A New Memristive Neuron Map Model and Its Network’s Dynamics under Electrochemical Coupling
Abstract
:1. Introduction
2. Memristive Neuron Map Model
3. Network’s Dynamics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chua, L. Memristor-the missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef]
- Borghetti, J.; Li, Z.; Straznicky, J.; Li, X.; Ohlberg, D.A.; Wu, W.; Stewart, D.R.; Williams, R.S. A hybrid nanomemristor/transistor logic circuit capable of self-programming. Proc. Natl. Acad. Sci. USA 2009, 106, 1699–1703. [Google Scholar] [CrossRef] [Green Version]
- Strukov, D.B.; Williams, R.S. Four-dimensional address topology for circuits with stacked multilayer crossbar arrays. Proc. Natl. Acad. Sci. USA 2009, 106, 20155–20158. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Hu, M.; Li, Y.; Jiang, H.; Ge, N.; Montgomery, E.; Zhang, J.; Song, W.; Dávila, N.; Graves, C.E. Analogue signal and image processing with large memristor crossbars. Nat. Electron. 2018, 1, 52–59. [Google Scholar] [CrossRef]
- Duan, S.; Hu, X.; Dong, Z.; Wang, L.; Mazumder, P. Memristor-based cellular nonlinear/neural network: Design, analysis, and applications. IEEE Trans. Neural Netw. Learn. Syst. 2014, 26, 1202–1213. [Google Scholar] [CrossRef]
- Tan, Y.; Wang, C. A simple locally active memristor and its application in HR neurons. Chaos 2020, 30, 053118. [Google Scholar] [CrossRef]
- Mladenov, V.; Kirilov, S. A nonlinear drift memristor model with a modified biolek window function and activation threshold. Electronics 2017, 6, 77. [Google Scholar] [CrossRef] [Green Version]
- Mladenov, V.; Kirilov, S. A Memristor Model with a Modified Window Function and Activation Thresholds. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–5. [Google Scholar]
- Mladenov, V.; Kirilov, S. Learning of an Artificial Neuron with Resistor-Memristor Synapses. In Proceedings of the ANNA ‘18; Advances in Neural Networks and Applications 2018, St. Konstantin and Elena Resort, Bulgaria, 15–17 September 2018; pp. 1–5. [Google Scholar]
- Thomas, A. Memristor-based neural networks. J. Phys. D 2013, 46, 093001. [Google Scholar] [CrossRef] [Green Version]
- Hua, M.; Wu, H.; Xu, Q.; Chen, M.; Bao, B. Asymmetric memristive Chua’s chaotic circuits. Int. J. Electron. 2020, 108, 1106–1123. [Google Scholar] [CrossRef]
- Usha, K.; Subha, P. Hindmarsh-Rose neuron model with memristors. Biosystems 2019, 178, 1–9. [Google Scholar]
- Bao, H.; Hu, A.; Liu, W.; Bao, B. Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 502–511. [Google Scholar] [CrossRef]
- Lin, H.; Wang, C.; Sun, Y.; Yao, W. Firing multistability in a locally active memristive neuron model. Nonlinear Dyn. 2020, 100, 3667–3683. [Google Scholar] [CrossRef]
- Hu, X.; Liu, C. Dynamic property analysis and circuit implementation of simplified memristive Hodgkin–Huxley neuron model. Nonlinear Dyn. 2019, 97, 1721–1733. [Google Scholar] [CrossRef]
- Morris, C.; Lecar, H. Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 1981, 35, 193–213. [Google Scholar] [CrossRef] [Green Version]
- Ibarz, B.; Casado, J.M.; Sanjuán, M.A. Map-based models in neuronal dynamics. Phys. Rep. 2011, 501, 1–74. [Google Scholar] [CrossRef]
- Rulkov, N.F. Modeling of spiking-bursting neural behavior using two-dimensional map. Phys. Rev. E 2002, 65, 041922. [Google Scholar] [CrossRef] [Green Version]
- Izhikevich, E.M. Simple model of spiking neurons. IEEE Trans. Neural Netw. 2003, 14, 1569–1572. [Google Scholar] [CrossRef] [Green Version]
- Zandi-Mehran, N.; Panahi, S.; Hosseini, Z.; Golpayegani, S.M.R.H.; Jafari, S. One dimensional map-based neuron model: A phase space interpretation. Chaos Soliton. Fractal. 2020, 132, 109558. [Google Scholar] [CrossRef]
- Mesbah, S.; Moghtadaei, M.; Golpayegani, M.R.H.; Towhidkhah, F. One-dimensional map-based neuron model: A logistic modification. Chaos Soliton. Fractal. 2014, 65, 20–29. [Google Scholar] [CrossRef]
- Bao, B.-C.; Li, H.; Wu, H.; Zhang, X.; Chen, M. Hyperchaos in a second-order discrete memristor-based map model. Electron. Lett. 2020, 56, 769–770. [Google Scholar] [CrossRef]
- Bao, H.; Hua, Z.; Li, H.; Chen, M.; Bao, B. Discrete Memristor Hyperchaotic Maps. IEEE Trans. Circuits Syst. I 2021, 68, 4534–4544. [Google Scholar] [CrossRef]
- Li, H.; Hua, Z.; Bao, H.; Zhu, L.; Chen, M.; Bao, B. Two-dimensional memristive hyperchaotic maps and application in secure communication. IEEE Trans. Ind. Electron. 2021, 68, 9931–9940. [Google Scholar] [CrossRef]
- Li, K.; Bao, H.; Li, H.; Ma, J.; Hua, Z.; Bao, B.-C. Memristive Rulkov Neuron Model with Magnetic Induction Effects. IEEE Trans. Ind. Inf. 2021, 18, 1726–1736. [Google Scholar] [CrossRef]
- Volos, C.K.; Kyprianidis, I.; Stouboulos, I.; Tlelo-Cuautle, E.; Vaidyanathan, S. Memristor: A New Concept in Synchronization of Coupled Neuromorphic Circuits. J. Eng. Sci. Technol. 2015, 8, 157–173. [Google Scholar]
- Xu, Y.; Jia, Y.; Ma, J.; Alsaedi, A.; Ahmad, B. Synchronization between neurons coupled by memristor. Chaos Soliton. Fractal. 2017, 104, 435–442. [Google Scholar] [CrossRef]
- Bao, H.; Zhang, Y.; Liu, W.; Bao, B. Memristor synapse-coupled memristive neuron network: Synchronization transition and occurrence of chimera. Nonlinear Dyn. 2020, 100, 937–950. [Google Scholar] [CrossRef]
- Chavez, M.; Hwang, D.-U.; Boccaletti, S. Synchronization processes in complex networks. Eur. Phys. J. Spec. Top. 2007, 146, 129–144. [Google Scholar] [CrossRef]
- Chowdhury, S.N.; Majhi, S.; Ozer, M.; Ghosh, D.; Perc, M. Synchronization to extreme events in moving agents. New J. Phys. 2019, 21, 073048. [Google Scholar] [CrossRef]
- Rajagopal, K.; Jafari, S.; Karthikeyan, A.; Srinivasan, A. Effect of magnetic induction on the synchronizability of coupled neuron network. Chaos 2021, 31, 083115. [Google Scholar] [CrossRef]
- Rybalova, E.; Strelkova, G.; Schöll, E.; Anishchenko, V. Relay and complete synchronization in heterogeneous multiplex networks of chaotic maps. Chaos 2020, 30, 061104. [Google Scholar] [CrossRef]
- Bukh, A.V.; Schöll, E.; Anishchenko, V. Synchronization of spiral wave patterns in two-layer 2D lattices of nonlocally coupled discrete oscillators. Chaos 2019, 29, 053105. [Google Scholar] [CrossRef] [PubMed]
- Andrzejak, R.G.; Ruzzene, G.; Malvestio, I.; Schindler, K.; Schöll, E.; Zakharova, A. Mean field phase synchronization between chimera states. Chaos 2018, 28, 091101. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.M.; Kamran, M.A.; Mannan, M.M.N.; Jung, I.H.; Kim, S. Lag synchronization of coupled time-delayed FitzHugh–Nagumo neural networks via feedback control. Sci. Rep. 2021, 11, 3884. [Google Scholar] [CrossRef] [PubMed]
- Della Rossa, F.; Pecora, L.; Blaha, K.; Shirin, A.; Klickstein, I.; Sorrentino, F. Symmetries and cluster synchronization in multilayer networks. Nat. Commun. 2020, 11, 3179. [Google Scholar] [CrossRef]
- Rybalova, E.; Vadivasova, T.; Strelkova, G.; Anishchenko, V.S.; Zakharova, A. Forced synchronization of a multilayer heterogeneous network of chaotic maps in the chimera state mode. Chaos 2019, 29, 033134. [Google Scholar] [CrossRef] [PubMed]
- zur Bonsen, A.; Omelchenko, I.; Zakharova, A.; Schöll, E. Chimera states in networks of logistic maps with hierarchical connectivities. Eur. Phys. J. B 2018, 91, 65. [Google Scholar] [CrossRef] [Green Version]
- Rybalova, E.; Anishchenko, V.; Strelkova, G.; Zakharova, A. Solitary states and solitary state chimera in neural networks. Chaos 2019, 29, 071106. [Google Scholar] [CrossRef] [PubMed]
- Parastesh, F.; Jafari, S.; Azarnoush, H.; Shahriari, Z.; Wang, Z.; Boccaletti, S.; Perc, M. Chimeras. Phys. Rep. 2021, 898, 1–114. [Google Scholar] [CrossRef]
- Hussain, I.; Jafari, S.; Ghosh, D.; Perc, M. Synchronization and chimeras in a network of photosensitive FitzHugh–Nagumo neurons. Nonlinear Dyn. 2021, 104, 2711–2721. [Google Scholar] [CrossRef]
- Majhi, S.; Perc, M.; Ghosh, D. Chimera states in a multilayer network of coupled and uncoupled neurons. Chaos 2017, 27, 073109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shafiei, M.; Jafari, S.; Parastesh, F.; Ozer, M.; Kapitaniak, T.; Perc, M. Time delayed chemical synapses and synchronization in multilayer neuronal networks with ephaptic inter-layer coupling. Commun. Nonlinear Sci. Numer. Simul. 2020, 84, 105175. [Google Scholar] [CrossRef]
- Sun, X.; Perc, M.; Lu, Q.; Kurths, J. Effects of correlated Gaussian noise on the mean firing rate and correlations of an electrically coupled neuronal network. Chaos 2010, 20, 033116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Perc, M.; Duan, Z.; Chen, G. Synchronization transitions on scale-free neuronal networks due to finite information transmission delays. Phys. Rev. E 2009, 80, 026206. [Google Scholar] [CrossRef] [Green Version]
- Rakshit, S.; Ray, A.; Bera, B.K.; Ghosh, D. Synchronization and firing patterns of coupled Rulkov neuronal map. Nonlinear Dyn. 2018, 94, 785–805. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramakrishnan, B.; Mehrabbeik, M.; Parastesh, F.; Rajagopal, K.; Jafari, S. A New Memristive Neuron Map Model and Its Network’s Dynamics under Electrochemical Coupling. Electronics 2022, 11, 153. https://doi.org/10.3390/electronics11010153
Ramakrishnan B, Mehrabbeik M, Parastesh F, Rajagopal K, Jafari S. A New Memristive Neuron Map Model and Its Network’s Dynamics under Electrochemical Coupling. Electronics. 2022; 11(1):153. https://doi.org/10.3390/electronics11010153
Chicago/Turabian StyleRamakrishnan, Balamurali, Mahtab Mehrabbeik, Fatemeh Parastesh, Karthikeyan Rajagopal, and Sajad Jafari. 2022. "A New Memristive Neuron Map Model and Its Network’s Dynamics under Electrochemical Coupling" Electronics 11, no. 1: 153. https://doi.org/10.3390/electronics11010153