Planning of Electric Taxi Charging Stations Based on Travel Data Characteristics
Abstract
:1. Introduction
2. Review Methodology
3. ET Trajectory Data and Modeling Analysis
3.1. Definition
3.2. Vector Space Modeling of the ET Trajectory
4. Spectral Clustering Analysis with Trajectory Big Data
4.1. Trajectory Space Analysis
4.2. Application of Dimension Reduction Technology
5. Spectral Clustering and Economic Analysis of Charging Stations
5.1. Spectral Clustering Analysis of Charging Stations
5.2. Economic Analysis of Charging Station
5.3. Planning Process
6. Numerical Calculation and Analysis
6.1. Planning Area and Data Preprocessing
6.2. Analysis of Charging Station Planning Results
6.2.1. Clustering Result of Driving Data
6.2.2. Economic Evaluation of Charging Stations
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hao, C.; Fangxing, L.; Yurong, W. Wind Power Forecasting based on outlier smooth transition autoregressive GARCH Model. J. Mod. Power Syst. Clean Energy 2018, 6, 532–539. [Google Scholar]
- Zhaoxing, M.; Hongjie, J.; Liping, X. Study on influence of various wind farm correlations on voltage stability with multidimensional data streams method. J. Chin. Inst. Eng. 2019, 42, 738–747. [Google Scholar]
- Yu, L.; Zhao, T.; Chen, Q.; Zhang, J. Centralized bi-level spatial-temporal coordination charging strategy for area electric vehicles. CSEE J. Power Energy Syst. 2015, 1, 74–83. [Google Scholar] [CrossRef]
- Zhipeng, L.; Fushuan, W.; Ledwich, G. Optimal planning of electric-vehicle charging stations in distribution systems. IEEE Trans. Power Deliv. 2013, 28, 102–110. [Google Scholar]
- Sadeghi-Barzani, P.; Rajabi-Ghahnavieh, A.; Kazemi-Karegar, H. Optimal fast charging station placing and sizing. Appl. Energy 2014, 125, 289–299. [Google Scholar] [CrossRef]
- Cheng, S.; Feng, Y.; Wang, X. Application of lagrange relaxation to decentralized optimization of dispatching a charging station for electric vehicles. Electronics 2019, 8, 288. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Balasubramaniam, S.; Todeschini, G.; Santoso, S. A photovoltaic-fed DC-bus islanded electric vehicles charging system based on a hybrid control sheme. Electronics 2021, 10, 1142. [Google Scholar] [CrossRef]
- Kim, H.; Mokdad, L.; Ben-Othman, J.; Dong, Z. Designing UAV Surveillance Frameworks for Smart City and Extensive Ocean with Differential Perspectives. IEEE Commun. Mag. 2018, 56, 98–104. [Google Scholar] [CrossRef]
- Kim, H.; Ben-Othman, J.; Mokdad, L. UDiPP: A Framework for Differential Privacy Preserving Movements of Unmanned Aerial Vehicles in Smart Cities. IEEE Trans. Veh. Technol. 2019, 68, 3933–3943. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, Z.; Xu, Z.; Song, Y. Optimal planning of PEV charging station with single output multiple cables charging spots. IEEE Trans. Smart Grid 2017, 8, 2119–2128. [Google Scholar] [CrossRef]
- Liu, J.; Peper, J.; Lin, G.; Zhou, Y.; Awasthi, S.; Li, Y.; Rehtanz, C. A planning strategy considering multiple factors for electric vehicle charging stations along German motorways. Electr. Power Energy Syst. 2021, 124, 1–12. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, H.; Hu, R.; Qiu, Y. Location of electric vehicle charging stations: A perspective using the grey decision-making mode. Energy 2019, 173, 548–553. [Google Scholar] [CrossRef]
- Hosseini, S.; Sarder, M.D. Development of a Bayesian network model for optimal site selection of electric vehicle charging station. Int. J. Electr. Power Energy Syst. 2019, 105, 110–122. [Google Scholar] [CrossRef]
- Arias, B.; Arias Myungchin, K.; Sungwoo, B. Prediction of electric vehicle charging-power demand in realistic urban traffic networks. Appl. Energy 2017, 195, 738–753. [Google Scholar] [CrossRef]
- Xiaoqing, H.; Jie, C.; Hang, Y.; Yijia, C.; Weide, G.; Bicheng, H. Economic planning approach for electric vehicle charging stations integrating traffic and power grid constraints. IET Gener. Transm. Distrib. 2018, 12, 3925–3934. [Google Scholar]
- Hongcai, Z.; Zechun, H.; Zhiwei, X.; Yonghua, S. An integrated planning framework for different typers of PEV charging facilities in urban area. IEEE Trans. Smart Grid 2016, 7, 2273–2284. [Google Scholar]
- Hamid, S.; Hasan, D.; Hadi, R.; Gharehpetian Gevork, B. Cost-based optimal siting and sizing of electric vehicle charging stations considering demand response programmes. IET Gener. Transm. Distrib. 2018, 12, 1712–1720. [Google Scholar]
- Mainul, I.M.; Shareef, H.; Mohamed, A. Optimal location and sizing of fast charging stations for electric vehicles by incorporating traffic and power networks. IET Intell. Transp. Syst. 2018, 12, 947–957. [Google Scholar]
- Shu, W.; Zhaoyang, D.; Fengji, L.; Ke, M.; Yongxi, Z. Stochastic collaborative planning of electric vehicle charging stations and power distribution system. IEEE Trans. Ind. Inform. 2018, 14, 321–331. [Google Scholar]
- Guo, Q.; Xin, S.; Sun, H.; Li, Z.; Zhang, B. Rapid-charging navigation of electric vehicles based on real-time power systems and traffic data. IEEE Trans. Smart Grid 2014, 5, 1969–1979. [Google Scholar] [CrossRef]
- Zeb, M.Z.; Imran, K.; Khattak, A.; Janjua, A.K.; Pal, A.; Nadeem, M.; Zhang, J.; Khan, S. Optimal placement of electric vehicle charging stations in the active distribution network. IEEE Access 2020, 8, 68124–68134. [Google Scholar] [CrossRef]
- Mu, Y.; Wu, J.; Jenkins, N.; Jia, H.; Wang, C. A spatial-temporal model for grid impact analysis of plug-in electric vehicles. Appl. Energy 2014, 114, 456–465. [Google Scholar] [CrossRef] [Green Version]
- Gong, D.; Tang, M.; Buchmeister, B.; Zhang, H. Solving location problem for electric vehicle charging stations-A sharing charging model. IEEE Access 2019, 7, 138391–138402. [Google Scholar] [CrossRef]
- Guibin, W.; Zhao, X.; Fushuan, W.; Po, W.K. Traffic constrained multi-objective planning of electric vehicle charging stations. IEEE Trans Power Deliv. 2013, 28, 2363–2372. [Google Scholar]
- Lv-chao, L.; Xin-hua, J.; Fu-min, Z.; Wen-wu, H.; Huai, Q. A spectral clustering method for big trajectory data mining with latent semantic correlation. Acta Electron. Sin. 2015, 43, 956–964. [Google Scholar]
- Von Luxburg, U. A tutorial on spectral clustering. Stat. Comput. 2007, 17, 395–416. [Google Scholar] [CrossRef]
- Yang, Q.; Lihong, W.; Shuanhu, W.; Yibin, S. Analysis of similatrity between DNA sequence sets based on laplace matrix. J. Beijng Jiaotong Univ. 2010, 33, 137–140. [Google Scholar]
- Johnson, W.B.; Lindenstrauss, J. Extension of Lipschitz mapping into a Hilbert space. Contemp. Math. 1984, 26, 189–206. [Google Scholar]
- Dasgupta, S.; Gupta, A. An elementary proof of the Johnson-Lindenstrauss lemma. Random Struct. Algorithms 1999, 22, 1–5. [Google Scholar]
- Li, P.; Hastie, T.J.; Church, K.W. Very sparse random projections. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA, 20–23 August 2006; pp. 287–296. [Google Scholar]
- Wei, G.; Ding-Xuan, Z. Convergence of spectral clustering with a general similarity function. Sci. Sin. Math. 2012, 42, 985–994. [Google Scholar]
- Merris, R. Laplacian matricesof graphs: A survey. Linear Algebra Appl. 1994, 197, 143–176. [Google Scholar] [CrossRef] [Green Version]
- Wangsheng, Z.; Shijian, L.; Gang, P. Mining the semantics of origin-destination flows using taxi traces. In Proceeding of the 4th International Workshop on Location Social Networks, Pennsylvania, PA, USA, 8–10 September 2012; pp. 46–50. [Google Scholar]
Data Set | EV Trajectory Data |
---|---|
Location point | 241,403 |
Number of trajectory | 380 |
Clustering | Physical Location |
---|---|
1 | market, dwelling, hospital, hotel |
2 | dwelling, station, bar |
3 | hotel, park |
4 | school, park |
5 | general region |
6 | other |
Clustering | Grid |
---|---|
Cluster 1 | grid 362, grid 898, grid 1873, grid 1875, grid 1978, grid 1985, grid 2043 |
Grid | Physical Locations | Effective Pass Times |
---|---|---|
898 | dwelling | 135 |
1875 | hotel | 173 |
1074 | general area | 97 |
1978 | hospital | 201 |
2267 | a company | 142 |
Grid | Cost of Transformer/Million | New Feeder Cost/Million | Cost of Transformer/Million | New Feeder Cost/Million | Cost of Transformer/Million | New Feeder Cost/Million |
---|---|---|---|---|---|---|
362 | 0.38 | 0.19 | 5.3 | 0.21 | 0.26 | 2.08 |
898 | 0.39 | 0.21 | 4.1 | 0.22 | 0.21 | 1.72 |
1873 | 0.40 | 0.23 | 5.8 | 0.26 | 0.30 | 2.32 |
1875 | 0.42 | 0.27 | 3.7 | 0.27 | 0.28 | 1.70 |
1975 | 0.46 | 0.26 | 5.2 | 0.22 | 0.31 | 2.12 |
1978 | 0.50 | 0.20 | 5.9 | 0.28 | 0.26 | 2.38 |
2043 | 0.42 | 0.18 | 4.0 | 0.2 | 0.27 | 1.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Gao, S.; Chu, H.; Wang, X. Planning of Electric Taxi Charging Stations Based on Travel Data Characteristics. Electronics 2021, 10, 1947. https://doi.org/10.3390/electronics10161947
Wang Y, Gao S, Chu H, Wang X. Planning of Electric Taxi Charging Stations Based on Travel Data Characteristics. Electronics. 2021; 10(16):1947. https://doi.org/10.3390/electronics10161947
Chicago/Turabian StyleWang, Yan, Shan Gao, Hongyan Chu, and Xuefei Wang. 2021. "Planning of Electric Taxi Charging Stations Based on Travel Data Characteristics" Electronics 10, no. 16: 1947. https://doi.org/10.3390/electronics10161947
APA StyleWang, Y., Gao, S., Chu, H., & Wang, X. (2021). Planning of Electric Taxi Charging Stations Based on Travel Data Characteristics. Electronics, 10(16), 1947. https://doi.org/10.3390/electronics10161947