Sustainable Extraction and Characterisation of Bioactive Compounds from Horse Chestnut Seed Coats for the Development of Bio-Based Additives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Instrumentation
2.2. Samples
2.3. Extraction
2.4. Determination of Antimicrobial Properties
2.5. UV/Vis Spectrometry
2.6. ABTS Radical Cation (ABTS•+) Scavenging Capacity Assay
2.7. Folin-Ciocalteu Assay
2.8. Size Exclusion Chromatography (SEC)
2.9. Further Analyses
3. Results and Discussion
3.1. Pre-Analyses
3.1.1. Seed Coat Ratio
3.1.2. Determination of Antimicrobial Properties
3.1.3. UV Absorbance
3.1.4. Total Antioxidant Capacity (TAC) and Total Phenolic Content (TPC)
3.1.5. Molar Mass Characterisation of AEH Seed Coat Extracts
3.1.6. Further Analyses
3.2. Extraction Evaluation
3.2.1. Passive Extraction of Chopped Seed Coats
3.2.2. Passive Extraction of Whole Seeds
3.2.3. Comparison of Passive Extractions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- German Environment Agency. Umweltbewusstsein und Umweltverhalten. Available online: https://www.umweltbundesamt.de/daten/private-haushalte-konsum/umweltbewusstsein-umweltverhalten#textpart-7 (accessed on 25 May 2019).
- Moewius, J.; Röhrig, R.; Schaack, D.; Rampold, C.; Brzukalla, H.; Gottwald, F.; Stein-Bachinger, K.; Wolter, M.; Sanders, J. Die Bio-Branche 2018: Zahlen, Daten, Fakten. Available online: https://www.boelw.de/fileadmin/user_upload/Dokumente/Zahlen_und_Fakten/Brosch%C3%BCre_2018/ZDF_2018_Inhalt_Web_Einzelseiten_kleiner.pdf (accessed on 5 February 2019).
- Rasselet, D.; Ruellan, A.; Guinault, A.; Miquelard-Garnier, G.; Sollogoub, C.; Fayolle, B. Oxidative degradation of polylactide (PLA) and its effects on physical and mechanical properties. Eur. Polym. J. 2014, 50, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Altaf, U.; Kanojia, V.; Rouf, A. Novel packaging technology for food industry. J. Pharmoacogn. Phytochem. 2018, 7, 1618–1625. [Google Scholar]
- Wegmann, A.; Le Gal, A.; Müller, D. Antioxidantien. In Handbuch Kunststoff-Additive, 4, Vollständig neu Bearbeitete Auflage, 4th ed.; Schiller, M., Maier, R.-D., Eds.; Hanser: München, Germany, 2016; pp. 1–153. [Google Scholar]
- Peltzer, M.A.; Wagner, J.; Jiménez, A. Migration study of carvacrol as natural antioxidant in High Density Polyethylene for active packaging. Food Addit. Contam. 2009, 26, 938–946. [Google Scholar] [CrossRef] [PubMed]
- Kahl, R.; Kappus, H. Toxikologie der synthetischen Antioxidantien BHA und BHT im Vergleich mit dem natürlichen Antioxidans Vitamin, E. Z. Lebensm. Unters. Forsch. 1993, 196, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Ito, N.; Hirose, M.; Fukushima, S.; Tsuda, H.; Shirai, T.; Tatematsu, M. Studies on antioxidants: Their carcinogenic and modifying effects on chemical carcinogenesis. Food Chem. Toxicol. 1986, 24, 1071–1082. [Google Scholar] [CrossRef]
- Mulder, K.F. Innovation for sustainable development: From environmental design to transition management. Sustain. Sci. 2007, 2, 253–263. [Google Scholar] [CrossRef]
- Kimura, H.; Ogawa, S.; Ishihara, T.; Maruoka, M.; Tokuyama-Nakai, S.; Jisaka, M.; Yokota, K. Antioxidant activities and structural characterization of flavonol O-glycosides from seeds of Japanese horse chestnut (Aesculus turbinata BLUME). Food Chem. 2017, 228, 348–355. [Google Scholar] [CrossRef]
- Ogawa, S.; Kimura, H.; Niimi, A.; Katsube, T.; Jisaka, M.; Yokota, K. Fractionation and structural characterization of polyphenolic antioxidants from seed shells of Japanese horse chestnut (Aesculus turbinata BLUME). J. Agric. Food Chem. 2008, 56, 12046–12051. [Google Scholar] [CrossRef]
- Oszmiański, J.; Kalisz, S.; Aneta, W. The content of phenolic compounds in leaf tissues of white (Aesculus hippocastanum L.) and red horse chestnut (Aesculus carea H.) colonized by the horse chestnut leaf miner (Cameraria ohridella Deschka & Dimić). Molecules 2014, 19, 14625–14636. [Google Scholar] [CrossRef]
- Makino, M.; Katsube, T.; Ohta, Y.; Schmidt, W.; Yoshino, K. Preliminary study on antioxidant properties, phenolic contents, and effects of Aesculus hippocastanum (horse chestnut) seed shell extract on in vitro cyclobutane pyrimidine dimer repair. J. Intercult. Ethnopharmacol. 2017, 6, 1. [Google Scholar] [CrossRef]
- Hagerman, A.E.; Riedl, K.M.; Jones, G.A.; Sovik, K.N.; Ritchard, N.T.; Hartzfeld, P.W.; Riechel, T.L. High Molecular Weight Plant Polyphenolics (Tannins) as Biological Antioxidants. J. Agric. Food Chem. 1998, 46, 1887–1892. [Google Scholar] [CrossRef] [PubMed]
- de Sá, M.; Justino, V.; Spranger, M.I.; Zhao, Y.Q.; Han, L.; Sun, B.S. Extraction yields and anti-oxidant activity of proanthocyanidins from different parts of grape pomace: Effect of mechanical treatments. Phytochem. Anal. 2014, 25, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Japan Standards Association (JSA). JIS Z 2801: Antibacterial Products—Test for Antibacterial Activity and Efficacy; JSA: Tokyo, Japan, 2010. [Google Scholar]
- Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.; Orthofer, R.; Lamuela-Raventós, R. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Matthes, A.; Schmitz-Eiberger, M.A. Polyphenol content and antioxidant capacity of apple fruit: Effect of cultivar and storage conditions. J. Appl. Bot. Food Qual. 2009, 82, 152–157. [Google Scholar]
- Bava, M.; Arnoldi, S.; Dell’Acqua, L.; Fontana, S.; La Forgia, F.; Mustich, G.; Roda, G.; Rusconi, C.; Sorrenti, G.; Visconti, G.L.; et al. Quali-Quantitative Analysis by LC/DAD and GPC of the Polyphenols of “Uva Di Troia Canosina” Grape Seeds for the Development of an Industrial Nutraceutical Product. J. Chromatogr. Sep. Tech. 2015, 6, 266. [Google Scholar] [CrossRef]
- Gabetta, B.; Fuzzati, N.; Griffini, A.; Lolla, E.; Pace, R.; Ruffilli, T.; Peterlongo, F. Characterization of proanthocyanidins from grape seeds. Fitoterapia 2000, 71, 162–175. [Google Scholar] [CrossRef]
- Hagerman, A.E. Tannin Chemistry. Available online: https://www.users.miamioh.edu/hagermae/ (accessed on 5 February 2018).
- Rebaya, A.; Belghith, S.I.; Hammrouni, S.; Maaroufi, A.; Ayadi, M.T.; Chérif, J.K. Antibacterial and Antifungal Activities of Ethanol Extracts of Halimium halimifolium, Cistus salviifolius and Cistus monspeliensis. Int. J. Pharm. Clin. Res. 2016, 8, 243–247. [Google Scholar]
- Thippeswamy, N.B.; Naidu, K.A.; Achur, R.N. Antioxidant and antibacterial properties of phenolic extract from Carum carvi L. J. Pharm. Res. 2013, 7, 352–357. [Google Scholar] [CrossRef]
- Nikaido, H.; Vaara, M. Molecular basis of bacterial outer membrane permeability. Microbiol. Rev. 1985, 49, 1–32. [Google Scholar] [CrossRef]
- Smith-Palmer, A.; Stewart, J.; Fyfe, L. Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett. Appl. Microbiol. 1998, 26, 118–122. [Google Scholar] [CrossRef]
- Grob, M.; Huber, G.; Herbst, H.; Le Gal, A.; Müller, D.; Priest, H.; Tartarini, C.; Thürmer, A.; Schulz, L.; Wegmann, A.; et al. Lichtschutzmittel: Mechanismen für die UV-Stabilisierung—UV-Absorption. In Handbuch Kunststoff-Additive, 4, Vollständig neu Bearbeitete Auflage, 4th ed.; Maier, R.-D., Schiller, M., Eds.; Hanser: München, Germany, 2016; pp. 231–241. [Google Scholar]
- Emmons, C.L.; Peterson, D.M. Antioxidant Activity and Phenolic Content of Oat as Affected by Cultivar and Location. Crop Sci. 2001, 41, 1676. [Google Scholar] [CrossRef]
- Vašková, J.; Fejerčáková, A.; Mojžišová, G.; Vaško, L.; Patlevič, P. Antioxidant potential of Aesculus hippocastanum extract and escin against reactive oxygen and nitrogen species. Eur. Rev. Med. Pharmacol. 2015, 19, 879–886. [Google Scholar]
- Wang, H.-J.; Murphy, P.A. Isoflavone Composition of American and Japanese Soybeans in Iowa: Effects of Variety, Crop Year, and Location. J. Agric. Food Chem. 1994, 42, 1674–1677. [Google Scholar] [CrossRef]
- Czochanska, Z.; Foo, L.Y.; Newman, R.H.; Porter, L.J. Polymeric proanthocyanidins. Stereochemistry, structural units, and molecular weight. J. Chem. Soc. Perkin Trans. 1980, 1, 2278–2286. [Google Scholar] [CrossRef]
- Matsuda, H.; Li, Y.; Murakami, T.; Ninomiya, K.; Yamahara, J.; Yoshikawa, M. Effects of Escins Ia, Ib, IIa, and IIb from Horse Chestnut, the Seeds of Aesculus hippocastanum L., on Acute Inflammation in Animals. Biol. Pharm. Bull. 1997, 20, 1092–1095. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EU). No 10/2011 of 14 January 2011 on Plastic Materials and Articles Intended to Come into Contact with Food; EU: Brussels, Belgium, 2011. [Google Scholar]
- Kapusta, I.; Janda, B.; Szajwaj, B.; Stochmal, A.; Piacente, S.; Pizza, C.; Franceschi, F.; Franz, C.; Oleszek, W. Flavonoids in horse chestnut (Aesculus hippocastanum) seeds and powdered waste water byproducts. J. Agric. Food Chem. 2007, 55, 8485–8490. [Google Scholar] [CrossRef] [PubMed]
- Turck, D.; Bresson, J.-L.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Safety of cranberry extract powder as a novel food ingredient pursuant to Regulation (EC) No 258/97. EFS2 2017, 15, 1731. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Havelt, T.; Brettschneider, S.; Do, X.T.; Korte, I.; Kreyenschmidt, J.; Schmitz, M. Sustainable Extraction and Characterisation of Bioactive Compounds from Horse Chestnut Seed Coats for the Development of Bio-Based Additives. Resources 2019, 8, 114. https://doi.org/10.3390/resources8020114
Havelt T, Brettschneider S, Do XT, Korte I, Kreyenschmidt J, Schmitz M. Sustainable Extraction and Characterisation of Bioactive Compounds from Horse Chestnut Seed Coats for the Development of Bio-Based Additives. Resources. 2019; 8(2):114. https://doi.org/10.3390/resources8020114
Chicago/Turabian StyleHavelt, Thomas, Sarah Brettschneider, Xuan Tung Do, Imke Korte, Judith Kreyenschmidt, and Michaela Schmitz. 2019. "Sustainable Extraction and Characterisation of Bioactive Compounds from Horse Chestnut Seed Coats for the Development of Bio-Based Additives" Resources 8, no. 2: 114. https://doi.org/10.3390/resources8020114