Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (103)

Search Parameters:
Keywords = metal-insulator-metal waveguide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1810 KiB  
Article
Nanoscale Temperature Sensor with Dual Circular and Square Structures Based on MIM Waveguides
by Shubin Yan, Hongfu Chen, Yuanyuan Gao, Weixin Liu, Xiaoran Yan, Aiwei Xu and Taiquan Wu
Photonics 2025, 12(6), 525; https://doi.org/10.3390/photonics12060525 - 22 May 2025
Viewed by 340
Abstract
This paper proposes a refractive index sensor with high sensitivity, which operates based on the Fano resonance phenomenon. The sensor is constructed using a metal–insulator–metal (MIM) waveguide integrated with a double square ring (DSR) configuration, enabling enhanced performance in refractive index detection. The [...] Read more.
This paper proposes a refractive index sensor with high sensitivity, which operates based on the Fano resonance phenomenon. The sensor is constructed using a metal–insulator–metal (MIM) waveguide integrated with a double square ring (DSR) configuration, enabling enhanced performance in refractive index detection. The propagation characteristics of the proposed structure are systematically investigated using the finite element method (FEM). Using a control variable method, this study systematically investigates the impact of refractive index changes and specific geometric parameters of the DSR structure on the sensor’s performance. Through the careful optimization of structural parameters, the sensor achieves a peak sensitivity (S) of 2700 nm/RIU along with a figure of merit (FOM) as high as 54. Owing to its simple configuration and high sensitivity, the proposed sensor holds significant potential for applications in temperature sensing and related fields. Full article
Show Figures

Figure 1

10 pages, 5339 KiB  
Article
Plasmonic Nanosensors Based on Highly Tunable Multiple Fano Resonances Induced in Metal–Insulator–Metal Waveguide Systems
by Ping Jiang and Yilin Wang
Nanomaterials 2025, 15(9), 686; https://doi.org/10.3390/nano15090686 - 30 Apr 2025
Viewed by 508
Abstract
We designed and investigated a plasmonic nanosensor with ultra-high sensitivity and tunability, which is composed of a metal–insulator–metal (MIM) waveguide integrated with a side-coupled resonator (SR) and metal baffle. Its high performance is derived from Fano resonance, which is generated by the interaction [...] Read more.
We designed and investigated a plasmonic nanosensor with ultra-high sensitivity and tunability, which is composed of a metal–insulator–metal (MIM) waveguide integrated with a side-coupled resonator (SR) and metal baffle. Its high performance is derived from Fano resonance, which is generated by the interaction between the modes of the SR and the baffle, and it can be precisely tuned by adjusting the parameters of the SR. Further investigation based on the incorporation of a side-coupled rectangular-ring resonator (SRR) generates three distinct Fano resonances, and the Fano resonance can be accurately tuned by manipulating the parameters of the resonators within the system. Our proposed plasmonic system can serve as a highly sensitive refractive index nanosensor, achieving a sensitivity up to 1150 nm/RIU. The plasmonic structures featuring independently tunable triple Fano resonances open new avenues for applications in nanosensing, bandstop filtering, and slow-light devices. Full article
(This article belongs to the Special Issue Photonics and Plasmonics of Low-Dimensional Materials)
Show Figures

Figure 1

14 pages, 2486 KiB  
Article
High-Performance O-Band Angled Multimode Interference Splitter with Buried Silicon Nitride Waveguide for Advanced Data Center Optical Networks
by Eduard Ioudashkin and Dror Malka
Photonics 2025, 12(4), 322; https://doi.org/10.3390/photonics12040322 - 30 Mar 2025
Cited by 3 | Viewed by 737
Abstract
Many current 1 × 2 splitter couplers based on multimode interference (MMI) face difficulties such as significant back reflection and limited flexibility in waveguide segmentation at the output, which necessitate the addition of transitional structures like tapered waveguides or S-Bends. These limitations reduce [...] Read more.
Many current 1 × 2 splitter couplers based on multimode interference (MMI) face difficulties such as significant back reflection and limited flexibility in waveguide segmentation at the output, which necessitate the addition of transitional structures like tapered waveguides or S-Bends. These limitations reduce their effectiveness as photonic data-center applications, where precise waveguide configurations are crucial. To address these challenges, we propose a novel nanoscale 1 × 2 angled multimode interference (AMMI) power splitter with silicon nitride (SiN) buried core and silica cladding. The innovative angled light path design improved performance by minimizing back reflections back to the source and by providing greater flexibility of waveguide interconnections, making the splitter more adaptable for data-center applications. The SiN core was selected due to its lower refractive index contrast with silica compared to silicon, which helps further reduce back reflection. The dimensions of the splitter were optimized using full vectorial beam propagation method (FV-BPM), finite-difference time domain (FDTD), and multivariable optimization scanning tool (MOST) simulations to support transmission across the O-band. Our proposed device demonstrated excellent performance, achieving an excess loss of 0.22 dB and an imbalance of <0.01 dB at the output ports at an operational wavelength of 1.31 µm. The total device length is 101 µm with a thickness of 0.4 µm. Across the entire O-band range (1260–1360 nm), the performance of the splitter presented excess loss of up to 1.57 dB and an imbalance of up to 0.05 dB. Additionally, back reflections at the operational wavelength were measured at −40.96 dB and up to −39.67 dB over the O-band. This silicon-on-insulator (SOI) complementary metal-oxide semiconductor (CMOS) compatible AMMI splitter demonstrates high tolerance for manufacturing deviations due to its geometric layout, dimensions, and material selection. Furthermore, the proposed splitter is well-suited for use in O-band transceiver systems and can enhance data-center optical networks by supporting high-speed, low-loss data transmission. The compact design and CMOS compatibility make this device ideal for integrating into dense, high-performance computing environments, ensuring reliable signal distribution and minimal power loss. The splitter can support multiple communication channels, thus enhancing bandwidth and scalability for next-generation data-center infrastructures. Full article
(This article belongs to the Special Issue Emerging Trends in On-Chip Photonic Integration)
Show Figures

Figure 1

18 pages, 13167 KiB  
Article
Research on Low-Profile Directional Flexible Antenna with 3D Coplanar Waveguide for Partial Discharge Detection
by Yan Mi, Wentao Liu, Yiqin Peng, Lei Deng, Benxiang Shu, Xiaopeng Wang and Songyuan Li
Micromachines 2025, 16(3), 253; https://doi.org/10.3390/mi16030253 - 24 Feb 2025
Viewed by 1418
Abstract
Due to the challenges in antenna installation and detection performance caused by metal obstruction along the propagation path at a Gas-Insulated Switchgear (GIS) cable terminal, as well as the adverse effects of environmental interference on the detection of partial discharge (PD) by existing [...] Read more.
Due to the challenges in antenna installation and detection performance caused by metal obstruction along the propagation path at a Gas-Insulated Switchgear (GIS) cable terminal, as well as the adverse effects of environmental interference on the detection of partial discharge (PD) by existing flexible antennas, this paper proposes a directional flexible antenna design to mitigate these issues and improve detection performance. The proposed design employs a coplanar waveguide (CPW)-fed monopole antenna structure, where the grounding plane is extended to the back of the antenna to enhance directional reception. The designed flexible antenna measures 88.5 × 70 × 20 mm, and its low-profile design allows it to be easily mounted on the outer wall of the epoxy sleeve at the GIS cable terminal. The measurement results show that the flexible antenna has a Voltage Standing Wave Ratio (VSWR) of less than 2 in the 0.541–3 GHz frequency range. It also maintains stable impedance characteristics across various bending radii, with an average effective height of 10.79 mm in the 0.3–1.5 GHz frequency range. A GIS cable terminal PD experimental platform was established, and the experimental results demonstrate that the bending has minimal impact on the detection performance of the flexible antenna, which can cover the detection range of the GIS cable terminal; metal obstruction significantly impacts the PD signal amplitude, and the designed flexible antenna is suitable for detecting PDs in confined spaces with metal obstruction. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

14 pages, 968 KiB  
Article
Fano Resonant Sensing in MIM Waveguide Structures Based on Multiple Circular Split-Ring Resonant Cavities
by Wenjing Wang, Shaoze Zhang and Huiliang Cao
Micromachines 2025, 16(2), 183; https://doi.org/10.3390/mi16020183 - 3 Feb 2025
Cited by 1 | Viewed by 988
Abstract
In this work, a non-through metal–insulator–metal (MIM) waveguide capable of exciting three Fano resonances was designed and numerically studied using the finite element method. Fano resonances are achieved through the interaction between the modes of multiple circular split-ring resonator cavities and the waveguide. [...] Read more.
In this work, a non-through metal–insulator–metal (MIM) waveguide capable of exciting three Fano resonances was designed and numerically studied using the finite element method. Fano resonances are achieved through the interaction between the modes of multiple circular split-ring resonator cavities and the waveguide. The effect of coupling between different resonators on the Fano resonance peaks is investigated. Independent tuning of the Fano resonance wavelength and transmission rate is accomplished by modifying the structural rotation angle and geometric parameters. After optimizing these parameters, the structure achieves an optimal refractive index sensitivity of 946.88 nm/RIU and a figure of merit of 99.17. The proposed structure holds potential for guiding the design of nanosensors. Full article
Show Figures

Figure 1

14 pages, 4800 KiB  
Article
Design and Analysis of Compact High–Performance Lithium–Niobate Electro–Optic Modulator Based on a Racetrack Resonator
by Zixin Chen, Jianping Li, Weiqin Zheng, Hongkang Liu, Quandong Huang, Ya Han and Yuwen Qin
Photonics 2025, 12(1), 85; https://doi.org/10.3390/photonics12010085 - 17 Jan 2025
Viewed by 1584
Abstract
With the ever-growing demand for high-speed optical communications, microwave photonics, and quantum key distribution systems, compact electro-optic (EO) modulators with high extinction ratios, large bandwidth, and high tuning efficiency are urgently pursued. However, most integrated lithium–niobate (LN) modulators cannot achieve these high performances [...] Read more.
With the ever-growing demand for high-speed optical communications, microwave photonics, and quantum key distribution systems, compact electro-optic (EO) modulators with high extinction ratios, large bandwidth, and high tuning efficiency are urgently pursued. However, most integrated lithium–niobate (LN) modulators cannot achieve these high performances simultaneously. In this paper, we propose an improved theoretical model of a chip-scale electro-optic (EO) microring modulator (EO-MRM) based on X-cut lithium–niobate-on-insulator (LNOI) with a hybrid architecture consisting of a 180-degree Euler bend in the coupling region, double-layer metal electrode structure, and ground–signal–signal–ground (G-S-S-G) electrode configuration, which can realize highly comprehensive performance and a compact footprint. After parameter optimization, the designed EO-MRM exhibited an extinction ratio of 38 dB. Compared to the structure without Euler bends, the increase was 35 dB. It also had a modulation bandwidth of 29 GHz and a tunability of 8.24 pm/V when the straight waveguide length was 100 μm. At the same time, the proposed device footprint was 1.92 × 104 μm2. The proposed MRM model provides an efficient solution to high-speed optical communication systems and microwave photonics, which is helpful for the fabrication of high-performance and multifunctional photonic integrated devices. Full article
Show Figures

Figure 1

11 pages, 6470 KiB  
Article
Multi-Structure-Based Refractive Index Sensor and Its Application in Temperature Sensing
by Zhaokun Yan, Shubin Yan, Ziheng Xu, Changxing Chen, Yuhao Cao, Xiaoran Yan, Chong Wang and Taiquan Wu
Sensors 2025, 25(2), 412; https://doi.org/10.3390/s25020412 - 12 Jan 2025
Cited by 4 | Viewed by 909
Abstract
In this paper, a new sensor structure is designed, which consists of a metal–insulator–metal (MIM) waveguide and a circular protrusion and a rectangular triangular cavity (CPRTC). The characterization of nanoscale sensors is considered using an approximate numerical method (finite element method). The simulation [...] Read more.
In this paper, a new sensor structure is designed, which consists of a metal–insulator–metal (MIM) waveguide and a circular protrusion and a rectangular triangular cavity (CPRTC). The characterization of nanoscale sensors is considered using an approximate numerical method (finite element method). The simulation results show that the sharp asymmetric resonance generated by the interaction between the discrete narrow-band mode and the continuous wideband mode is called Fano resonance. The performance of the sensor is considerably influenced by CPRTC. The sensor structure has attained a sensitivity of 3060 nm/RIU and a figure of merit (FOM) of 53.68. In addition, the application of this structure to temperature sensors is also investigated; its sensitivity is 1.493 nm/°C. The structure also has potential for other nanosensors. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Figure 1

11 pages, 19799 KiB  
Article
Miniaturized Hybrid Filter Using Capacitive-Loaded QMSIW and Stripline Resonators
by Luyao Tang, Wei Han, Hao Wei and Yanbin Li
Electronics 2024, 13(24), 5016; https://doi.org/10.3390/electronics13245016 - 20 Dec 2024
Viewed by 4462
Abstract
In this paper, a compact capacitive-loaded quarter-mode substrate integrated waveguide (CL-QMSIW) resonator is proposed and analyzed. This resonator is created by loading a metal–insulator–metal (MIM) capacitor inside the QMSIW resonator. A miniaturized hybrid bandpass filter with deep stopband suppression is designed based on [...] Read more.
In this paper, a compact capacitive-loaded quarter-mode substrate integrated waveguide (CL-QMSIW) resonator is proposed and analyzed. This resonator is created by loading a metal–insulator–metal (MIM) capacitor inside the QMSIW resonator. A miniaturized hybrid bandpass filter with deep stopband suppression is designed based on the CL-QMSIW resonator and the stripline resonator. The filter generates a transmission zero (TZ) that can be adjusted flexibly through cross-coupling in its lower stopband, which significantly enhances the filter’s selectivity. To verify the correctness of the proposed filter, a third-order filter was created and produced, utilizing the low-temperature co-fired ceramics (LTCC) technique. The measurement outcomes align with the results from the electromagnetic simulations. The filter is characterized by a center frequency of 7 GHz, while the core size is only 0.33λg×0.17λg, and the lowest insertion loss (IL) within the band is 1.4 dB, achieving a TZ at 5.1 GHz. The proposed filter features a compact dimension, excellent selectivity, and low insertion loss. Full article
(This article belongs to the Special Issue Microwave Devices and Their Applications)
Show Figures

Figure 1

28 pages, 3787 KiB  
Review
Plasmonic Sensors Based on a Metal–Insulator–Metal Waveguide—What Do We Know So Far?
by Muhammad A. Butt
Sensors 2024, 24(22), 7158; https://doi.org/10.3390/s24227158 - 7 Nov 2024
Cited by 8 | Viewed by 3170
Abstract
Metal–insulator–metal (MIM) waveguide-based plasmonic sensors are significantly important in the domain of advanced sensing technologies due to their exceptional ability to guide and confine light at subwavelength scales. These sensors exploit the unique properties of surface plasmon polaritons (SPPs) that propagate along the [...] Read more.
Metal–insulator–metal (MIM) waveguide-based plasmonic sensors are significantly important in the domain of advanced sensing technologies due to their exceptional ability to guide and confine light at subwavelength scales. These sensors exploit the unique properties of surface plasmon polaritons (SPPs) that propagate along the metal–insulator interface, facilitating strong field confinement and enhanced light–matter interactions. In this review, several critical aspects of MIM waveguide-based plasmonic sensors are thoroughly examined, including sensor designs, material choices, fabrication methods, and diverse applications. Notably, there exists a substantial gap between the numerical data and the experimental verification of these devices, largely due to the insufficient attention given to the hybrid integration of plasmonic components. This disconnect underscores the need for more focused research on seamless integration techniques. Additionally, innovative light-coupling mechanisms are suggested that could pave the way for the practical realization of these highly promising plasmonic sensors. Full article
(This article belongs to the Special Issue Waveguide-Based Sensors and Applications)
Show Figures

Figure 1

12 pages, 7395 KiB  
Article
Multi-Cavity Nanorefractive Index Sensor Based on MIM Waveguide
by Weijie Yang, Shubin Yan, Ziheng Xu, Changxin Chen, Jin Wang, Xiaoran Yan, Shuwen Chang, Chong Wang and Taiquan Wu
Nanomaterials 2024, 14(21), 1719; https://doi.org/10.3390/nano14211719 - 28 Oct 2024
Cited by 4 | Viewed by 1065
Abstract
Within this manuscript, we provide a novel Fano resonance-driven micro-nanosensor. Its primary structural components are a metal-insulator-metal (MIM) waveguide, a shield with three disks, and a T-shaped cavity (STDTC). The finite element approach was used to study the gadget in theory. It is [...] Read more.
Within this manuscript, we provide a novel Fano resonance-driven micro-nanosensor. Its primary structural components are a metal-insulator-metal (MIM) waveguide, a shield with three disks, and a T-shaped cavity (STDTC). The finite element approach was used to study the gadget in theory. It is found that the adjustment of the structure and the change of the dimensions are closely related to the sensitivity (S) and the quality factor (FOM). Different model structural parameters affect the Fano resonance, which in turn changes the transmission characteristics of the resonator. Through in-depth experimental analysis and selection of appropriate parameters, the sensor sensitivity finally reaches 3020 nm/RIU and the quality factor reaches 51.89. Furthermore, the installation of this microrefractive index sensor allows for the quick and sensitive measurement of glucose levels. It is a positive contribution to the field of optical devices and micro-nano sensors and meets the demand for efficient detection when applied in medical and environmental scenarios. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

13 pages, 4279 KiB  
Article
Highly Sensitive Plasmon Refractive Index Sensor Based on MIM Waveguide
by Wen Jiang, Shubin Yan, Xiaoran Yan, Aiwei Xu, Guang Liu, Chong Wang, Lei Li, Xiangyang Mu and Guowang Gao
Micromachines 2024, 15(8), 987; https://doi.org/10.3390/mi15080987 - 30 Jul 2024
Cited by 3 | Viewed by 1433
Abstract
This paper introduces a novel plasmon refractive index nanosensor structure based on Fano resonance. The structure comprises a metal–insulator–metal (MIM) waveguide with an inverted rectangular cavity and a circle minus a small internal circle plus a rectangular cavity (CMSICPRC). This study employs the [...] Read more.
This paper introduces a novel plasmon refractive index nanosensor structure based on Fano resonance. The structure comprises a metal–insulator–metal (MIM) waveguide with an inverted rectangular cavity and a circle minus a small internal circle plus a rectangular cavity (CMSICPRC). This study employs the finite element method (FEM) to analyze the sensing characteristics of the structure. The results demonstrate that the geometrical parameters of specific structures exert a considerable influence on the sensing characteristics. Simulated experimental data show that the maximum sensitivity of this structure is 3240 nm/RIU, with a figure of merit (FOM) of 52.25. Additionally, the sensor can be used in biology, for example, to detect the concentration of hemoglobin in blood. The sensitivity of the sensor in this application, according to our calculations, can be 0.82 nm∙g/L. Full article
(This article belongs to the Special Issue Advances in Photodetecting Materials, Devices and Applications)
Show Figures

Figure 1

14 pages, 3246 KiB  
Article
Nanosensor Based on the Circular Ring with External Rectangular Ring Structure
by Shuwen Chang, Shubin Yan, Yiru Su, Jin Wang, Yuhao Cao, Yi Zhang, Taiquan Wu and Yifeng Ren
Photonics 2024, 11(6), 568; https://doi.org/10.3390/photonics11060568 - 17 Jun 2024
Cited by 6 | Viewed by 1082
Abstract
This paper presents a novel nanoscale refractive index sensor, which is produced by using a metal–insulator–metal (MIM) waveguide structure coupled with the circular ring with an external rectangular ring (CRERR) structure with the Fano resonance phenomenon. In this study, COMSOL software was used [...] Read more.
This paper presents a novel nanoscale refractive index sensor, which is produced by using a metal–insulator–metal (MIM) waveguide structure coupled with the circular ring with an external rectangular ring (CRERR) structure with the Fano resonance phenomenon. In this study, COMSOL software was used to model and simulate the structure, paired with an analysis of the output spectra to detail the effect of constructional factors on the output Fano curve as measured from a finite element method. After a series of studies, it was shown that an external rectangular ring is the linchpin of the unsymmetrical Fano resonance, while the circular ring’s radius strongly influences the transducer’s capability to achieve a maximum for 3180 nm/RIU sensitivity and a FOM of 54.8. The sensor is capable of achieving sensitivities of 0.495 nm/mgdL−1 and 0.6375 nm/mgdL−1 when detecting the concentration of the electrolyte sodium and potassium ions in human blood and is expected to play an important role in human health monitoring. Full article
(This article belongs to the Special Issue New Perspectives in Optical Design)
Show Figures

Figure 1

14 pages, 3319 KiB  
Article
The Application of Optical Sensors with Built-in Anchor-like Cavities in the Detection of Hemoglobin Concentration
by Wen Jiang, Shubin Yan, Yiru Su, Chong Wang, Taiquan Wu, Yang Cui, Chuanhui Zhu, Yi Zhang, Xiangyang Mu and Guowang Gao
Photonics 2024, 11(5), 402; https://doi.org/10.3390/photonics11050402 - 26 Apr 2024
Cited by 2 | Viewed by 1515
Abstract
This paper introduces a refractive index sensor based on Fano resonance, utilizing a metal–insulator–metal (MIM) waveguide structure with an Anchor-like cavity. This study utilizes the finite element method (FEM) for analyzing the propagation characteristics of the structure. The evaluation concentrated on assessing how [...] Read more.
This paper introduces a refractive index sensor based on Fano resonance, utilizing a metal–insulator–metal (MIM) waveguide structure with an Anchor-like cavity. This study utilizes the finite element method (FEM) for analyzing the propagation characteristics of the structure. The evaluation concentrated on assessing how the refractive index and the structure’s geometric parameters affect its sensing characteristics. The designed structure demonstrates optimum performance, achieving a maximum sensitivity of 2440 nm/RIU and an FOM of 63. Given its high sensitivity, this nanoscale refractive index sensor is ideal for detecting hemoglobin concentrations in blood, and the sensor’s sensitivity is 0.6 nm·g/L, aiding in clinical prevention and treatment. Full article
(This article belongs to the Special Issue New Perspectives in Optical Design)
Show Figures

Figure 1

14 pages, 4536 KiB  
Article
A Nanosensor Based on Optical Principles for Temperature Detection Using a Gear Ring Model
by Lei Li, Shubin Yan, Yang Cui, Taiquan Wu, Chuanhui Zhu, Yi Zhang, Yiru Su, Qizhi Zhang and Guowang Gao
Photonics 2024, 11(4), 311; https://doi.org/10.3390/photonics11040311 - 28 Mar 2024
Cited by 2 | Viewed by 1442
Abstract
Based on the characteristics of plasmonic waveguides and resonators, we propose a refractive index (RI) sensor that couples a gear ring with a metal–insulator–metal (MIM) waveguide. Using the finite element method (FEM), we conduct extensive spectral analysis of the sensor’s properties in the [...] Read more.
Based on the characteristics of plasmonic waveguides and resonators, we propose a refractive index (RI) sensor that couples a gear ring with a metal–insulator–metal (MIM) waveguide. Using the finite element method (FEM), we conduct extensive spectral analysis of the sensor’s properties in the near-infrared spectrum. Furthermore, we investigate the structural parameters affecting the refractive index sensing characteristics. This study reveals that the complexity of the ring cavity edge can significantly enhance the sensitivity of the nanosensor. Optimal structural performance parameters are selected when the number of gears is six, resulting in a sensitivity of 3102 nm/RIU and a Figure of Merit (FOM) of 57.4 for the sensing characteristics of the gear ring. It possesses the advantages of small size and high sensitivity. This nanoscale sensor design demonstrates high sensitivity in the field of industrial material temperature detection. Full article
(This article belongs to the Special Issue New Perspectives in Optical Design)
Show Figures

Figure 1

12 pages, 6314 KiB  
Article
Polarization-Splitting Grating Coupler on Lithium Niobate Thin Film
by Zhihua Chen, Longxi Chen, Xiangjia Meng, Yufu Ning and Yang Xun
Crystals 2024, 14(3), 226; https://doi.org/10.3390/cryst14030226 - 27 Feb 2024
Cited by 2 | Viewed by 2445
Abstract
In this study, one-dimensional grating coupler on single-crystal lithium niobate thin film (lithium niobate on insulator, LNOI) that also served as a polarization splitter was designed. The coupler could separate both orthogonal polarization states into two opposite directions while coupled light from a [...] Read more.
In this study, one-dimensional grating coupler on single-crystal lithium niobate thin film (lithium niobate on insulator, LNOI) that also served as a polarization splitter was designed. The coupler could separate both orthogonal polarization states into two opposite directions while coupled light from a standard single-mode fiber to a waveguide on LNOI at the same time. Using segmented and apodized designing, the peak coupling efficiencies (CEs) around telecommunication wavelength 1550 nm for fundamental TE and TM modes of −2.82 dB and −2.83 dB, respectively, were achieved. The CEs could be optimized to −1.97 dB and −1.8 dB when a metal layer was added below the silicon dioxide layer. Full article
(This article belongs to the Section Liquid Crystals)
Show Figures

Figure 1

Back to TopTop