIMO Systems with Multi-Carriers. Electronics. 2022; 11(12):1836. https://doi.org/10.3390/electronics11121836
Chicago/Turabian StyleBu, Yinglan, Jiaying Zong, Xinjiang Xia, Yang Liu, Fengyi Yang, and Dongming Wang. 2022. "Joint User Scheduling and Resource Allocation in Distributed MIMO Systems with Multi-Carriers" Electronics 11, no. 12: 1836. https://doi.org/10.3390/electronics11121836
APA StyleBu, Y., Zong, J., Xia, X., Liu, Y., Yang, F., & Wang, D. (2022). Joint User Scheduling and Resource Allocation in Distributed MIMO Systems with Multi-Carriers. Electronics, 11(12), 1836. https://doi.org/10.3390/electronics11121836