Valorization of Guarana (Paullinia cupana) Production Chain Waste—A Review of Possible Bioproducts
Abstract
1. Introduction
2. Guarana Processing
2.1. Guarana Production in Brazil
2.2. Waste Generated
3. Biorefinery Based on Guarana Residues
3.1. Bioactive Compounds
3.1.1. Bioactive Compounds Extraction
3.1.2. Microencapsulation of Bioactive Compounds from Guarana Byproducts and Food Applications
3.1.3. Guarana Byproducts on Human Health
3.1.4. Biodegradable and Active Packaging
3.1.5. Production of Metallic Nanoparticles
3.2. Hemicellulose
3.2.1. Hemicellulose Extraction Methods
3.2.2. Applications of Hemicellulose
XOS Production
Furfural Production
Bioethanol Production
3.3. Use of Lignin
3.4. Cellulose Extraction and Technological Applications
3.5. Other Applications
3.6. Challenges and Future Research Directions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santos, T.; Filho, V.A.; Rocha, V.M.; Menezes, J. Os impactos do desmatamento e queimadas de origem antrópica sobre o clima da amazônia brasileira: Um estudo de revisão. Rev. Geográfica Acadêmica 2017, 11, 157–181. [Google Scholar]
- Silva, L.M.R.; Sousa, P.H.M.; Sousa Sabino, L.B.; Prado, G.M.; Torres, L.B.V.; Maia, G.A.; de Figueiredo, R.W.; Ricardo, N.M.P.S. Brazilian (North and Northeast) Fruit By-Products. In Food Wastes and By-Products [Internet]; Wiley: Hoboken, NJ, USA, 2020; pp. 127–158. [Google Scholar] [CrossRef]
- Lopes, F.C.R.; Pereira, J.C.; Tannous, K. Thermal decomposition kinetics of guarana seed residue through thermogravimetric analysis under inert and oxidizing atmospheres. Bioresour. Technol. 2018, 270, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Santana, Á.L.; Macedo, G.A. Effects of hydroalcoholic and enzyme-assisted extraction processes on the recovery of catechins and methylxanthines from crude and waste seeds of guarana (Paullinia cupana). Food Chem. 2019, 281, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Pinho, L.S.; Silva, M.P.; Thomazini, M.; Cooperstone, J.L.; Campanella, O.H.; Costa Rodrigues, C.E.; Favaro-Trindade, C.S. Guaraná (Paullinia cupana) by-product as a source of bioactive compounds and as a natural antioxidant for food applications. J. Food Process. Preserv. 2021, 45, e15854. [Google Scholar] [CrossRef]
- Santana, Á.L.; Macedo, G.A. Health and technological aspects of methylxanthines and polyphenols from guarana: A review. J. Funct. Foods 2018, 47, 457–468. [Google Scholar] [CrossRef]
- Marques, L.L.M.; Ferreira, E.D.F.; de Paula, M.N.; Klein, T.; de Mello, J.C.P. Paullinia cupana: A multipurpose plant—A review. Rev. Bras. Farm. 2019, 29, 77–110. [Google Scholar] [CrossRef]
- Santana, Á.L.; Zanini, J.A.; Macedo, G.A. Dispersion-assisted extraction of guarana processing wastes to obtain polyphenols and alkaloids. J. Food Process. Eng. 2020, 43, e13381. [Google Scholar] [CrossRef]
- Embrapa. Bioeconomy [Internet]. 2020 [Cited 22 January 2023]. Available online: https://www.embrapa.br/en/tema-bioeconomia (accessed on 5 June 2023).
- Rathore, D.; Nizami, A.S.; Singh, A.; Pant, D. Key issues in estimating energy and greenhouse gas savings of biofuels: Challenges and perspectives. Biofuel Res. J. 2016, 3, 380–393. [Google Scholar] [CrossRef]
- Bala, S.; Garg, D.; Sridhar, K.; Inbaraj, B.S.; Singh, R.; Kamma, S.; Tripathi, M.; Sharma, M. Transformation of agro-waste into value-added bioproducts and bioactive compounds: Micro/nano formulations and application in the agri-food-pharma sector. Bioengineering 2023, 10, 152. [Google Scholar] [CrossRef] [PubMed]
- Wani, A.K.; Rahayu, F.; Yustina, I.; Fatah, G.S.A.; Kariada, I.K.; Antarlina, S.S.; Jufri, A.; Pamungkas, D. Contribution of yeast and its biomass for the preparation of industrially essential materials: A boon to circular economy. Bioresour. Technol. Rep. 2023, 23, 101508. [Google Scholar] [CrossRef]
- Saravanan, A.; Karishma, S.; Senthil Kumar, P.; Rangasamy, G. A review on regeneration of biowaste into bio-products and bioenergy: Life cycle assessment and circular economy. Fuel 2023, 338, 127221. [Google Scholar] [CrossRef]
- Wani, A.K.; Rahayu, F.; Fauziah, L.; Suhara, C. Advances in safe processing of sugarcane and bagasse for the generation of biofuels and bioactive compounds. J. Agric. Food Res. 2023, 12, 100549. [Google Scholar] [CrossRef]
- Schimpl, F.C.; Da Silva, J.F.; Gonçalves, J.F.D.C.; Mazzafera, P. Guarana: Revisiting a highly caffeinated plant from the Amazon. J. Ethnopharmacol. 2013, 150, 14–31. [Google Scholar] [CrossRef]
- Weil, A.G.; Witkoski, A.C. A organização ancestral do trabalho na produção do guaraná em Maués/Amazonas. Acta Sci. Hum. Soc. Sci. 2023, 45, e69245. Available online: https://periodicos.uem.br/ojs/index.php/ActaSciHumanSocSci/article/view/69245 (accessed on 22 October 2023). [CrossRef]
- Conab. Histórico Mensal do Guaraná [Internet]. 2022 [Cited 11 January 2022]. Available online: https://www.conab.gov.br/info-agro/analises-do-mercado-agropecuario-e-extrativista/analises-do-mercado/historico-mensal-de-Guarana (accessed on 6 March 2023).
- Akca, S.; Akpinar, A. The Effects of Grape, pomegranate, Sesame Seed Powder and Their Oils on Probiotic Ice Cream: Total phenolic contents, antioxidant activity and probiotic viability. Food Biosci. 2021, 42, 101203. [Google Scholar] [CrossRef]
- Silva, M.P.; Farsoni, E.G.; Gobato, C.F.; Thomazini, M.; Favaro-Trindade, C.S. Simultaneous encapsulation of probiotic and guaraná peel extract for development of functional peanut butter. Food Control. 2022, 138, 109050. [Google Scholar] [CrossRef]
- Santana, Á.L.; Queirós, L.D.; Martínez, J.; Macedo, G.A. Pressurized liquid- and supercritical fluid extraction of crude and waste seeds of guarana (Paullinia cupana): Obtaining of bioactive compounds and mathematical modeling. Food Bioprod. Process. 2019, 117, 194–202. [Google Scholar] [CrossRef]
- de Oliveira Júnior, S.D.; dos Santos Gouvêa, P.R.; de Aguiar, L.V.B.; Pessoa, V.A.; dos Santos Cruz Costa, C.L.; Chevreuil, L.R.; BritoNascimento, L.B.d.; dos Santos, E.S.; Sales-Campos, C. Production of Lignocellulolytic Enzymes and Phenolic Compounds by Lentinus strigosus from the Amazon Using Solid-State Fermentation (SSF) of Guarana (Paullinia cupana) Residue. Appl. Biochem. Biotechnol. 2022, 194, 2882–2900. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.P.; Thomazini, M.; Holkem, A.T.; Pinho, L.S.; Genovese, M.I.; Fávaro-Trindade, C.S. Production and characterization of solid lipid microparticles loaded with guaraná (Paullinia cupana) seed extract. Food Res. Int. 2019, 123, 144–152. [Google Scholar] [CrossRef]
- Silva, M.P.; da SMesquita, M.; Fernanda, F.T.; Thomazini, M.; Favaro-Trindade, C.S. Fortification of yoghurt drink with microcapsules loaded with Lacticaseibacillus paracasei BGP-1 and guaraná seed extract. Int. Dairy J. 2022, 125, 105230. [Google Scholar] [CrossRef]
- de Almeida, A.S.F.; Corrêa Junior, A.; Bentes, J.L.d.S. Synthesis of silver nanoparticles (Agnps) by Fusarium concolor and inhibition of plant pathogens. Summa Phytopathol. 2021, 47, 9–15. [Google Scholar] [CrossRef]
- Pinho, L.S.; Patel, B.K.; Campanella, O.H.; Rodrigues, C.E.d.C.; Favaro-Trindade, C.S. Microencapsulation of Carotenoid-Rich Extract from Guaraná Peels and Study of Microparticle Functionality through Incorporation into an Oatmeal Paste. Foods 2023, 12, 1170. [Google Scholar] [CrossRef] [PubMed]
- Pinho, L.; Silva, M.P.; Martelli-Tosi, M.; Massarioli, A.P.; Melo, P.S.; Alencar, S.M.; Favaro-Trindade, C.S. Co-encapsulation of guaraná extracts and probiotics increases probiotic survivability and simultaneously delivers bioactive compounds in simulated gastrointestinal fluids. LWT 2022, 161, 113351. [Google Scholar] [CrossRef]
- Ribeiro, F.C.P.; Santos, V.O.; Araujo, R.O.; Santos, J.L.; Chaar, J.S.; Falcão, N.P.S.; Farias, M.A.S.; de Souza, L.K.C. Determination of the thermal stability of sulfonic groups in heterogeneous acid catalysts derived from residue of guarana amazon biomass. J. Therm. Anal. Calorim. 2023, 148, 23–35. [Google Scholar] [CrossRef]
- Saraiva, S.M.; Jacinto, T.A.; Gonçalves, A.C.; Gaspar, D.; Silva, L.R. Overview of Caffeine Effects on Human Health and Emerging Delivery Strategies. Pharmaceuticals 2023, 16, 1067. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J. Effects of Caffeine on Resistance Exercise: A Review of Recent Research. Sports Med. 2021, 51, 2281–2298. [Google Scholar] [CrossRef]
- Marques, L.L.M.; Panizzon, G.P.; Aguiar, B.A.A.; Simionato, A.S.; Cardozo-Filho, L.; Andrade, G.; de Oliveira, A.G.; Guedes, T.A.; de Mello, J.C.P. Guaraná (Paullinia cupana) seeds: Selective supercritical extraction of phenolic compounds. Food Chem. 2016, 212, 703–711. [Google Scholar] [CrossRef]
- Carvalho, F.A.L.; Lorenzo, J.M.; Pateiro, M.; Bermúdez, R.; Purriños, L.; Trindade, M.A. Effect of guarana (Paullinia cupana) seed and pitanga (Eugenia uniflora L.) leaf extracts on lamb burgers with fat replacement by chia oil emulsion during shelf life storage at 2 °C. Food Res. Int. 2019, 125, 108554. [Google Scholar] [CrossRef]
- Figueira, M.S.; Soares, M.J.; Soares-Freitas, R.A.M.; Sampaio, G.R.; Pinaffi-Langley, A.C.; Santos, O.V.; De Camargo, A.C.; Rogero, M.M.; Torres, E.A.F.S. Effect of guarana seed powder on cholesterol absorption in vitro and in Caco-2 cells. Food Res. Int. 2022, 162, 111968. [Google Scholar] [CrossRef]
- Algarve, T.D.; Assmann, C.E.; Cadoná, F.C.; Machado, A.K.; Manica-Cattani, M.F.; Sato-Miyata, Y.; Asano, T.; Duarte, M.M.M.F.; Ribeiro, E.E.; Aigaki, T.; et al. Guarana Improves Behavior and Inflammatory Alterations Triggered by Methylmercury Exposure: An In Vivo Fruit Fly and In Vitro Neural Cells Study. Environmental Science and Pollution Research 2019, 26, 15069–15083. [Google Scholar] [CrossRef]
- Braga, L.R.; Silva, F.M. Embalagens ativas: Uma nova abordagem para embalagens alimentícias. Braz. J. Food Res. 2017, 8, 170. [Google Scholar] [CrossRef]
- Nogueira, D.; Marasca, N.S.; Latorres, J.M.; Costa, J.A.V.; Martins, V.G. Effect of an active biodegradable package made from bean flour and açaí seed extract on the quality of olive oil. Polym. Eng. Sci. 2022, 62, 1070–1080. [Google Scholar] [CrossRef]
- da Silva Filipini, G.; Romani, V.P.; Guimarães Martins, V. Biodegradable and active-intelligent films based on methylcellulose and jambolão (Syzygium cumini) skins extract for food packaging. Food Hydrocoll. 2020, 109, 106139. [Google Scholar] [CrossRef]
- Costa, E.K.D.C.; Rocha, I.S.; Silva, R.D.J.; Druzian, J.I. Estudo prospectivo relativo a depósitos de patentes relacionadas à produção de filmes elaborados pela técnica de casting. Cad. Prospecção 2016, 9, 280. [Google Scholar] [CrossRef]
- Rocha, G.O.; Farias, M.G.; Carvalho CWPde Ascheri, J.L.R.; Galdeano, M.C. Filmes compostos biodegradáveis a base de amido de mandioca e proteína de soja. Polímeros 2014, 24, 587–595. [Google Scholar] [CrossRef]
- Mir, S.A.; Dar, B.N.; Wani, A.A.; Shah, M.A. Effect of plant extracts on the techno-functional properties of biodegradable packaging films. Trends Food Sci. Technol. 2018, 80, 141–154. [Google Scholar] [CrossRef]
- Bonilla, J.; Sobral, P.J.A. Investigation of the physicochemical, antimicrobial and antioxidant properties of gelatin-chitosan edible film mixed with plant ethanolic extracts. Food Biosci. 2016, 16, 17–25. [Google Scholar] [CrossRef]
- Noah, N. Green synthesis: Characterization and application of silver and gold nanoparticles. In Green Synthesis, Characterization and Applications of Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Paniz, O.G.; Scheik, L.K.; da Silva, G.E.H.; Gonçalves, M.R.F.; de Oliveira, A.D.; Araújo, E.M.; Carreño, N.L.V. Cellulose acetate and silver particles composite synthesis to antimicrobial applications. Rev. Mater. 2018, 23, e12244. [Google Scholar]
- Bogireddy, N.K.R.; Pal, U.; Gomez, L.M.; Agarwal, V. Size controlled green synthesis of gold nanoparticles using Coffea arabica seed extract and their catalytic performance in 4-nitrophenol reduction. RSC Adv. 2018, 8, 24819–24826. [Google Scholar] [CrossRef]
- Chaicherd, S.; Killingsworth, M.C.; Pissuwan, D. Toxicity of gold nanoparticles in a commercial dietary supplement drink on connective tissue fibroblast cells. SN Appl. Sci. 2019, 1, 336. [Google Scholar] [CrossRef]
- Ying, S.; Guan, Z.; Ofoegbu, P.C.; Clubb, P.; Rico, C.; He, F.; Hong, J. Green synthesis of nanoparticles: Current developments and limitations. Environ. Technol. Innov. 2022, 26, 102336. [Google Scholar] [CrossRef]
- Solgi, M.; Taghizadeh, M. Biogenic synthesis of metal nanoparticles by plants. In Biogenic Nano-Particles and Their Use in Agro-ecosystems; Springer: Singapore, 2020. [Google Scholar]
- Dzimitrowicz, A.; Jamróz, P.; diCenzo, G.C.; Sergiel, I.; Kozlecki, T.; Pohl, P. Preparation and characterization of gold nanoparticles prepared with aqueous extracts of Lamiaceae plants and the effect of follow-up treatment with atmospheric pressure glow microdischarge. Arab. J. Chem. 2019, 12, 4118–4130. [Google Scholar] [CrossRef]
- Folorunso, A.; Akintelu, S.; Oyebamiji, A.K.; Ajayi, S.; Abiola, B.; Abdusalam, I.; Morakinyo, A. Biosynthesis, characterization and antimicrobial activity of gold nanoparticles from leaf extracts of Annona muricata. J. Nanostructure Chem. 2019, 9, 111–117. [Google Scholar] [CrossRef]
- Islam, N.U.; Jalil, K.; Rauf, A.; Muhammad, N.; Khan, A.; Shah, M.R.; Khan, M.A. Green synthesis and biological activities of gold nanoparticles functionalized with Salix alba. Arab. J. Chem. 2019, 12, 2914–2925. [Google Scholar] [CrossRef]
- Kunoh, T.; Takeda, M.; Matsumoto, S.; Suzuki, I.; Takano, M.; Kunoh, H.; Takada, J. Green Synthesis of Gold Nanoparticles Coupled with Nucleic Acid Oxidation. ACS Sustain. Chem. Eng. 2018, 6, 364–373. [Google Scholar] [CrossRef]
- Wongyai, K.; Wintachai, P.; Maungchang, R.; Rattanakit, P. Exploration of the Antimicrobial and Catalytic Properties of Gold Nanoparticles Greenly Synthesized by Cryptolepis buchanani Roem. and Schult Extract. J. Nanomater. 2020, 2020, 1320274. [Google Scholar] [CrossRef]
- Gokila, V.; Perarasu, V.T.; Rufina, R.D.J. Qualitative comparison of chemical and green synthesized Fe3O4 nanoparticles. Adv. Nano Res. 2021, 10, 71–76. [Google Scholar]
- Banerjee, J.; Singh, R.; Vijayaraghavan, R.; MacFarlane, D.; Patti, A.F.; Arora, A. Bioactives from fruit processing wastes: Green approaches to valuable chemicals. Food Chem. 2017, 225, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [CrossRef]
- Linares-Pasten, J.A.; Aronsson, A.; Karlsson, E.N. Structural Considerations on the Use of Endo-Xylanases for the Production of prebiotic Xylooligosaccharides from Biomass. Curr. Protein Pept. Sci. 2018, 19, 48–67. [Google Scholar] [CrossRef]
- Pereira, J.C.; Lopes, F.C.R.; Tannous, K. Guarana Fruit: Traditional Applications and Sustainable Use of Residues; Todorov, S.D., Pieri, F.A., Eds.; Food Science and Technology Series; Nova Science Publishers: New York, NY, USA, 2018. [Google Scholar]
- Kaprelyants, L.; Zhurlova, O.; Shpyrko, T.; Pozhitkova, L. Xylooligosaccharides from agricultural by-products: Characterisation, production and physiological effects. Food Sci. Technol. 2017, 11, 25–34. [Google Scholar] [CrossRef]
- Ruiz, H.A.; Cerqueira, M.A.; Silva, H.D.; Rodríguez-Jasso, R.M.; Vicente, A.A.; Teixeira, J.A. Biorefinery valorization of autohydrolysis wheat straw hemicellulose to be applied in a polymer-blend film. Carbohydr. Polym. 2013, 92, 2154–2162. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; He, Q.; Fan, G.; Cheng, Q.; Song, G. Extraction and modification of hemicellulose from lignocellulosic biomass: A review. Green Process. Synth. 2021, 10, 779–804. [Google Scholar] [CrossRef]
- Gallina, G.; Alfageme, E.R.; Biasi, P.; García-Serna, J. Hydrothermal extraction of hemicellulose: From lab to pilot scale. Bioresour. Technol. 2018, 247, 980–991. [Google Scholar] [CrossRef]
- Morais, E.S.; Da Costa Lopes, A.M.; Freire, M.G.; Freire, C.S.R.; Coutinho, J.A.P.; Silvestre, A.J.D. Use of ionic liquids and deep eutectic solvents in polysaccharides dissolution and extraction processes towards sustainable biomass valorization. Molecules 2020, 25, 3652. [Google Scholar] [CrossRef]
- Hu, L.; Peng, H.; Xia, Q.; Zhang, Y.; Ruan, R.; Zhou, W. Effect of ionic liquid pretreatment on the physicochemical properties of hemicellulose from bamboo. J. Mol. Struct. 2020, 1210, 128067. [Google Scholar] [CrossRef]
- Peleteiro, S.; Rivas, S.; Alonso, J.L.; Santos, V.; Parajó, J.C. Furfural production using ionic liquids: A review. Bioresour. Technol. 2020, 200, 905–913. [Google Scholar] [CrossRef]
- Foong, S.Y.; Liew, R.K.; Yang, Y.; Cheng, Y.W.; Yek, P.N.Y.; Mahari, W.A.W.; Lee, X.Y.; Han, C.S.; Vo, D.-V.N.; Van Le, Q.; et al. Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions. Chem. Eng. J. 2020, 389, 124408. [Google Scholar] [CrossRef]
- Özbek, H.N.; Fockink, D.H.; Yanık, D.K.; Göğüş, F.; Lukasik, R. The green biorefinery concept for the valorisation of pistachio shell by high-pressure CO2/H2O system. J. Clean. Prod. 2018, 196, 842–851. [Google Scholar] [CrossRef]
- Xie, Y.; Guo, X.; Ma, Z.; Gong, J.; Wang, H.; Lv, Y. Efficient extraction and structural characterization of hemicellulose from sugarcane bagasse pith. Polymers 2020, 12, 608. [Google Scholar] [CrossRef]
- Wang, L.; Li, Z.; Liu, Y. Ultrasonic-assisted extraction and purification of xylo-oligosaccharides from wheat bran. J. Food Process. Eng. 2022, 45, e14152. [Google Scholar] [CrossRef]
- Banerjee, S.; Patti, A.F.; Ranganathan, V.; Arora, A. Hemicellulose based biorefinery from pineapple peel waste: Xylan extraction and its conversion into xylooligosaccharides. Food Bioprod. Process. 2019, 117, 38–50. [Google Scholar] [CrossRef]
- Khaire, K.C.; Moholkar, V.S.; Goyal, A. Bioconversion of sugarcane tops to bioethanol and other value-added products: An overview. Mater. Sci. Energy Technol. 2021, 4, 54–68. [Google Scholar] [CrossRef]
- Delbecq, F.; Wang, Y.; Muralidhara, A.; El Ouardi, K.E.; Marlair, G.; Len, C. Hydrolysis of hemicellulose and derivatives—A review of recent advances in the production of furfural. Front. Chem. 2018, 6, 146. [Google Scholar] [CrossRef]
- Palaniappan, A.; Antony, U.; Emmambux, M.N. Current status of xylooligosaccharides: Production, characterization, health benefits and food application. Food Sci. Technol. 2021, 111, 506–519. [Google Scholar] [CrossRef]
- Belorkar, S.A.; Gupta, A.K. Oligosaccharides: A boon from nature’s desk. AMB Express 2016, 6, 82. [Google Scholar] [CrossRef]
- Poletto, P.; Pereira, G.N.; Monteiro, C.R.M.; Pereira, M.A.F.; Bordignon, S.E.; de Oliveira, D. Xylooligosaccharides: Transforming the lignocellulosic biomasses into valuable 5-carbon sugar prebiotics. Process. Biochem. 2020, 91, 352–363. [Google Scholar] [CrossRef]
- Gao, X.; Kumar, R.; Wyman, C.E. Fast hemicellulose quantification via a simple one-step acid hydrolysis. Biotechnol. Bioeng. 2014, 111, 1088–1096. [Google Scholar] [CrossRef]
- Chen, H.; Fu, X. Industrial technologies for bioethanol production from lignocellulosic biomass. Renew. Sustain. Energy Rev. 2016, 57, 468–478. [Google Scholar] [CrossRef]
- Bian, J.; Peng, P.; Peng, F.; Xiao, X.; Xu, F.; Sun, R.C. Microwave-assisted acid hydrolysis to produce xylooligosaccharides from sugarcane bagasse hemicelluloses. Food Chem. 2014, 156, 7–13. [Google Scholar] [CrossRef]
- Amorim, C.; Silvério, S.C.; Prather, K.L.J.; Rodrigues, L.R. From lignocellulosic residues to market: Production and commercial potential of xylooligosaccharides. Biotechnol. Adv. 2019, 37, 107397. [Google Scholar] [CrossRef]
- The Market Reports. Global Xylo-Oligosaccharide (XOS) Market by Manufacturers, Regions, Type and Application, Forecast to 2023 [Internet]. 2018 [Cited 1 January 2022]. Available online: https://www.themarketreports.com/report/global-xylo-oligosaccharide-xos-market-by-anufacturers-regions-type-and-application-forecast-to-2023 (accessed on 25 October 2023).
- Azelee, N.I.W.; Jahim, J.M.; Ismail, A.F.; Fuzi, S.F.Z.M.; Rahman, R.A.; Md Illias, R. High xylooligosaccharides (XOS) production from pretreated kenaf stem by enzyme mixture hydrolysis. Ind. Crops Prod. 2016, 81, 11–19. [Google Scholar] [CrossRef]
- Abdo, A.A.A.; Zhang, C.; Patil, P.; Teng, C.; Li, X.; Liang, X. Biological functions of nutraceutical xylan oligosaccharides as a natural solution for modulation of obesity, diabetes, and related diseases. Int. Food Res. J. 2022, 29, 236–247. [Google Scholar] [CrossRef]
- Zhu, D.; Yan, Q.; Liu, J.; Wu, X.; Jiang, Z. Can functional oligosaccharides reduce the risk of diabetes mellitus? FASEB J. 2019, 33, 11655–11667. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Peng, H.; Zhang, Y.; Fu, G.; Liu, Y.; Xiao, Z.; Huang, L.; Bi, H. Microwave-assisted furfural production from xylose and bamboo hemicellulose in a biphasic medium. Biomass Convers. Biorefin. 2021, 13, 7895–7907. [Google Scholar] [CrossRef]
- Machado, G.; Leon, S.; Santos, F.; Lourega, R.; Dullius, J.; Mollmann, M.E.; Eichler, P. Literature Review on Furfural Production from Lignocellulosic Biomass. Nat. Resour. 2016, 7, 115. [Google Scholar] [CrossRef]
- Dulie, N.W.; Woldeyes, B.; Demsash, H.D.; Jabasingh, A.S. An Insight into the Valorization of Hemicellulose Fraction of Biomass into Furfural: Catalytic Conversion and Product Separation. Waste Biomass Valorization 2020, 12, 531–552. [Google Scholar] [CrossRef]
- Yao, B.; Kang, Q.; Fu, J.; Liu, Y.; Ao, W.; Wang, L.; Jiang, Z.; Zhang, T.; Song, Y.; Deng, Z.; et al. Catalytic hydrolysis of corncob for production of furfural and cellulose-rich solids: Product characterization and analysis. Biomass Bioenergy 2023, 168, 106658. [Google Scholar] [CrossRef]
- Ye, L.; Han, Y.; Wang, X.; Lu, X.; Qi, X.; Yu, H. Recent progress in furfural production from hemicellulose and its derivatives: Conversion mechanism, catalytic system, solvent selection. Mol. Catal. 2021, 515, 111899. [Google Scholar] [CrossRef]
- Wang, W.; Ren, J.; Li, H.; Deng, A.; Sun, R. Direct transformation of xylan-type hemicelluloses to furfural via SnCl4 catalysts in aqueous and biphasic systems. Bioresour. Technol. 2015, 183, 188–194. [Google Scholar] [CrossRef]
- Hu, B.; Xie, W.L.; Wu, Y.T.; Liu, J.; Ma, S.W.; Wang, T.P.; Zheng, S.; Lu, Q. Mechanism study on the formation of furfural during zinc chloride-catalyzed pyrolysis of xylose. Fuel 2021, 295, 120656. [Google Scholar] [CrossRef]
- Lee, C.B.T.L.; Wu, T.Y. A review on solvent systems for furfural production from lignocellulosic biomass. Renew. Sustain. Energy Rev. 2021, 137, 110172. [Google Scholar] [CrossRef]
- Sánchez, Ó.J.; Cardona, C.A. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 2008, 99, 5270–5295. [Google Scholar] [CrossRef] [PubMed]
- Sims, R.E.H.; Mabee, W.; Saddler, J.N.; Taylor, M. An overview of second generation biofuel technologies. Bioresour. Technol. 2010, 101, 1570–1580. [Google Scholar] [CrossRef] [PubMed]
- Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.Y.; Holtzapple, M.; Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 2005, 96, 673–686. [Google Scholar] [CrossRef]
- Zabed, H.; Sahu, J.N.; Boyce, A.N.; Faruq, G. Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches. Renew. Sustain. Energy Rev. 2016, 66, 751–774. [Google Scholar] [CrossRef]
- Kuhad, R.C.; Gupta, R.; Singh, A. Microbial cellulases and their industrial applications. Enzym. Res. 2011, 2011, 280696. [Google Scholar] [CrossRef]
- Klein-Marcuschamer, D.; Oleskowicz-Popiel, P.; Simmons, B.A.; Blanch, H.W. The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol. Bioeng. 2012, 109, 1083–1087. [Google Scholar] [CrossRef]
- Andlar, M.; Rezić, T.; Marđetko, N.; Kracher, D.; Ludwig, R.; Šantek, B. Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation. Eng. Life Sci. 2018, 18, 768–778. [Google Scholar] [CrossRef]
- Ko, J.K.; Um, Y.; Woo, H.M.; Kim, K.H.; Lee, S.M. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway. Bioresour. Technol. 2016, 209, 290–296. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, P.; Zhang, G.; Yang, Q.; Lu, J.; Xia, T.; Peng, L.; Wang, Y. Cascading of engineered bioenergy plants and fungi sustainable for low-cost bioethanol and high-value biomaterials under green-like biomass processing. Renew. Sustain. Energy Rev. 2021, 137, 110586. [Google Scholar] [CrossRef]
- Malik, K.; Sharma, P.; Yang, Y.; Zhang, P.; Zhang, L.; Xing, X.; Yue, J.; Song, Z.; Nan, L.; Yujun, S.; et al. Lignocellulosic biomass for bioethanol: Insight into the advanced pretreatment and fermentation approaches. Ind. Crop. Prod. 2022, 188, 115569. [Google Scholar] [CrossRef]
- Lynd, L.R.; Laser, M.S.; Bransby, D.; E Dale, B.; Davison, B.; Hamilton, R.; Himmel, M.; Keller, M.; McMillan, J.D.; Sheehan, J.; et al. How biotech can transform biofuels. Nat. Biotechnol. 2008, 26, 169–172. [Google Scholar] [CrossRef]
- Taha, M.; Foda, M.; Shahsavari, E.; Aburto-Medina, A.; Adetutu, E.; Ball, A. Commercial feasibility of lignocellulose biodegradation: Possibilities and challenges. Curr. Opin. Biotechnol. 2016, 38, 190–197. [Google Scholar] [CrossRef]
- Avanthi, A.; Kumar, S.; Sherpa, K.C.; Banerjee, R. Bioconversion of hemicelluloses of lignocellulosic biomass to ethanol: An attempt to utilize pentose sugars. Biofuels 2016, 8, 431–444. [Google Scholar] [CrossRef]
- Patil, S.V.; Argyropoulos, D.S. Stable Organic Radicals in Lignin: A Review. ChemSusChem 2017, 10, 3284–3303. [Google Scholar] [CrossRef]
- Qian, Y.; Deng, Y.; Qiu, X.; Li, H.; Yang, D. Formation of uniform colloidal spheres from lignin, a renewable resource recovered from pulping spent liquor. Green Chem. 2014, 16, 2156–2163. [Google Scholar] [CrossRef]
- Qian, Y.; Qiu, X.; Zhu, S. Lignin: A nature-inspired sun blocker for broadspectrum Sunscreens. Green Chem. 2015, 17, 320–324. [Google Scholar] [CrossRef]
- Poveda-Giraldo, J.A.; Solarte-Toro, J.C.; Cardona Alzate, C.A. The potential use of lignin as a platform product in biorefineries: A review. Renew. Sustain. Energy Rev. 2021, 138, 110688. [Google Scholar] [CrossRef]
- Chávez-Sifontes, M.; Domine, M.E. Lignin, Structure and Applications: Depolymerization Methods for Obtaining Aromatic Derivatives of Industrial Interest. Av. Cienc. Ingeniería 2013, 4, 15–46. [Google Scholar]
- Ragauskas, A.J.; Beckham, G.T.; Biddy, M.J.; Chandra, R.; Chen, F.; Davis, M.F.; Davison, B.H.; Dixon, R.A.; Gilna, P.; Keller, M.; et al. Lignin valorization: Improving lignin processing in the biorefinery. Science 2014, 344, 1246843. [Google Scholar] [CrossRef] [PubMed]
- Li, M.-C.; Liu, X.; Lv, K.; Sun, J.; Dai, C.; Liao, B.; Liu, C.; Mei, C.; Wu, Q.; Hubbe, M. Cellulose nanomaterials in oil and gas industry: Current status and future perspectives. Prog. Mater. Sci. 2023, 139, 101187. [Google Scholar] [CrossRef]
- Khan, M.A.; Li, M.-C.; Lv, K.; Sun, J.; Liu, C.; Liu, X.; Shen, H.; Dai, L.; Lalji, S.M. Cellulose derivatives as environmentally-friendly additives in water-based drilling fluids: A review. Carbohydr. Polym. 2024, 342, 122355. [Google Scholar] [CrossRef] [PubMed]
- Azimi, B.; Sepahvand, S.; Ismaeilimoghadam, S.; Kargarzadeh, H.; Ashori, A.; Jonoobi, M.; Danti, S. Application of Cellulose-Based Materials as Water Purification Filters: A State-of-the-Art Review. J. Polym. Environ. 2023, 32, 345–366. [Google Scholar] [CrossRef]
- Selvaraj, S.; Chauhan, A.; Dutta, V.; Verma, R.; Rao, S.K.; Radhakrishnan, A.; Ghotekar, S. A state-of-the-art review on plant-derived cellulose-based green hydrogels and their multifunctional role in advanced biomedical applications. Int. J. Biol. Macromol. 2024, 265, 130991. [Google Scholar] [CrossRef]
Source | Compounds | Proposal of the Work | Relevant Results | Reference |
---|---|---|---|---|
Crude and Processed seeds | Catechins and methylxanthines extraction | Investigation between the hydroalcoholic and enzyme-assisted extraction. | The highest catechins (80.87 mg/g) and methylxanthines (53.01 mg/g of caffeine) were extracted with hot hydroalcoholic maceration. Aqueous enzymatic maceration enhanced the global yield in the extract. | Santana et al. [4] |
Phenolics and alkaloids extraction | Improve the recovery of phenolics and alkaloids using pressurized liquid- (PLE) and supercritical fluid extraction (SFE), combined with enzymes (cellulase and pectinase). | The maximum recovery of catechin (50.59 g/100 g) and caffeine (46.19 g/100 g) was raised in the PLE assisted with enzyme cellulase for crude seeds. | Santana et al. [20] | |
Lignocellulolytic enzymes production | Produce lignocellulolytic enzymes as well as phenolic compounds and proteases by solid-state fermentation (SSF). | During the SSF, significant values of CMCase (0.84 U/g) on the 8th day, xylanase (1.00 U/g) on the 7th day, pectinase (2.19 U/g) on the 6th day, laccase (176.23 U/mL) on the 5th day, phenolic compounds (10.27 μg/mL) on the 1st day, soluble proteins (0.08 mg/mL) on the 5th day, and protease (8.30 U/mL) on the 6th day were observed. | Junior et al. [21] | |
Seeds | Prospects for food application | Microencapsulation of guarana seed extract (GSE) using a spray-chilling method and with vegetable fat as a carrier, as well as evaluate the particles. | Powdered GSE showed anti-obesity potential. At least 75% of phenolic compounds were detected after 90 days at 25 °C in solid lipid microparticles (SLM). Moreover, SLM loaded with 7.5% GSE released approximately 99% of phenolic compounds in simulated gastrointestinal conditions. | Silva et al. [22] |
Supplementation in yogurt drink | Evaluate the effect of simultaneous encapsulation of guarana seed extract (GSE) and L. paracasei on the viability of the potential probiotic and stability of phenolic compounds, followed by application in yogurt drinks. | Yogurt with supplementation had better acceptability by sensorial analysis. The encapsulation and association of GSE allowed for the maintenance of L. paracasei counts of about 7 log CFU/g in yogurt formulations stored at 7 °C for up to 28 days. | Silva et al. [23] | |
Pharmaceutical applications (anti-inflammatory agent) | Investigate the synthesis of AgNPs by Fusarium concolor Reinking, endophytes obtained from guarana leaves and seeds, as well as evaluate the antifungal activity of AgNPs in vitro. | Evidencing antifungal activity, especially against Colletotrichum guarani cola, which suggests that biosynthesized silver nanoparticles can be used in the management of phytopathogens as an alternative to control diseases. | Almeida et al. [24] | |
Peels | Supplementation in oatmeal paste | Encapsulate the carotenoid-rich extract from guarana peels, and investigate the influence of microparticles on the pasting properties of oatmeal. | The sample containing 1:2 core: carrier (material ratio) exhibited promising features among other formulations, including high carotenoid content, suitable particle size, and intense color. Adding oatmeal paste increased starch’s onset and peak temperature but decreased its enthalpy. The gelatinization of oat flakes starch was affected by the decrease in accessible water due to the presence of the microparticles. | Pinho et al. [25] |
Carotenoids extraction | Extraction of guarana peel extract as a source of bioactive compounds and as a natural antioxidant. | The highest recovery of carotenoids (about 115 μg/g) was using ethanol: ethyl acetate for 24 hr at 50 °C. Potential for application as an antioxidant (ABTS: 60 μmol Trolox eq./g, and ORAC: 76 μmol Trolox eq./g). | Pinho et al. [5] | |
Supplementation in peanut butter | Coencapsulation of Bifidobacterium animalis subsp. Lactic BLC-1 and guarana peel extract (GPE) for application in peanut butter. | Peanut butter containing microcapsules loaded with probiotics and GPE reached the highest viability of bifidobacteria, approximately 7.8 log CFU/g after 90 days of storage at 25 ◦C. Peanut butter supplemented with free GPE and probiotics showed the lowest overall acceptability and purchase intention, which justifies the importance of encapsulation to mask the bitterness of GPE. | Silva et al. [19] | |
Seeds and Peels | Supplementation of bioactive compounds | Verify the prebiotic potential of guarana seed extract (GSE) and guarana peel extract (GPE), co-encapsulate guarana extracts and probiotics, and assess the release of compounds during an in vitro digestion assay. | Co-encapsulation improved the protection of probiotics in simulated gastrointestinal fluids, for GSE coacervates displayed a fast release of probiotics and phenolic compounds in the gastric phase. A considerable quantity of phenolics and probiotics reached the intestinal phase. GPE protected carotenoids and prebiotics with a complex coacervation, delaying their release in simulated gastrointestinal fluids. | Silva et al. [26] |
Shell and husk | Esterification catalyst | Investigate the synthesis of heterogeneous carbon-based acid catalysts using guarana residues for esterification reactions. | Maximum free fat acid (FFA) conversion of 63% using 5% by mass catalyst, 2 h, molar ratio oil/methanol 1:12 and 75 °C. | Ribeiro et al. [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teixeira de Azevedo, G.; Lima de Souza, G.; Leonarski, E.; Lotas, K.M.; Barroso da Silva, G.H.; Miguel Batista, F.R.; Cesca, K.; de Oliveira, D.; Mathias Pereira, A.; Sodré Souza, L.d.S. Valorization of Guarana (Paullinia cupana) Production Chain Waste—A Review of Possible Bioproducts. Resources 2025, 14, 98. https://doi.org/10.3390/resources14060098
Teixeira de Azevedo G, Lima de Souza G, Leonarski E, Lotas KM, Barroso da Silva GH, Miguel Batista FR, Cesca K, de Oliveira D, Mathias Pereira A, Sodré Souza LdS. Valorization of Guarana (Paullinia cupana) Production Chain Waste—A Review of Possible Bioproducts. Resources. 2025; 14(6):98. https://doi.org/10.3390/resources14060098
Chicago/Turabian StyleTeixeira de Azevedo, Guilherme, Giovana Lima de Souza, Eduardo Leonarski, Kevyn Melo Lotas, Gustavo Henrique Barroso da Silva, Fábio Rodolfo Miguel Batista, Karina Cesca, Débora de Oliveira, Anderson Mathias Pereira, and Leiliane do Socorro Sodré Souza. 2025. "Valorization of Guarana (Paullinia cupana) Production Chain Waste—A Review of Possible Bioproducts" Resources 14, no. 6: 98. https://doi.org/10.3390/resources14060098
APA StyleTeixeira de Azevedo, G., Lima de Souza, G., Leonarski, E., Lotas, K. M., Barroso da Silva, G. H., Miguel Batista, F. R., Cesca, K., de Oliveira, D., Mathias Pereira, A., & Sodré Souza, L. d. S. (2025). Valorization of Guarana (Paullinia cupana) Production Chain Waste—A Review of Possible Bioproducts. Resources, 14(6), 98. https://doi.org/10.3390/resources14060098