A Novel Hook-Shaped Antenna Operating at 28 GHz for Future 5G mmwave Applications
Abstract
:1. Introduction
2. Antenna Design
3. Array Transformation
4. Fabrication and Measurements
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Yu, X.; Letaief, K.B. Hybrid beamforming for 5 G and beyond millimeter-wave systems: A holistic view. IEEE Open J. Commun. Soc. 2019, 1, 77–91. [Google Scholar] [CrossRef] [Green Version]
- Kiani, S.H.; Altaf, A.; Abdullah, M.; Muhammad, F.; Shoaib, N.; Anjum, M.R.; Damaševičius, R.; Blažauskas, T. Eight Element Side Edged Framed MIMO Antenna Array for Future 5 G Smart Phones. Micromachines 2020, 11, 956. [Google Scholar] [CrossRef] [PubMed]
- Przesmycki, R.; Bugaj, M.; Nowosielski, L. Broadband Microstrip Antenna for 5 G Wireless Systems Operating at 28 GHz. Electronics 2021, 10, 1. [Google Scholar] [CrossRef]
- Hilt, A. Availability and Fade Margin Calculations for 5 G Microwave and Millimeter-Wave Anyhaul Links. Appl. Sci. 2019, 9, 5240. [Google Scholar] [CrossRef] [Green Version]
- Khan, J.; Sehrai, D.A.; Khan, M.A.; Khan, H.A.; Ahmad, S.; Ali, A.; Arif, A.; Memon, A.A.; Khan, S. Design and performance comparison of rotated Y-shaped antenna using different metamaterial surfaces for 5 G mobile devices. CMC Comput. Mater. Contin 2019, 60, 409–420. [Google Scholar] [CrossRef]
- Zhekov, S.S.; Zhao, K.; Franek, O.; Zhang, S. Test Reduction for Power Density Emitted by Handset mmWave Antenna Arrays. IEEE Access 2021, 9, 23127–23138. [Google Scholar] [CrossRef]
- Yang, Q.; Gao, S.; Luo, Q.; Wen, L.; Ban, Y.L.; Ren, X.; Wu, J.; Yang, X.; Liu, Y. Millimeter-wave dual-polarized differentially fed 2-D multibeam patch antenna array. IEEE Trans. Antennas Propag. 2020, 68, 7007–7016. [Google Scholar] [CrossRef]
- Rahman, S.; Ren, X.C.; Altaf, A.; Irfan, M.; Abdullah, M.; Muhammad, F.; Anjum, M.R.; Mursal, S.N.F.; AlKahtani, F.S. Nature inspired MIMO antenna system for future mmWave technologies. Micromachines 2020, 11, 1083. [Google Scholar] [CrossRef]
- Kamal, M.M.; Yang, S.; Ren, X.C.; Altaf, A.; Kiani, S.H.; Anjum, M.R.; Iqbal, A.; Asif, M.; Saeed, S.I. Infinity Shell Shaped MIMO Antenna Array for mm-Wave 5 G Applications. Electronics 2021, 10, 165. [Google Scholar] [CrossRef]
- Park, S.J.; Shin, D.H.; Park, S.O. Low side-lobe substrate-integrated-waveguide antenna array using broadband unequal feeding network for millimeter-wave handset device. IEEE Trans. Antennas Propag. 2015, 64, 923–932. [Google Scholar] [CrossRef]
- Zhu, Q.; Ng, K.B.; Chan, C.H.; Luk, K.M. Substrate-integrated-waveguide-fed array antenna covering 57–71 GHz band for 5 G applications. IEEE Trans. Antennas Propag. 2017, 65, 6298–6306. [Google Scholar] [CrossRef]
- Ullah, H.; Tahir, F.A. A broadband wire hexagon antenna array for future 5 G communications in 28 GHz band. Microw. Opt. Technol. Lett. 2019, 61, 696–701. [Google Scholar] [CrossRef]
- Ullah, H.; Tahir, F.A. A Novel Snowflake Fractal Antenna for Dual-Beam Applications in 28 GHz Band. IEEE Access 2020, 8, 19873–19879. [Google Scholar] [CrossRef]
- Zhang, J.; Ge, X.; Li, Q.; Guizani, M.; Zhang, Y. 5 G millimeter-wave antenna array: Design and challenges. IEEE Wirel. Commun. 2016, 24, 106–112. [Google Scholar] [CrossRef]
- Yang, B.; Yu, Z.; Dong, Y.; Zhou, J.; Hong, W. Compact tapered slot antenna array for 5 G millimeter-wave massive MIMO systems. IEEE Trans. Antennas Propag. 2017, 65, 6721–6727. [Google Scholar] [CrossRef]
- Shoaib, N.; Shoaib, S.; Khattak, R.Y.; Shoaib, I.; Chen, X.; Perwaiz, A. MIMO antennas for smart 5 G devices. IEEE Access 2018, 6, 77014–77021. [Google Scholar] [CrossRef]
- Jilani, S.F.; Alomainy, A. Millimetre-wave T-shaped antenna with defected ground structures for 5 G wireless networks. In Proceedings of the 2016 Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK, 14–15 November 2016; pp. 1–3. [Google Scholar]
- Ullah, H.; Tahir, F.A. A high gain and wideband narrow-beam antenna for 5 G millimeter-wave applications. IEEE Access 2020, 8, 29430–29434. [Google Scholar] [CrossRef]
- Khalily, M.; Tafazolli, R.; Rahman, T.; Kamarudin, M. Design of phased arrays of series-fed patch antennas with reduced number of the controllers for 28-GHz mm-wave applications. IEEE Antennas Wirel. Propag. Lett. 2015, 15, 1305–1308. [Google Scholar] [CrossRef] [Green Version]
- Khan, J.; Sehrai, D.A.; Ali, U. Design of dual band 5 G antenna array with SAR analysis for future mobile handsets. J. Electr. Eng. Technol. 2019, 14, 809–816. [Google Scholar] [CrossRef]
- Sehrai, D.A.; Abdullah, M.; Altaf, A.; Kiani, S.H.; Muhammad, F.; Tufail, M.; Irfan, M.; Glowacz, A.; Rahman, S. A novel high gain wideband MIMO antenna for 5 G millimeter wave applications. Electronics 2020, 9, 1031. [Google Scholar] [CrossRef]
Parameter | Value in mm | Parameter | Value in mm |
---|---|---|---|
SX | 8 | SY | 10 |
GX | 8 | GY | 4 |
CX | 1.5 | CY | 1.5 |
Strip 1 | 3.25 | Strip 2 | 5 |
Arc 1 | 2.92 | Feed Length | 6 |
Ref | Bandwidth (GHz) | Size L × W (mm) | Antenna Elements | Configuration | Gain (dBi) | Efficiency (%) |
---|---|---|---|---|---|---|
Rahman et al. [8] | 2 | 30 × 30 | 2 × 2 | Planar | 5.5 | 80 |
Kamal et al. [9] | 2.5 | 30 × 30 | 2 × 2 | Planar | 7 | 82 |
Park et al. [10] | 2.3 | 70 × 63.5 | 1 × 8 | SIW | 13.97 | 60 |
Zhu et al. [11] | 14 | 29 × 29 | 8 × 8 | SIW | 26 | 80 |
Ullah and Tahir [12] | 9 | 45 × 20 | 1 × 4 | SIW | 12.1 | 85 |
Ullah and Tahir [18] | 2.7 | 37.4 × 14.6 | 1 × 4 | SIW | 10.71 | 83 |
Khan et al. [20] | 0.5 | 18 × 26.5 | 1 × 4 | Planar | 12 | 92 |
Proposed | 3 | 26.9 × 19.5 | 1 × 4 | Planar | 10.3 | 90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamal, M.M.; Yang, S.; Kiani, S.H.; Sehrai, D.A.; Alibakhshikenari, M.; Abdullah, M.; Falcone, F.; Limiti, E.; Munir, M. A Novel Hook-Shaped Antenna Operating at 28 GHz for Future 5G mmwave Applications. Electronics 2021, 10, 673. https://doi.org/10.3390/electronics10060673
Kamal MM, Yang S, Kiani SH, Sehrai DA, Alibakhshikenari M, Abdullah M, Falcone F, Limiti E, Munir M. A Novel Hook-Shaped Antenna Operating at 28 GHz for Future 5G mmwave Applications. Electronics. 2021; 10(6):673. https://doi.org/10.3390/electronics10060673
Chicago/Turabian StyleKamal, Mian Muhammad, Shouyi Yang, Saad Hassan Kiani, Daniyal Ali Sehrai, Mohammad Alibakhshikenari, Mujeeb Abdullah, Francisco Falcone, Ernesto Limiti, and Mehre Munir. 2021. "A Novel Hook-Shaped Antenna Operating at 28 GHz for Future 5G mmwave Applications" Electronics 10, no. 6: 673. https://doi.org/10.3390/electronics10060673
APA StyleKamal, M. M., Yang, S., Kiani, S. H., Sehrai, D. A., Alibakhshikenari, M., Abdullah, M., Falcone, F., Limiti, E., & Munir, M. (2021). A Novel Hook-Shaped Antenna Operating at 28 GHz for Future 5G mmwave Applications. Electronics, 10(6), 673. https://doi.org/10.3390/electronics10060673