Metal-Insulator-Metal Waveguide-Based Racetrack Integrated Circular Cavity for Refractive Index Sensing Application
Abstract
1. Introduction
2. Device Design
3. SRTC Configuration
4. RTICC Configuration
5. Findings and Analysis
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Standard racetrack cavity | SRTC |
Racetrack integrated circular cavity | RTICC |
Metal-insulator-metal | MIM |
Waveguide | WG |
Refractive index | RI |
Effective refractive index | neff |
Finite element method | FEM |
Sensitivity | S |
Figure of merit | FOM |
References
- Anwar, R.S.; Ning, H.; Mao, L. Recent advancements in surface plasmon polaritons-plasmonics in subwavelength structures in microwave and terahertz regimes. Digit. Commun. Netw. 2018, 4, 244–257. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Xu, W. Surface plasmon polaritons: Physics and applications. J. Phys. D Appl. Phys. 2012, 45, 113001. [Google Scholar] [CrossRef]
- Zhang, T.; Shan, F. Development and application of surface plasmon polaritons on optical amplification. Plasmon. Nanophotonics 2014, 2014, 495381. [Google Scholar] [CrossRef]
- Karabchevsky, A.; Katiyi, A.; Ang, A.S.; Hazan, A. On-chip nanophotonics and future challenges. Nanophotonics 2020, 9, 3733–3753. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Z. Analytical method for metal-insulator-metal surface plasmon polaritons waveguide networks. Opt. Express 2019, 27, 303–321. [Google Scholar] [CrossRef]
- Niu, L.; Xiang, Y.; Cai, W.; Zhao, X.; Zhang, N.; Qi, J.; Zhang, X.; Xu, J. Plasmonic Tamm states in insulator-metal-insulator waveguides. J. Opt. Soc. Am. B 2018, 35, 1368–1373. [Google Scholar] [CrossRef]
- Chen, Z.-X.; Wu, Z.-J.; Ming, Y.; Zhang, X.-J.; Lu, Y.-Q. Hybrid plasmonic waveguide in a metal V-groove. AIP Adv. 2014, 4, 017103. [Google Scholar] [CrossRef]
- Feigenbaum, E.; Orenstein, M. Nano plasmon polariton modes of a wedge cross section metal waveguide. Opt. Express 2006, 14, 8779–8784. [Google Scholar] [CrossRef] [PubMed]
- Fevrier, M.; Gogol, P.; Aassaime, A.; Megy, R.; Delacour, C.; Chelnokov, A.; Apuzzo, A.; Blaize, S.; Lourtioz, J.-M.; Dagens, B. Gaint coupling effect between metal nanoparticle chain and optical waveguide. Nano Lett. 2012, 12, 1032–1037. [Google Scholar] [CrossRef]
- Zhai, X.; Liu, Y.; Li, H.; Wujiaihemaiti, R.; Zhu, Y.; Wang, L. Analysis of filter and waveguide effect based on the MIM nanodisk with a metallic block. J. Nanomater. 2015, 2015, 541409. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.-L.; Zeng, Y.-P.; Xiang, D.; Zhai, X.; Li, X.-F.; Huang, W.-Q. A triangular shaped channel MIM waveguide filter. J. Mod. Opt. 2012, 59, 1686–1689. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Ultra-short lossless plasmonic power splitter design based on metal-insulator-metal waveguide. Laser Phys. 2019, 30, 016201. [Google Scholar] [CrossRef]
- Chen, F.; Xu, Y. Tunable power splitter based on MIM waveguide-rectangular cavity system with Kerr material. Mod. Phys. Lett. B 2016, 30, 1650376. [Google Scholar] [CrossRef]
- Lu, H.; Wang, G.; Liu, X. Manipulation of light in MIM plasmonic waveguide systems. Chin. Sci. Bull. 2013, 58, 3607–3616. [Google Scholar] [CrossRef][Green Version]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. A multichannel metallic dual nano-wall square split-ring resonator:design analysis and applications. Laser Phys.Lett. 2019, 16, 126201. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. A plasmonic colour filter and refractive index sensor applications based on metal-insulator-metal square micro-ring cavities. Laser Phys. 2020, 30, 016205. [Google Scholar] [CrossRef]
- Mahmud, R.A.; Faruque, M.O.; Sagor, R.H. A highly sensitive plasmonic refractive index sensor based on triangular resonator. Optics Communications 2021, 483, 126634. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kazanskiy, N.L.; Butt, M.A.; Kazmierczak, A.; Piramidowicz, R. Plasmonic sensor based on metal-insulator-metal waveguide square ring cavity filled with functional material for the detection of CO2 gas. Opt. Express 2021, 29, 16584. [Google Scholar] [CrossRef]
- Butt, M.A. Numerical investigation of a small footprint plasmonic Bragg grating structure with a high extinction ratio. Photonics Lett. Pol. 2020, 12, 82–84. [Google Scholar] [CrossRef]
- Butt, M.A.; Kazanskiy, N.L.; Khonina, S.N. Highly integrated plasmonic sensor design for the simultaneous detection of multiple analytes. Curr. Appl. Phys. 2020, 20, 1274–1280. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. An array of nano-dots loaded MIM square ring resonator with enhanced sensitivity at NIR wavelength range. Optik 2020, 202, 163655. [Google Scholar] [CrossRef]
- Huang, Y.-X.; Xie, Y.-X.; Zhao, W.-L.; Che, H.-J.; Xu, W.-H.; Li, X.; Li, J.-C. A plasmonic refractive index sensor based on a MIM waveguide with a side-coupled nanodisk resonator. In Proceedings of the IEEE 20th International Conference on Embedded and Real-Time Computing Systems and Applications, Chongqing, China, 20–22 August 2014. [Google Scholar]
- Kazanskiy, N.L.; Butt, M.A. Enhancing the sensitivity of a standard plasmonic MIM square ring resonator by incorporating nanodots in the cavity. Photonics Lett. Pol. 2020, 12, 1–3. [Google Scholar]
- Kazanskiy, N.L.; Butt, M.A.; Khonina, S.N. Nanodots decorated MIM semi-ring resonator cavity for biochemical sensing applications. Photonics Nanostruct. Fundam. Appl. 2020, 42, 100836. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Butt, M.A.; Degtyarev, S.A.; Khonina, S.N. Achievements in the development of plasmonic waveguide sensors for measuring the refractive index. Comput. Opt. 2020, 44, 295–318. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. Plasmonic sensors based on metal-insulator-metal waveguides for refractive index sensing applications: A brief review. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 117, 113798. [Google Scholar] [CrossRef]
- Butt, M.A.; Kazanskiy, N.L. Nanoblocks embedded in L-shaped nanocavity of a plasmonic sensor for best sensor performance. Opt. Appl. 2021, 51, 109–120. [Google Scholar]
- Chen, J.; Li, J.; Liu, X.; Rohimah, S.; Tian, H.; Qi, D. Fano resonance in a MIM waveguide with double symmetric rectangular stubs and its sensing characteristics. Opt. Commun. 2021, 482, 126563. [Google Scholar] [CrossRef]
- Yan, S.; Yang, X.; Xu, D.; Su, H.; Wu, X.; Hua, E. MIM structure with inverted M-type cavity for sensing applications. IEEE Sens. J. 2021, 21, 7468. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Metal-insulator-metal nano square ring resonator for gas sensing applications. Waves Random Complex Media 2021, 31, 146–156. [Google Scholar] [CrossRef]
- He, Q.; Huo, Y.; Guo, Y.; Niu, Q.; Hao, X.; Cui, P.; Wang, Y.; Song, M. Multiple adjustable Fano resonance based on double half ring resonator and its application. Phys. Scr. 2021, 96, 065504. [Google Scholar] [CrossRef]
- Rahmatiyar, M.; Afsahi, M.; Danaie, M. Design of a refractive index plasmonic sensor based on a ring resonator coupled to a MIM waveguide containing tapered defects. Plasmonics 2020, 15, 2169–2176. [Google Scholar] [CrossRef]
- Jumat, S.Z.B.H.; Chao, C.-T.C.; Chau, Y.F.C.; Mahadi, A.H.; Kooh, M.R.R.; Kumara, N.T.R.N.; Chiang, H.-P. Plasmonic refractive index sensor based on the combination of rectangular and circular resonators including baffles. Chin. J. Phys. 2021, 71, 286–299. [Google Scholar] [CrossRef]
- Rakhshani, M.R. Refractive index sensor based on concentric triple racetrack resonators side-coupled to metal-insulator-metal waveguide for glucose sensing. J. Opt. Soc. Am. B 2019, 36, 2837–2842. [Google Scholar] [CrossRef]
- Sagor, R.H.; Hassan, M.F.; Sharmin, S.; Adry, T.Z.; Emon, M.R. Numerical investigation of an optimized plasmonic on-chip refractive index sensor for temperature and blood group detection. Results Phys. 2020, 19, 103611. [Google Scholar] [CrossRef]
- Su, H.; Yan, S.; Yang, X.; Guo, J.; Wang, J.; Hua, E. Sensing features of the Fano resonance in an MIM waveguide coupled with an Elliptical ring resonant cavity. Appl. Sci. 2020, 10, 5096. [Google Scholar] [CrossRef]
- Zhu, J.; Li, N. MIM waveguide structure consisting of a semicircular resonant cavity coupled with a key-shaped resonant cavity. Opt. Express 2020, 28, 19978. [Google Scholar] [CrossRef] [PubMed]
- Chau, Y.-F.C.; Chao, C.-T.C.; Huang, H.; Kumara, N.; Lim, C.; Chiang, H.-P. Ultra-high refractive index sensing structure based on a metal-insulator-metal waveguide-coupled T-shape cavity with metal nanorod defects. Nanomaterials 2019, 9, 1433. [Google Scholar] [CrossRef]
- Butt, M.A.; Kazanskiy, N.L.; Khonina, S.N. Highly sensitive refractive index sensor based on plasmonic Bow Tie configuration. Photonic Sens. 2020, 10, 223–232. [Google Scholar] [CrossRef]
- Shi, H.; Yan, S.; Yang, X.; Wu, X.; Wu, W.; Hua, E. A nanosensor based on a metal-insulator-metal bus waveguide with a stub coupled with a racetrack ring resonator. Micromachines 2021, 12, 495. [Google Scholar] [CrossRef]
- El-Haffar, R.; Farkhsi, A.; Mahboub, O. Optical properties of MIM plasmonic waveguide with an elliptical cavity resonator. Appl. Phys. A 2020, 126, 486. [Google Scholar] [CrossRef]
- Zhang, Z.; Luo, L.; Xue, C.; Zhang, W.; Yan, S. Fano resonance based on metal-insulator-metal waveguide-coupled double rectangular cavities for plasmonic nanosensors. Sensors 2016, 16, 642. [Google Scholar] [CrossRef] [PubMed]
- Binfeng, Y.; Ruohu, Z.; Guohua, H.; Yiping, C. Ultra sharp fano resonances induced by coupling between plasmonic stub and circular cavity resonators. Plasmonics 2016, 11, 1157–1162. [Google Scholar] [CrossRef]
- Sia, P.D. Overview of Drude-Lorentz type models and their applications. Nanoscale Syst. Math. Model. Theory Appl. 2014, 3, 1–13. [Google Scholar]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Plasmonic refractive index sensor based on metal-insulator-metal waveguides with high sensitivity. J. Mod. Opt. 2019, 66, 1038–1043. [Google Scholar] [CrossRef]
Ref. | Author | Year | Cavity Shape | S (nm/RIU) | FOM/FOM* |
---|---|---|---|---|---|
[21] | Butt M.A et al. | 2020 | NDs loaded square ring | 1240 | 20 |
[20] | Butt M.A et al. | 2020 | Multichannel square ring | 1948.67 | 29.52 |
[24] | Kazanskiy N.L et al. | 2020 | NDs decorated semi-ring | 1084.21 | 57.06 |
[30] | Butt M.A et al. | 2021 | Square ring | 1320 | 16.7 |
[31] | Qian He et al. | 2021 | Double half ring | 1260 | 26,000 * |
[28] | Chen J et al. | 2021 | Double symmetric rectangular stubs | 1180 | 5585.3 * |
[32] | Rahmatiyar M et al. | 2020 | Ring resonator | 1295 | 159.6 |
[27] | Butt M.A et al. | 2021 | L-shaped cavity | 1065 | 251.17 |
[33] | Jumat S.Z.B.H et al. | 2021 | Rectangular and circular resonators including baffles | 3400 | 36 |
[34] | Rakhshani M.R et al. | 2019 | Concentric triple racetrack resonators | 1618 | 89 |
[35] | Sagor R.H et al. | 2020 | Three quadrilateral cavities | 1556 | 14.83 |
[36] | Su H et al. | 2020 | Elliptical ring resonant cavity | 1550 | 43.05 |
[37] | Zhu J et al. | 2020 | Key-shaped resonant cavity | 1261.67 | - |
[38] | Chau Y-F. C et al. | 2019 | T-shape cavity with metal nanorod defects | 8280 | - |
[39] | Butt M.A et al. | 2020 | Bow Tie configuration | 2300 | 31.5 |
[40] | Shi H et al. | 2021 | Racetrack ring resonator | 1774 | 61 |
[41] | El-Haffar et al. | 2020 | Elliptical cavity resonator | 540 | 101.3 |
[42] | Zhang Z et al. | 2016 | Double rectangular cavities | 596 | - |
[43] | Binfeng Y et al. | 2016 | Circular cavity resonator | 1277 | 2.1 × 104 * |
This work | Butt et al. | 2021 | Standard racetrack cavity | 1200 | 16.6 |
This work | Butt et al. | 2021 | Racetrack integrated circular cavity | 1400 | 12.01 |
SRTC | W (nm) | λres (nm) | FWHM (nm) | S (nm/RIU) | FOM |
30 | 1637 | ~72 | 1200 | ~16.6 | |
40 | 1475 | ~92 | 1100 | ~11.95 | |
50 | 1366 | ~51 | 1000 | ~19.6 | |
RTICC | W (nm)/W1 (nm) | λres (nm) | FWHM (nm) | S (nm/RIU) | FOM |
30/30 | 1766 | ~147 | 1400 | ~12.01 | |
40/40 | 1587 | ~99 | 1200 | ~12.12 | |
50/50 | 1459 | ~80 | 1100 | ~13.75 | |
30/50 | 1697 | ~94 | 1300 | ~13.8 | |
30/40 | 1730 | ~95 | 1300 | ~13.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butt, M.A.; Kaźmierczak, A.; Kazanskiy, N.L.; Khonina, S.N. Metal-Insulator-Metal Waveguide-Based Racetrack Integrated Circular Cavity for Refractive Index Sensing Application. Electronics 2021, 10, 1419. https://doi.org/10.3390/electronics10121419
Butt MA, Kaźmierczak A, Kazanskiy NL, Khonina SN. Metal-Insulator-Metal Waveguide-Based Racetrack Integrated Circular Cavity for Refractive Index Sensing Application. Electronics. 2021; 10(12):1419. https://doi.org/10.3390/electronics10121419
Chicago/Turabian StyleButt, Muhammad A., Andrzej Kaźmierczak, Nikolay L. Kazanskiy, and Svetlana N. Khonina. 2021. "Metal-Insulator-Metal Waveguide-Based Racetrack Integrated Circular Cavity for Refractive Index Sensing Application" Electronics 10, no. 12: 1419. https://doi.org/10.3390/electronics10121419
APA StyleButt, M. A., Kaźmierczak, A., Kazanskiy, N. L., & Khonina, S. N. (2021). Metal-Insulator-Metal Waveguide-Based Racetrack Integrated Circular Cavity for Refractive Index Sensing Application. Electronics, 10(12), 1419. https://doi.org/10.3390/electronics10121419