Integrating Sustainability and Resilience Objectives for Energy Decisions: A Systematic Review
Abstract
1. Introduction
2. Overview of Existing Studies and Situating the Agenda of This Study
3. Materials and Methods
3.1. Formulating Review Questions
- 1.
- How are sustainability and resilience integrated?
- 2.
- How is sustainability assessed?
- 3.
- What types of disruptions are taken into account?
- 4.
- What are the types of resilience?
- 5.
- What are the anchors or attributes of resilience?
- 6.
- What are the approaches to energy resilience?
- 7.
- How is resilience assessed?
- 8.
- What are the system configurations addressed?
- 9.
- What are the technologies assessed?
- 10.
- Which energy value chain(s) is/are considered?
- 11.
- What is the scope of the decisions?
- 12.
- What is the perspective on the assessment?
- 13.
- What energy entity is used for decision-making?
- 14.
- How inclusive is stakeholders’ participation in assessment?
- 15.
- How are criteria/indicators identified?
- 16.
- What are the sources of data for decision analysis?
- 17.
- How are energy decisions analyzed?
- 18.
- What are the types of data used for assessment?
3.2. Locating the Studies
3.3. Selecting and Evaluating the Studies
3.4. Analysis and Synthesis
3.5. Reporting and Using the Results
4. Results
4.1. Trend Towards the Integration of Sustainability and Resilience
4.2. Decision Objectives (D-O)
4.2.1. Types of Integration
- (a)
- Sustainability objective (with implicit integration of resilience issues) (SR)
- (b)
- Resilience objective (with implicit integration of sustainability issues) (RS)
4.2.2. Sustainability Objective
4.2.3. Resilience Objective
4.3. Decision Context (D-C)
4.4. Decision Implementation (D-I)
5. Discussion
5.1. Decision Objectives
5.2. Decision Context
5.3. Decision Implementation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- United Nations. Our Common Future; United Nations: New York, NY, USA, 1987. [Google Scholar]
- Bishoge, O.K.; Zhang, L.; Mushi, W.G. The Potential Renewable Energy for Sustainable Development in Tanzania: A Review. Clean Technol. 2018, 1, 70–88. [Google Scholar] [CrossRef]
- Saleh, H.M.; Hassan, A.I. The Challenges of Sustainable Energy Transition: A Focus on Renewable Energy. Appl. Chem. Eng. 2024, 7, 2084. [Google Scholar] [CrossRef]
- Diouf, B.; Miezan, E. Unlocking the Technology Potential for Universal Access to Clean Energy in Developing Countries. Energies 2024, 17, 1488. [Google Scholar] [CrossRef]
- King, D.; Grey, C. Industry Agenda. Energy Harnessing: New Solutions for Sustainability and Growing Demand; World Economic Forum: Geneva, Switzerland, 2013. [Google Scholar]
- Mazur, C.; Hoegerle, Y.; Brucoli, M.; van Dam, K.; Guo, M.; Markides, C.N.; Shah, N. A Holistic Resilience Framework Development for Rural Power Systems in Emerging Economies. Appl. Energy 2019, 235, 219–232. [Google Scholar] [CrossRef]
- Ahmadi, S.; Saboohi, Y.; Tsatsaronis, G.; Vakili, A. Energy System Improvement Planning under Drought Condition Based on a Two-Stage Optimization Model: The Desire for Sustainability through the Promoting of System’ s Resilience. Energy Rep. 2021, 7, 3556–3569. [Google Scholar] [CrossRef]
- Moslehi, S.; Reddy, T.A. Sustainability of Integrated Energy Systems: A Performance-Based Resilience Assessment Methodology. Appl. Energy 2018, 228, 487–498. [Google Scholar] [CrossRef]
- Adamo, I.D.; Falcone, P.M.; Martin, M. A Sustainable Revolution: Let’ s Go Sustainable to Get Our Globe Cleaner. Sustainability 2020, 12, 4387. [Google Scholar] [CrossRef]
- Gaudreau, K.; Gibson, R.B. Illustrating Integrated Sustainability and Resilience Based Assessments: A Small-Scale Biodiesel Project in Barbados. Impact Assess. Proj. Apprais. 2010, 28, 233–243. [Google Scholar] [CrossRef]
- Salehi, S.; Mehrjerdi, Y.Z.; Sadegheih, A.; Hosseini-nasab, H. Designing a Resilient and Sustainable Biomass Supply Chain Network through the Optimization Approach under Uncertainty and the Disruption. J. Clean. Prod. 2022, 359, 131741. [Google Scholar] [CrossRef]
- Labuschagne, C.; Brent, A.C.; Van Erck, R.P.G. Assessing the Sustainability Performances of Industries. J. Clean. Prod. 2005, 13, 373–385. [Google Scholar] [CrossRef]
- Sharifi, A.; Yamagata, Y. A Conceptual Framework for Assessment of Urban Energy Resilience. Energy Procedia 2015, 75, 2904–2909. [Google Scholar] [CrossRef]
- Ren, J. Sustainability Prioritization of Energy Storage Technologies for Promoting the Development of Renewable Energy: A Novel Intuitionistic Fuzzy Combinative Distance-Based Assessment Approach. Renew. Energy 2018, 121, 666–676. [Google Scholar] [CrossRef]
- Atilgan, B.; Azapagic, A. An Integrated Life Cycle Sustainability Assessment of Electricity Generation in Turkey. Energy Policy 2016, 93, 168–186. [Google Scholar] [CrossRef]
- Verma, P.; Chodkowska-miszczuk, J.; Wi, Ł. Local Resilience for Low-Carbon Transition in Poland: Frameworks, Conditions and Opportunities for Central European Countries. Sustain. Dev. 2023, 31, 1278–1295. [Google Scholar] [CrossRef]
- Brecha, R.J.; Mitchell, A.; Hallinan, K.; Kissock, K. Prioritizing Investment in Residential Energy Efficiency and Renewable Energy—A Case Study for the U.S. Midwest. Energy Policy 2011, 39, 2982–2992. [Google Scholar] [CrossRef]
- Evans, A.; Strezov, V.; Evans, T.J. Assessment of Sustainability Indicators for Renewable Energy Technologies. Renew. Sustain. Energy Rev. 2009, 13, 1082–1088. [Google Scholar] [CrossRef]
- Haddad, B.; Díaz-Cuevas, P.; Ferreira, P.; Djebli, A.; Pérez, J.P. Mapping Concentrated Solar Power Site Suitability in Algeria. Renew. Energy 2021, 168, 838–853. [Google Scholar] [CrossRef]
- Akber, M.Z.; Thaheem, M.J.; Arshad, H. Life Cycle Sustainability Assessment of Electricity Generation in Pakistan: Policy Regime for a Sustainable Energy Mix. Energy Policy 2017, 111, 111–126. [Google Scholar] [CrossRef]
- Wang, B.; Song, J.; Ren, J.; Li, K.; Duan, H. Selecting Sustainable Energy Conversion Technologies for Agricultural Residues: A Fuzzy AHP-VIKOR Based Prioritization from Life Cycle Perspective. Resour. Conserv. Recycl. 2019, 142, 78–87. [Google Scholar] [CrossRef]
- Abdul Murad, S.M.; Hashim, H.; Jusoh, M.; Zakaria, Z.Y. Sustainability Assessment Framework: A Mini Review of Assessment Concept. Chem. Eng. 2019, 7, 379–384. [Google Scholar] [CrossRef]
- O’Brien, G.; Hope, A. Localism and Energy: Negotiating Approaches to Embedding Resilience in Energy Systems. Energy Policy 2010, 38, 7550–7558. [Google Scholar] [CrossRef]
- Scordato, L.; Gulbrandsen, M. Resilience Perspectives in Sustainability Transitions Research: A Systematic Literature Review. Environ. Innov. Soc. Transit. 2024, 52, 100887. [Google Scholar] [CrossRef]
- Roege, P.E.; Collier, Z.A.; Mancillas, J.; Mcdonagh, J.A.; Linkov, I. Metrics for Energy Resilience. Energy Policy 2014, 72, 249–256. [Google Scholar] [CrossRef]
- Gatto, A.; Drago, C. Measuring and Modeling Energy Resilience. Ecol. Econ. 2020, 172, 106527. [Google Scholar] [CrossRef]
- Jesse, B.-J.; Kramer, G.J.; Koning, V. Characterization of Necessary Elements for a Definition of Resilience for the Energy System. Energy Sustain. Soc. 2024, 14, 46. [Google Scholar] [CrossRef]
- Molyneaux, L.; Brown, C.; Wagner, L.; Foster, J. Measuring Resilience in Electricity Generation: An Empirical Analysis Measuring Resilience in Electricity Generation: An Empirical Analysis. In Munich Personal RePEc Archive; University Library of Munich: Munich, Germany, 2016. [Google Scholar]
- Jesse, B.; Heinrichs, H.U.; Kuckshinrichs, W. Adapting the Theory of Resilience to Energy Systems: A Review and Outlook. Energy Sustain. Soc. 2019, 9, 27. [Google Scholar] [CrossRef]
- Schilling, T.; Wyss, R.; Binder, C.R. The Resilience of Sustainability Transitions. Sustainability 2018, 10, 4593. [Google Scholar] [CrossRef]
- Afgan, N.; Veziroglu, A. Sustainable Resilience of Hydrogen Energy System. Int. J. Hydrogen Energy 2012, 37, 5461–5467. [Google Scholar] [CrossRef]
- Gatto, A.; Drago, C. A Taxonomy of Energy Resilience. Energy Policy 2020, 136, 111007. [Google Scholar] [CrossRef]
- Roostaie, S.; Nawari, N.; Kibert, C.J. Sustainability and Resilience: A Review of Definitions, Relationships, and Their Integration into a Combined Building Assessment Framework. Build. Environ. 2019, 154, 132–144. [Google Scholar] [CrossRef]
- Grafakos, S. Integrated Decision Support for the Sustainability Assessment of Low Carbon Energy Options in Europe; Erasmus University Rotterdam: Rotterdam, The Netherlands, 2016.
- Yazdanie, M. Resilient Energy System Analysis and Planning Using Optimization Models. Energy Clim. Change 2023, 4, 100097. [Google Scholar] [CrossRef]
- Ala, A.; Simic, V.; Pamucar, D.; Jana, C. A Novel Neutrosophic-Based Multi-Objective Grey Wolf Optimizer for Ensuring the Security and Resilience of Sustainable Energy: A Case Study of Belgium. Sustain. Cities Soc. 2023, 96, 104709. [Google Scholar] [CrossRef]
- Amin, S.M.M.; Hasnat, A.; Hossain, N. Designing and Analysing a PV/Battery System via New Resilience Indicators. Sustainability 2023, 15, 10328. [Google Scholar] [CrossRef]
- Dashtpeyma, M.; Ghodsi, R. Enablers of Management System Resilience in Wind Power Plant. Int. J. Ambient. Energy 2022, 43, 8135–8151. [Google Scholar] [CrossRef]
- Mujjuni, F.; Betts, T.; To, L.S.; Blanchard, R.E. Resilience a Means to Development: A Resilience Assessment Framework and a Catalogue of Indicators. Renew. Sustain. Energy Rev. 2021, 152, 111684. [Google Scholar] [CrossRef]
- Lassio, J.G.; Magrini, A.; Castelo Branco, D. Life Cycle-Based Sustainability Indicators for Electricity Generation: A Systematic Review and a Proposal for Assessments in Brazil. J. Clean. Prod. 2021, 311, 127568. [Google Scholar] [CrossRef]
- Liu, G. Development of a General Sustainability Indicator for Renewable Energy Systems: A Review. Renew. Sustain. Energy Rev. 2014, 31, 611–621. [Google Scholar] [CrossRef]
- Martín-gamboa, M.; Iribarren, D.; García-gusano, D.; Dufour, J. A Review of Life-Cycle Approaches Coupled with Data Envelopment Analysis within Multi-Criteria Decision Analysis for Sustainability Assessment of Energy Systems. J. Clean. Prod. 2017, 150, 164–174. [Google Scholar] [CrossRef]
- Gasser, P.; Lustenberger, P.; Cinelli, M.; Kim, W.; Burgherr, P.; Hirschberg, S.; Stojadinovic, B.; Yin, T.; Burgherr, P.; Hirschberg, S.; et al. A Review on Resilience Assessment of Energy Systems. Sustain. Resilient Infrastruct. 2021, 6, 273–299. [Google Scholar] [CrossRef]
- Mola, M.; Feofilovs, M.; Romagnoli, F. Energy Resilience: Research Trends at Urban, Municipal and Country Levels. Energy Procedia 2018, 147, 104–113. [Google Scholar] [CrossRef]
- Moslehi, S.; Reddy, T.A. A New Quantitative Life Cycle Sustainability Assessment Framework: Application to Integrated Energy Systems. Appl. Energy 2019, 239, 482–493. [Google Scholar] [CrossRef]
- Khan, A.W.; Pakseresht, A.; Chua, C.; Yavari, A. Digital Twin Role for Sustainable and Resilient Renewable Power Plants: A Systematic Literature Review. Sustain. Energy Technol. Assess. 2025, 75, 104197. [Google Scholar] [CrossRef]
- Sesana, M.M.; Oro, P.D. Sustainability and Resilience Assessment Methods: A Literature Review to Support the Decarbonization Target for the Construction Sector. Energies 2024, 17, 1440. [Google Scholar] [CrossRef]
- IEA. Power Systems in Transition: Challenges and Opportunities Ahead for Electricity Security; IEA: Mexico City, Mexico, 2020. [Google Scholar] [CrossRef]
- UNESC. Economic and Social Council; UNESC: Paris, France, 2023; Volume 08192. [Google Scholar] [CrossRef]
- Dantas, T.E.T.; Soares, S.R. Systematic Literature Review on the Application of Life Cycle Sustainability Assessment in the Energy Sector; Springer: Dordrecht, The Netherlands, 2022; Volume 24. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, H.; Zhao, S. Assessment of Hydropower Sustainability: Review and Modeling. J. Clean. Prod. 2021, 321, 128898. [Google Scholar] [CrossRef]
- Ahmadi, S.; Saboohi, Y.; Vakili, A. Frameworks, Quantitative Indicators, Characters, and Modeling Approaches to Analysis of Energy System Resilience: A Review. Renew. Sustain. Energy Rev. 2021, 144, 110988. [Google Scholar] [CrossRef]
- Boche, A.; Foucher, C.; Villa, L.F.L. Understanding Microgrid Sustainability: A Systemic and Comprehensive Review. Shipp. World Shipbuild. 2022, 208, 2906. [Google Scholar] [CrossRef]
- Marchese, D.; Reynolds, E.; Bates, M.E.; Morgan, H.; Spierre, S.; Linkov, I. Resilience and Sustainability: Similarities and Differences in Environmental Management Applications. Sci. Total Environ. 2018, 613–614, 1275–1283. [Google Scholar] [CrossRef]
- Nik, V.M.; Perera, A.T.D.; Chen, D. Towards Climate Resilient Urban Energy Systems: A Review. Natl. Sci. Rev. 2020, 8, nwaa134. [Google Scholar] [CrossRef] [PubMed]
- Shafiei, K.; Zadeh, S.G.; Hagh, M.T. Robustness and Resilience of Energy Systems to Extreme Events: A Review of Assessment Methods and Strategies. Energy Strategy Rev. J. 2025, 58, 101660. [Google Scholar] [CrossRef]
- Amini, F.; Ghassemzadeh, S.; Rostami, N.; Tabar, V.S. Electrical Energy Systems Resilience: A Comprehensive Review on Definitions, Challenges, Enhancements and Future Proceedings. IET Renew. Power Gener. 2023, 17, 1835–1858. [Google Scholar] [CrossRef]
- Thygesen, J.; Agarwal, A. Key Criteria for Sustainable Wind Energy Planning—Lessons from an Institutional Perspective on the Impact Assessment Literature. Renew. Sustain. Energy Rev. 2014, 39, 1012–1023. [Google Scholar] [CrossRef]
- Emenike, S.N.; Falcone, G. A Review on Energy Supply Chain Resilience through Optimization. Renew. Sustain. Energy Rev. 2020, 134, 110088. [Google Scholar] [CrossRef]
- Vlachokostas, C.; Michailidou, A.V.; Achillas, C. Multi-Criteria Decision Analysis towards Promoting Waste-to-Energy Management Strategies: A Critical Review Unit of Alternative Waste Treatment. Renew. Sustain. Energy Rev. 2020, 138, 110563. [Google Scholar] [CrossRef]
- Negri, M.; Cagno, E.; Colicchia, C.; Sarkis, J. Integrating Sustainability and Resilience in the Supply Chain: A Systematic Literature Review and a Research Agenda. Bus. Strategy Environ. 2021, 30, 2858–2886. [Google Scholar] [CrossRef]
- Mardani, A.; Kazimieras, E.; Khalifah, Z.; Zakuan, N.; Jusoh, A.; Nor, K.; Khoshnoudi, M. A Review of Multi-Criteria Decision-Making Applications to Solve Energy Management Problems: Two Decades from 1995 to 2015. Renew. Sustain. Energy Rev. 2017, 71, 216–256. [Google Scholar] [CrossRef]
- Horschig, T.; Thrän, D. Are Decisions Well Supported for the Energy Transition? A Review on Modeling Approaches for Renewable Energy Policy Evaluation. Energy Sustain. Soc. 2017, 7, 5. [Google Scholar] [CrossRef]
- Kumar, A.; Sah, B.; Singh, A.R.; Deng, Y.; He, X.; Kumar, P. A Review of Multi Criteria Decision Making (MCDM) towards Sustainable Renewable Energy Development. Renew. Sustain. Energy Rev. 2022, 69, 596–609. [Google Scholar] [CrossRef]
- Jasiunas, J.; Lund, P.D.; Mikkola, J. Energy System Resilience—A Review. Renew. Sustain. Energy Rev. 2021, 150, 111476. [Google Scholar] [CrossRef]
- Aasa, O.P.; Phoya, S.; Monko, R.J. Enhancing Energy Transition Decision-Making through Resilience Integration: A Review. In Development and Investment in Infrastructure in Developing Countries: A 10-Year Reflection; CRC Press: Boca Raton, FL, USA, 2025; pp. 70–76. [Google Scholar] [CrossRef]
- Dashtpeyma, M.; Ghodsi, R. Developing the Resilient Solar Energy Management System: A Hybrid Qualitative-Quantitative Approach Qualitative-Quantitative Approach ABSTRACT. Int. J. Ambient. Energy 2021, 42, 1892–1911. [Google Scholar] [CrossRef]
- Mallidou, A.A. Mapping the Landscape of Knowledge Synthesis. Nurs. Manag. 2014, 21, 30–39. [Google Scholar] [CrossRef]
- Jansen, S. Bias within Systematic and Non—Systematic Literature Reviews: The Case of the Balanced Scorecard. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2017. [Google Scholar]
- López-Castro, L.F.; Solano-Charris, E.L. Integrating Resilience and Sustainability Criteria in the Supply. Sustainability 2021, 26, 10925. [Google Scholar] [CrossRef]
- Page, M.J.; Mckenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Denyer, D.; Tranfield, D. Producing a Systematic Review. In The Sage Handbook of Organizational Research Methods; Sage Publications Ltd.: Thousand Oaks, CA, USA, 2009; pp. 671–689. [Google Scholar]
- Steffen, B. Estimating the Cost of Capital for Renewable Energy Projects. Energy Econ. 2020, 88, 104783. [Google Scholar] [CrossRef]
- Yazdi, M.; Zarei, E.; Ghasemi, R.; Li, H. A Comprehensive Resilience Assessment Framework for Hydrogen Energy Infrastructure Development. Int. J. Hydrogen Energy 2024, 51, 928–947. [Google Scholar] [CrossRef]
- Qazi, A.; Hussain, F.; Rahim, N.A.B.D.; Member, S. Towards Sustainable Energy: A Systematic Review of Renewable Energy Sources, Technologies, and Public Opinions. IEEE Access 2019, 7, 63837–63851. [Google Scholar] [CrossRef]
- Ko, A.; Gillani, S. A Research Review and Taxonomy Development for Decision Support and Business Analytics Using Semantic Text Mining. Int. J. Inf. Technol. Decis. Mak. 2020, 19, 97–126. [Google Scholar] [CrossRef]
- Lokker, C.; McKibbon, K.A.; Colquhoun, H.; Hempel, S. A Scoping Review of Classification Schemes of Interventions to Promote and Integrate Evidence into Practice in Healthcare. Implement. Sci. 2015, 10, 27. [Google Scholar] [CrossRef]
- IRENA. Energy Taxonomy. Classfications for the Energy Transition; IRENA: Tarragona, Spain, 2024. [Google Scholar]
- Yue, C.; Liu, C.; Liou, E.M.L. A Transition toward a Sustainable Energy Future: Feasibility Assessment and Development Strategies of Wind Power in Taiwan. Energy Policy 2001, 29, 951–963. [Google Scholar] [CrossRef]
- Spalding-fecher, R. Indicators of Sustainability for the Energy Sector: A South African Case Study. Energy Sustain. Dev. 2003, 7, 35–49. [Google Scholar] [CrossRef]
- Herbert, A.; Azzaro-pantel, C.; Boulch, D.L. A Typology for World Electricity Mix: Application for Inventories in Consequential LCA (CLCA). Sustain. Prod. Consum. 2016, 8, 93–107. [Google Scholar] [CrossRef]
- Cano-andrade, S. Upper Level of a Sustainability Assessment Framework for Power System Planning. J. Energy Resour. Technol. 2017, 137, 041601. [Google Scholar] [CrossRef]
- Wang, C.-K.; Lee, C.-M.; Hong, Y.-R.; Cheng, K. Assessment of Energy Transition Policy in Taiwan—A View of Sustainable Development Perspectives. Perspect. Sustain. Dev. 2021, 14, 4402. [Google Scholar] [CrossRef]
- Odoi-yorke, F.; Abofra, N.; Kemausuor, F.; Odoi-yorke, F. Decision-Making Approach for Evaluating Suitable Hybrid Renewable Energy System for SMEs in Ghana. Int. J. Ambient. Energy 2022, 43, 7513–7530. [Google Scholar] [CrossRef]
- Pal, C.; Shankar, R. A Hierarchical Performance Evaluation Approach for the Sustainability of Smart Grid. Int. J. Energy Sect. Manag. 2023, 17, 569–594. [Google Scholar] [CrossRef]
- Wehbi, H. Powering the Future: An Integrated Framework for Clean Renewable Energy Transition. Sustainability 2024, 16, 5594. [Google Scholar] [CrossRef]
- Li, J.; Gallego-schmid, A.; Stamford, L. Integrated Sustainability Assessment of Repurposing Onshore Abandoned Wells for Geothermal Power Generation. Appl. Energy 2024, 359, 122670. [Google Scholar] [CrossRef]
- Hassan, Q.; Al-jiboory, A.K.; Zuhair, A.; Barakat, M.; Yahia, K.; Abdalrahman, M.; Algburi, S. Transitioning to Sustainable Economic Resilience through Renewable Energy and Green Hydrogen: The Case of Iraq. Unconv. Resour. 2025, 5, 100124. [Google Scholar] [CrossRef]
- Maaloum, V.; Bououbeid, E.M.; Ali, M.M.; Yetilmezsoy, K.; Rehman, S.; Christophe, M.; Mahmoud, A.K.; Makoui, S.; Samb, M.L.; Yahya, A.M. Techno-Economic Analysis of Combined Production of Wind Energy and Green Hydrogen on the Northern Coast of Mauritania. Sustainability 2024, 16, 8063. [Google Scholar] [CrossRef]
- Odoi-yorke, F.; Frimpong, T.; Chris, B.; Atepor, L. Techno-Economic Assessment of a Utility-Scale Wind Power Plant in Ghana. Energy Convers. Manag. X 2023, 18, 100375. [Google Scholar] [CrossRef]
- Teah, H.S.; Yang, Q.; Onuki, M.; Teah, H.Y. Incorporating External Effects into Project Sustainability Assessments : The Case of a Green Campus Initiative Based on a Solar PV System. Sustainability 2024, 16, 2449. [Google Scholar] [CrossRef]
- Phoumin, H.; Kimura, F.; Arima, J. ASEAN’ s Energy Transition towards Cleaner Energy System: Energy Modelling Scenarios and Policy Implications. Sustainability 2021, 13, 2819. [Google Scholar] [CrossRef]
- Dong, K.; Dong, X.; Jiang, Q.; Zhao, J. Assessing Energy Resilience and Its Greenhouse Effect: A Global Perspective. Energy Econ. 2021, 104, 105659. [Google Scholar] [CrossRef]
- González-Delgado, Á.D.; Vargas-Mira, A.; Zuluaga-García, C. Economic Evaluation and Technoeconomic Resilience Analysis of Two Routes for Hydrogen Production via Indirect Gasification in North Colombia. Sustainability 2023, 15, 16371. [Google Scholar] [CrossRef]
- Haro-baez, A.G.; Posso, E.; Rojas, S.; Arcos-aviles, D. Simplified Multi-Hazard Assessment to Foster Resilience for Sustainable Energy Infrastructure on Santa Cruz Island, Galapagos. Sustainability 2024, 17, 106. [Google Scholar] [CrossRef]
- Gautam, M.; Mcjunkin, T. A Resilient Integrated Resource Planning Framework for Transmission Systems : Analysis and Optimization. Sustainability 2024, 16, 2449. [Google Scholar] [CrossRef]
- Hafeznia, H.; Stojadinovic, B. Resilience-Based Decision Support System for Installing Standalone Solar Energy Systems to Improve Disaster Resilience of Rural Communities. Energy Strategy Rev. 2024, 54, 101489. [Google Scholar] [CrossRef]
- Grafakos, S.; Enseñado, E.M.; Flamos, A. Developing an Integrated Sustainability and Resilience Framework of Indicators for the Assessment of Low-Carbon Energy Technologies at the Local Level. Int. J. Sustain. Energy 2017, 36, 945–971. [Google Scholar] [CrossRef]
- Grafakos, S.; Flamos, A. Assessing Low-Carbon Energy Technologies against Sustainability and Resilience Criteria: Results of a European Experts Survey. Int. J. Sustain. Energy 2017, 36, 502–516. [Google Scholar] [CrossRef]
- Gholami, H. A Holistic Multi-Criteria Assessment of Solar Energy Utilization on Urban Surfaces. Energies 2024, 17, 5328. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, T.; Tian, F.; Teng, Y.; Yang, M. Hybrid Decision Support Framework for Energy Scheduling Using Stochastic Optimization and Cooperative Game Theory. Energies 2024, 17, 6386. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, T.; Tian, F.; Teng, Y.; Yang, M. Optimized Grid Partitioning and Scheduling in Multi-Energy Systems Using a Hybrid Decision-Making Approach. Energies 2024, 17, 3253. [Google Scholar] [CrossRef]
- Masood, T.; Israr, A.; Zubair, M.; Qazi, U.W.; Israr, A.; Zubair, M. Assessing Challenges to Sustainability and Resilience of Energy Supply Chain in Pakistan: A Developing Economy from Triple Bottom Line and UN SDGs’ Perspective. Int. J. Sustain. Energy 2023, 42, 268–288. [Google Scholar] [CrossRef]
- Younesi, A.; Wang, Z.; Siano, P. Enhancing the Resilience of Zero-Carbon Energy Communities: Leveraging Network Reconfiguration and Effective Load Carrying Capability Quantification. J. Clean. Prod. 2024, 434, 139794. [Google Scholar] [CrossRef]
- Jing, R.; Lin, Y.; Khanna, N.; Chen, X.; Wang, M.; Liu, J.; Lin, J. Balancing the Energy Trilemma in Energy System Planning of Coastal Cities. Appl. Energy 2021, 283, 116222. [Google Scholar] [CrossRef]
- Hasheminasab, H.; Gholipour, Y.; Streimikiene, D.; Hashemkhani, S. A Dynamic Sustainability Framework for Petroleum Refinery Projects with a Life Cycle Attitude. Sustain. Dev. 2020, 28, 1033–1048. [Google Scholar] [CrossRef]
- Kazimierczuk, K.; Henderson, C.; Duffy, K.; Hanif, S.; Bhattacharya, S.; Biswas, S.; Jacroux, E.; Preziuso, D.; Wu, D.; Bhatnagar, D.; et al. A Socio-Technical Assessment of Marine Renewable Energy Potential in Coastal Communities. Energy Res. Soc. Sci. 2023, 100, 103098. [Google Scholar] [CrossRef]
- Gruber, L.; Kockar, I.; Wogrin, S. Towards Resilient Energy Communities: Evaluating the Impact of Economic and Technical Optimization. Electr. Power Energy Syst. 2024, 155, 109592. [Google Scholar] [CrossRef]
- Atawi, I.E.; Abuelrub, A.; Al-Shetwi, A.Q.; Albalawi, O.H. Design of a Wind-PV System Integrated with a Hybrid Energy Storage System Considering Economic and Reliability Assessment. J. Energy Storage 2024, 81, 110405. [Google Scholar] [CrossRef]
- Adu-poku, A.; Koku, S.; Atta, G.; Edem, K.; John, J.; Messan, A.; Ikonne, O.; Kwarteng, W.; Kemausuor, F. Performance Assessment and Resilience of Solar Mini-Grids for Sustainable Energy Access in Ghana. Energy 2023, 285, 129431. [Google Scholar] [CrossRef]
- Islam, A.; Ali, M.M.N.; Mollick, T.; Islam, A.; Benitez, I.B.; Sidi, S.; Al, A.; Shahadat, M.; Lipu, H.; Flah, A. Assessing the Feasibility and Quality Performance of a Renewable Energy-Based Hybrid Microgrid for Electrification of Remote Communities. Energy Convers. Manag. X 2024, 23, 100674. [Google Scholar] [CrossRef]
- Babalola, S.O.; Nel, J.J.; Tshigo, V.; Daramola, M.O.; Iwarere, S.A. An Integrated Waste-to-Energy Approach: A Resilient Energy System Design for Sustainable Communities. Energy Convers. Manag. 2022, 258, 115551. [Google Scholar] [CrossRef]
- Eras-Almeida, A.A.; Egido-Aguilera, M.A.; Blechinger, P.; Berendes, S.; Caamaño, E.; García-Alcalde, E. Decarbonizing the Galapagos Islands: Techno-Economic Perspectives for the Hybrid Renewable Mini-Grid Baltra-Santa Cruz. Sustainability 2020, 12, 2282. [Google Scholar] [CrossRef]
- Ba-alawi, A.H.; Nguyen, H.; Aamer, H.; Yoo, C. Techno-Economic Risk-Constrained Optimization for Sustainable Green Hydrogen Energy Storage in Solar/Wind-Powered Reverse Osmosis Systems. J. Energy Storage 2024, 90, 111849. [Google Scholar] [CrossRef]
- Ba-alawi, A.H.; Nguyen, H.; Yoo, C. Coordinated Operation for a Resilient and Green Energy-Water Supply System: A Co-Optimization Approach with Flexible Strategies. Energy 2024, 304, 132138. [Google Scholar] [CrossRef]
- Castro, M.T.; Delina, L.L.; Esparcia, E.A.; Ocon, J.D. Storm Hardening and Insuring Energy Systems in Typhoon-Prone Regions: A Techno-Economic Analysis of Hybrid Renewable Energy Systems in the Philippines’ Busuanga Island Cluster. Energy Strategy Rev. 2023, 50, 101188. [Google Scholar] [CrossRef]
- Araria, R.; Guemmour, M.B.; Negadi, K.; Berkani, A.; Marignetti, F.; Bey, M. Design and Evaluation of a Hybrid Offshore Wave Energy Converter and Floating Photovoltaic System for the Region of Oran, Algeria. Electrotech. Complexes Syst. 2024, 6, 11–18. [Google Scholar] [CrossRef]
- Dongyang, C.; Jiewen, Z.; Xiaolong, H. Dynamic Adaptation in Power Transmission: Integrating Robust Optimization with Online Learning for Renewable Uncertainties. Front. Energy Res. 2024, 12, 1483170. [Google Scholar] [CrossRef]
- Tangi, M.; Amaranto, A. Designing Integrated and Resilient Multi-Energy Systems via Multi-Objective Optimization and Scenario Analysis. Appl. Energy 2025, 382, 125281. [Google Scholar] [CrossRef]
- Elkholy, M.H.; Elymany, M.; Ueda, S.; Tahirou, I.; Fedayi, H.; Senjyu, T. Maximizing Microgrid Resilience: A Two-Stage AI-Enhanced System with an Integrated Backup System Using a Novel Hybrid Optimization Algorithm Loss of Power Supply Probability. J. Clean. Prod. 2024, 446, 141281. [Google Scholar] [CrossRef]
- Irshad, A.S.; Samadi, W.K.; Fazli, A.M.; Noori, A.G.; Amin, A.S.; Zakir, M.N.; Bakhtyal, I.A.; Karimi, B.A.; Ludin, G.A.; Senjyu, T. Resilience and Reliable Integration of PV-Wind and Hydropower Based 100% Hybrid Renewable Energy System without Any Energy Storage System for Inaccessible Area Electri Fi Cation. Energy 2023, 282, 128823. [Google Scholar] [CrossRef]
- Ali, T.; Reaz, M.; Aghaloo, K.; Wang, K. Planning Off-Grid Hybrid Energy System Using Techno-Economic Optimization and Wins in League Theory-Based Multi-Criteria Decision-Making Method in the Wetland Areas of Developing Countries. Energy Convers. Manag. 2024, 313, 118587. [Google Scholar] [CrossRef]
- Shobayo, L.O.; Dao, C.D. Smart Integration of Renewable Energy Sources Employing Setpoint Frequency Control—An Analysis on the Grid Cost of Balancing. Sustainability 2024, 16, 9906. [Google Scholar] [CrossRef]
- Beriro, D.; Nathanail, J.; Salazar, J.; Kingdon, A.; Marchant, A.; Richardson, S.; Gillet, A.; Rautenberg, S.; Hammond, E.; Beardmore, J.; et al. A Decision Support System to Assess the Feasibility of Onshore Renewable Energy Infrastructure. Renew. Sustain. Energy Rev. 2022, 168, 112771. [Google Scholar] [CrossRef]
- Xue, K.; Wang, J.; Zhang, S.; Ou, K.; Chen, W.; Zhao, Q.; Hu, G.; Sun, Z. Design Optimization of Community Energy Systems Based on Dual Uncertainties of Meteorology and Load for Robustness Improvement. Renew. Energy 2024, 232, 120956. [Google Scholar] [CrossRef]
- Amin, S.M.M.; Hossain, N.; Shahadat, M.; Lipu, H.; Urooj, S.; Akter, A. Development of a PV/Battery Micro-Grid for a Data Center in Bangladesh: Resilience and Sustainability Analysis. Sustainability 2023, 15, 15691. [Google Scholar] [CrossRef]
- Janta, P.; Leeraphun, N.; Thapmanee, K.; Niyomna, P. Energy Resilience Assessment: Incorporating Consideration of Recoverability and Adaptability in Risk Assessment of Energy Infrastructure. Energy Sustain. Dev. 2024, 81, 101506. [Google Scholar] [CrossRef]
- Murshed, M.; Chamana, M.; Erich, K.; Schmitt, K.; Pol, S.; Adeyanju, O.; Bayne, S. Sizing PV and BESS for Grid-Connected Microgrid Resilience: A Data-Driven Hybrid Optimization Approach. Energies 2023, 16, 7300. [Google Scholar] [CrossRef]
- Kharrazi, A.; Sato, M.; Yarime, M.; Nakayama, H.; Yu, Y. Examining the Resilience of National Energy Systems: Measurements of Diversity in Production-Based and Consumption-Based Electricity in the Globalization of Trade Networks. Energy Policy 2015, 87, 455–464. [Google Scholar] [CrossRef]
- Sharmin, F.; Dhakal, S. A Composite Energy Resilience Performance Indicator for Bangladesh. Energy Sources Part B Econ. Plan. Policy 2022, 17, 2149901. [Google Scholar] [CrossRef]
- Tayyab, Q.; Qani, N.A.; Elkholy, M.H.; Ahmed, S.; Yona, A.; Senjyu, T. Techno-Economic Configuration of an Optimized Resident Microgrid: A Case Study for Afghanistan. Renew. Energy 2024, 224, 120097. [Google Scholar] [CrossRef]
- Pérez-Denicia, E.; Fernández-Luqueño, F.; Vilariño-Ayala, D. Suitability Assessment for Electricity Generation through Renewable Sources: Towards Sustainable Energy Production. CT&F—Cienc. Tecnol. Y Futuro 2021, 11, 109–122. [Google Scholar] [CrossRef]
- Sawhney, A.; Delfino, F.; Bonvini, B.; Bracco, S. EMS for Active and Reactive Power Management in a Polygeneration Microgrid Feeding a PED. Energies 2024, 17, 610. [Google Scholar] [CrossRef]
- He, J.; Tan, Q.; Lv, H. Data-Driven Climate Resilience Assessment for Distributed Energy Systems Using Diffusion Transformer and Polynomial Expansions. Appl. Energy 2025, 380, 124957. [Google Scholar] [CrossRef]
- Misra, S.; Maheshwari, A.; Gudi, R.D. Optimal Energy Storage System Design for Addressing Uncertainty Issues in Integration of Supply and Demand-Side Management Approaches. Renew. Energy Focus 2024, 49, 100552. [Google Scholar] [CrossRef]
- Zhao, Z.; Holland, N.; Nelson, J. Optimizing Smart Grid Performance: A Stochastic Approach to Renewable Energy Integration. Sustain. Cities Soc. 2024, 111, 105533. [Google Scholar] [CrossRef]
- Miao, H.; Yu, Y.; Kharrazi, A.; Ma, T. Multi-Criteria Decision Analysis for the Planning of Island Microgrid System: A Case Study of Yongxing Island, China. Energy 2023, 284, 129264. [Google Scholar] [CrossRef]
- Grafakos, S.; Flamos, A.; Enseñado, E.M. Preferences Matter: A Constructive Approach to Incorporating Local Stakeholders’ Preferences in the Sustainability Evaluation of Energy Technologies. Sustainability 2015, 7, 10922–10960. [Google Scholar] [CrossRef]
- Zaheb, H.; Ahmadi, M.; Rahmany, N.A.; Sayed, M.; Danish, S. Optimal Grid Flexibility Assessment for Integration of Variable Renewable-Based Electricity Generation. Sustainability 2023, 15, 15032. [Google Scholar] [CrossRef]
- Ruffing, K. Sustainablity Indicators: A Scientific Assessment; Hák, T., Moldan, B., Dahl, A.L., Eds.; IslandPress: Washington, DC, USA, 2007; pp. 211–222. [Google Scholar]
- Elkholy, M.H.; Senjyu, T.; Elymany, M.; Gamil, M.M.; Talaat, M.; Masrur, H.; Ueda, S.; Lotfy, M.E. Optimal Resilient Operation and Sustainable Power Management within an Autonomous Residential Microgrid Using African Vultures Optimization Algorithm. Renew. Energy 2024, 224, 120247. [Google Scholar] [CrossRef]
- Gul, E.; Baldinelli, G.; Wang, J.; Bartocci, P.; Shamim, T. Artificial Intelligence Based Forecasting and Optimization Model for Concentrated Solar Power System with Thermal Energy Storage. Appl. Energy 2025, 382, 125210. [Google Scholar] [CrossRef]
- Kochskämper, E.; Glass, L.; Haupt, W.; Malekpour, S.; Grainger-brown, J. Resilience and the Sustainable Development Goals: A Scrutiny of Urban Strategies in the 100 Resilient Cities Initiative. J. Environ. Plan. Manag. 2024, 68, 1691–1717. [Google Scholar] [CrossRef]
- Olivier, P.; Flour, S.; Bokhoree, C. Sustainability Assessment Methodologies: Implications and Challenges for SIDS. Ecologies 2021, 2, 285–304. [Google Scholar] [CrossRef]
- Jenkins, W. Sustainability Theory. In Perspectives on Sociological Theories, Methodological Debates and Organizational Sociology; Berkshire Encyclopedia of Sustainability: The Spirit of Sustainability; River Publishers: Aalborg, Denmark, 2009; pp. 380–384. [Google Scholar] [CrossRef]
- Weaver, P.M.; Jordan, A. What Roles Are There for Sustainability Assessment in the Policy Process? Int. J. Innov. Sustain. Dev. 2008, 3, 9–32. [Google Scholar] [CrossRef]
- United Nations. Building Resilient Energy Systems: Actions for Achieving Greater Energy Security, Affordability and Net-Zero in the UNECE Region; United Nations: Geneva, Switzerland, 2022. [Google Scholar]
- Schwerhoff, G.; Sy, M. Developing Africa’ s Energy Mix. Clim. Policy 2018, 19, 108–124. [Google Scholar] [CrossRef]
- Bamber, P.; Guinn, A.; Gereffi, G.; Hull, A.; Muhimpundu, G.; Norbu, T. Burundi in the Energy Global Value Chain Penny Bamber; Duke University, Center on Globalization, Governance & Competitiveness: Durham, NC, USA, 2015. [Google Scholar] [CrossRef]
- Oyewunmi, T. Resilience, Reliability and Gas to Power Systems in the USA: An Energy Policy Outlook in the Era of Decarbonization. J. World Energy Law Bus. 2021, 14, 257–276. [Google Scholar] [CrossRef]
- Aasa, O.; Adepoju, T.; Olutoye, A.A. Sustainable Development through Green Innovative Banking 3p’s. Int. J. Innov. Res. Dev. 2016, 5, 100–112. [Google Scholar]
- Büyük€ozkan, G.; Karabulut, Y. Energy Project Performance Evaluation with Sustainability Perspective. Energy 2017, 119, 549–560. [Google Scholar] [CrossRef]
- Guarini, M.R.; Battisti, F.; Chiovitti, A. A Methodology for the Selection of Multi-Criteria Decision Analysis Methods in Real Estate and Land Management Processes. Sustainability 2018, 10, 507. [Google Scholar] [CrossRef]
- Cherp, A.; Vinichenko, V.; Jewell, J.; Brutschin, E.; Sovacool, B. Energy Research & Social Science Integrating Techno-Economic, Socio-Technical and Political Perspectives on National Energy Transitions: A Meta-Theoretical Framework. Energy Res. Soc. Sci. 2018, 37, 175–190. [Google Scholar] [CrossRef]
Author | Objective | Scope of Review | Method | System Addressed |
---|---|---|---|---|
[7] | Resilience/ sustainability | Conceptualization | In-depth review of existing frameworks | Energy systems |
[23] | Sustainability | Conceptualization | Mini review/qualitative | Some aspect of energy involved |
[25] | Resilience perspective in sustainability | Conceptualization | Systematic | Transitions (energy, food transportation) |
[28] | Resilience | Conceptualization | Bibliometric and descriptive analysis | Energy system |
[30] | Resilience | Conceptualization and method | In-depth analysis | Energy systems |
[41] | Sustainability | Method | Bibliometric and frequency analysis | Electricity generation |
[42] | Sustainability | Method | Comparative analysis | Renewable energy systems |
[43] | Sustainability | Method | Descriptive and in-depth analysis | Energy systems |
[45] | Resilience | Conceptualization and method | Bibliometric analysis | Electrical infrastructural system |
[47] | Resilience, Sustainability | Conceptualization | Systematic | Renewable power plants (digital twin role) |
[48] | Resilience and sustainability | Methods | systematic | Construction sector |
[51] | Sustainability | Method | Bibliometric, publication trends, and comparative analysis | Energy sector |
[52] | Sustainability | Method | Comparative analysis | Hydropower |
[53] | Resilience | Method | In-depth/comparative analysis | Energy system |
[54] | Sustainability (or resilience) | Conceptualization and challenges | Systematic and comprehensive review | Micro-grid energy system |
[55] | Resilience and sustainability | Conceptualization | Systematic | Environmental management |
[56] | Resilience | Overview of concepts and methods | Extensive review | Energy system |
[57] | Robustness and resilience | Conceptualization, Methods and strategies | Extensive review | Energy system |
[58] | Resilience | Conceptualization | Comprehensive review | Electrical energy system |
[59] | Sustainability | Conceptualization and method | Qualitative analysis, comparative analysis | Wind power |
[60] | Resilience | Conceptualization and method | In-depth analysis | Natural gas supply chain |
[61] | Sustainability | Method | Critical review | Waste-to-energy |
[63] | Sustainability | Method | systematic reviews and meta-analyses | Energy management |
[64] | Sustainability | Method | Descriptive and in-depth analysis | Energy system |
[64] | Resilience | Overview and method | In-depth/comparative analysis | Energy systems |
[65] | Sustainability | Method | Extensive review | Energy system |
[66] | Resilience | Conceptualization | In-depth analysis | Energy system |
[67] | Resilience | Conceptualization | Systematic review, qualitative analysis | Energy system |
TITLE-ABS-KEY(sustainab* AND resilien* AND energy AND assess* OR framework OR evalut* OR criteria OR indicator*) AND PUBYEAR > 2000 AND PUBYEAR < 2024 AND (LIMIT-TO (SUBJAREA,”ENER”)) AND (LIMIT-TO (LANGUAGE,”English”)) AND (EXCLUDE (EXACTKEYWORD,”Blockchain”) OR EXCLUDE (EXACTKEYWORD,”Architectural Design”) OR EXCLUDE (EXACTKEYWORD,”Information Management”) OR EXCLUDE (EXACTKEYWORD,”Air Quality”) OR EXCLUDE (EXACTKEYWORD,”Urban Resilience”) OR EXCLUDE (EXACTKEYWORD,”Urbanization”) OR EXCLUDE (EXACTKEYWORD,”Biodiversity”) OR EXCLUDE (EXACTKEYWORD,”Land Use”) OR EXCLUDE (EXACTKEYWORD,”Waste Management”) OR EXCLUDE (EXACTKEYWORD,”Building”) OR EXCLUDE (EXACTKEYWORD,”Food Supply”) OR EXCLUDE (EXACTKEYWORD,”Food Production”) OR EXCLUDE (EXACTKEYWORD,”Buildings”) OR EXCLUDE (EXACTKEYWORD,”Cooling Systems”) OR EXCLUDE (EXACTKEYWORD,”Competition”)) AND (LIMIT-TO (SRCTYPE,”j”)) AND (LIMIT-TO (DOCTYPE,”ar”)) |
Article | Economic | Environmental | Social | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EC | 1 | 2 | 3 | 4 | 5 | 6 | 7 | EV | 1 | 2 | 3 | 4 | 5 | 6 | SC | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
P1 | X | X | X | |||||||||||||||||||||
P2 | X | X | X | |||||||||||||||||||||
P3 | X | X | X | X | X | X | X | |||||||||||||||||
P4 | X | X | ||||||||||||||||||||||
P5 | X | X | X | X | X | X | ||||||||||||||||||
P6 | X | X | X | |||||||||||||||||||||
P7 | X | X | X | X | ||||||||||||||||||||
P8 | X | |||||||||||||||||||||||
P9 | X | |||||||||||||||||||||||
P10 | X | X | ||||||||||||||||||||||
P11 | X | X | ||||||||||||||||||||||
P12 | ||||||||||||||||||||||||
P13 | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | ||||||||
P14 | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | ||||||||
P15 | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | ||||||||
P16 | X | X | X | X | X | X | X | X | X | X | X | X | X | |||||||||||
P17 | X | X | ||||||||||||||||||||||
P18 | ||||||||||||||||||||||||
P19 | X | |||||||||||||||||||||||
P20 | X | X | X | X | X | X | ||||||||||||||||||
P21 | X | X | X | X | ||||||||||||||||||||
P22 | X | X | X | X | X | X | X | |||||||||||||||||
P23 | X | X | X | X | X | |||||||||||||||||||
P24 | X | X | ||||||||||||||||||||||
P25 | X | X | X | X | X | X | X | X | ||||||||||||||||
P26 | X | X | ||||||||||||||||||||||
P27 | X | X | X | X | X | X | X | X | X | X | ||||||||||||||
P28 | X | X | ||||||||||||||||||||||
P29 | X | X | X | X | X | X | ||||||||||||||||||
P30 | X | X | X | X | X | |||||||||||||||||||
P31 | X | X | X | X | ||||||||||||||||||||
P32 | X | X | ||||||||||||||||||||||
P33 | X | X | ||||||||||||||||||||||
P34 | X | X | X | X | X | X | ||||||||||||||||||
P35 | X | X | ||||||||||||||||||||||
P36 | X | X | X | X | X | X | X | X | X | X | ||||||||||||||
P37 | X | X | X | X | X | X | X | X | ||||||||||||||||
P38 | X | X | ||||||||||||||||||||||
P39 | X | |||||||||||||||||||||||
P40 | X | X | X | X | ||||||||||||||||||||
P41 | X | X | X | X | X | |||||||||||||||||||
P42 | X | X | X | X | X | X | X | |||||||||||||||||
P43 | X | X | X | |||||||||||||||||||||
P44 | X | X | X | X | X | |||||||||||||||||||
P45 | X | X | ||||||||||||||||||||||
P46 | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | |||||||||
P47 | X | X | X | |||||||||||||||||||||
P48 | X | |||||||||||||||||||||||
P49 | X | X | X | X | X | X | X | X | X | |||||||||||||||
P50 | X | |||||||||||||||||||||||
P51 | X | X | ||||||||||||||||||||||
P52 | X | X | ||||||||||||||||||||||
P53 | X | X | X | X | ||||||||||||||||||||
P54 | X | X | X | X | X | X | ||||||||||||||||||
P55 | ||||||||||||||||||||||||
P56 | X | X | X | |||||||||||||||||||||
P57 | X | X | X | X | X | X | X | X | X | X | X | X | X | |||||||||||
P58 | X | X | X | X | X | X | X | X | X | X | X | X | X | |||||||||||
P59 | X | X | X | X | X | X | X | X | X | X | X | X | X | |||||||||||
P60 | X | X | X | X | X | X | ||||||||||||||||||
P61 | X | X | X | |||||||||||||||||||||
P62 | X | X | X | X | X | X | X | |||||||||||||||||
P63 | X | X | ||||||||||||||||||||||
P64 | X | X | X | X | X | |||||||||||||||||||
P65 | X | X | X | X | X | X | ||||||||||||||||||
P66 | X | X | X | X | X | X | ||||||||||||||||||
P67 | X | X | X | X | X | X | ||||||||||||||||||
P68 | X | |||||||||||||||||||||||
P69 | X | X | ||||||||||||||||||||||
P70 | X | X | X | X | X | X | X | X | X | X | X | X | ||||||||||||
P71 | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | ||||||
P72 | X | X | ||||||||||||||||||||||
P73 | X | X | X | |||||||||||||||||||||
P74 | ||||||||||||||||||||||||
P75 | X | X | X | X | ||||||||||||||||||||
Freq. | 60 | 31 | 15 | 2 | 28 | 5 | 20 | 11 | 58 | 37 | 5 | 4 | 6 | 13 | 12 | 26 | 7 | 14 | 6 | 4 | 3 | 6 | 7 | 5 |
% | 80.0 | 41.3 | 20.0 | 2.7 | 37.3 | 6.7 | 26.7 | 14.7 | 77.3 | 49.3 | 6.7 | 5.3 | 8.0 | 18.7 | 16.0 | 34.7 | 9.3 | 18.7 | 8.0 | 5.3 | 4.0 | 8.0 | 9.3 | 6.7 |
Article | Technical | Technological | Institutional/Political | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TC | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | TE | 1 | 2 | 3 | 4 | 5 | 6 | 7 | IP | 1 | 2 | 3 | 4 | 5 | 6 | |
P1 | X | |||||||||||||||||||||||
P2 | X | |||||||||||||||||||||||
P3 | X | X | X | X | X | X | ||||||||||||||||||
P4 | X | X | X | X | ||||||||||||||||||||
P5 | X | X | X | X | X | X | ||||||||||||||||||
P6 | X | X | X | X | X | X | X | |||||||||||||||||
P7 | ||||||||||||||||||||||||
P8 | X | X | X | |||||||||||||||||||||
P9 | X | X | X | |||||||||||||||||||||
P10 | ||||||||||||||||||||||||
P11 | X | X | ||||||||||||||||||||||
P12 | ||||||||||||||||||||||||
P13 | ||||||||||||||||||||||||
P14 | X | X | X | X | X | |||||||||||||||||||
P15 | X | X | X | X | X | |||||||||||||||||||
P16 | X | X | ||||||||||||||||||||||
P17 | ||||||||||||||||||||||||
P18 | ||||||||||||||||||||||||
P19 | ||||||||||||||||||||||||
P20 | ||||||||||||||||||||||||
P21 | X | X | X | X | ||||||||||||||||||||
P22 | X | X | X | X | X | X | X | X | X | X | ||||||||||||||
P23 | X | X | X | X | X | X | ||||||||||||||||||
P24 | X | |||||||||||||||||||||||
P25 | X | X | ||||||||||||||||||||||
P26 | ||||||||||||||||||||||||
P27 | ||||||||||||||||||||||||
P28 | X | X | X | |||||||||||||||||||||
P29 | X | X | ||||||||||||||||||||||
P30 | ||||||||||||||||||||||||
P31 | X | X | ||||||||||||||||||||||
P32 | X | X | X | |||||||||||||||||||||
P33 | X | X | ||||||||||||||||||||||
P34 | X | |||||||||||||||||||||||
P35 | X | X | X | X | ||||||||||||||||||||
P36 | X | X | X | X | ||||||||||||||||||||
P37 | X | X | X | X | ||||||||||||||||||||
P38 | X | |||||||||||||||||||||||
P39 | X | X | ||||||||||||||||||||||
P40 | X | X | X | X | X | |||||||||||||||||||
P41 | X | X | ||||||||||||||||||||||
P42 | X | X | ||||||||||||||||||||||
P43 | ||||||||||||||||||||||||
P44 | X | X | ||||||||||||||||||||||
P45 | ||||||||||||||||||||||||
P46 | X | X | X | X | X | X | X | |||||||||||||||||
P47 | X | |||||||||||||||||||||||
P48 | ||||||||||||||||||||||||
P49 | X | X | X | X | ||||||||||||||||||||
P50 | X | |||||||||||||||||||||||
P51 | X | X | X | |||||||||||||||||||||
P52 | X | X | X | X | X | X | X | X | ||||||||||||||||
P53 | ||||||||||||||||||||||||
P54 | X | X | ||||||||||||||||||||||
P55 | ||||||||||||||||||||||||
P56 | ||||||||||||||||||||||||
P57 | X | X | ||||||||||||||||||||||
P58 | X | X | X | X | X | X | X | X | X | X | ||||||||||||||
P59 | X | X | X | X | X | X | X | X | X | X | ||||||||||||||
P60 | X | |||||||||||||||||||||||
P61 | ||||||||||||||||||||||||
P62 | X | |||||||||||||||||||||||
P63 | X | X | X | X | X | |||||||||||||||||||
P64 | X | X | ||||||||||||||||||||||
P65 | ||||||||||||||||||||||||
P66 | X | X | ||||||||||||||||||||||
P67 | X | |||||||||||||||||||||||
P68 | ||||||||||||||||||||||||
P69 | X | X | ||||||||||||||||||||||
P70 | X | X | X | X | X | |||||||||||||||||||
P71 | X | X | X | X | X | X | X | X | X | X | X | |||||||||||||
P72 | X | |||||||||||||||||||||||
P73 | ||||||||||||||||||||||||
P74 | X | X | X | |||||||||||||||||||||
P75 | ||||||||||||||||||||||||
Freq. | 41 | 7 | 13 | 3 | 9 | 7 | 7 | 8 | 2 | 24 | 7 | 8 | 3 | 4 | 5 | 6 | 2 | 13 | 2 | 2 | 4 | 5 | 4 | 3 |
% | 54.7 | 9.3 | 17.3 | 4.0 | 12.0 | 9.3 | 9.3 | 10.7 | 2.7 | 32.0 | 9.3 | 10.7 | 4.0 | 5.3 | 6.7 | 8.0 | 2.7 | 17.3 | 2.7 | 2.7 | 5.3 | 6.7 | 5.3 | 4.0 |
Implicit | Explicit | Decentralized | Centralized | |
Implicit | 1 | |||
Explicit | 0.779 | 1 | ||
Decentralized | 0.980 | 0.885 | 1 | |
Centralized | 0.974 | 0.840 | 0.759 | 1 |
Renewables | Cleaner Non-Renewables | Non-Renewables | Storage | Others | Multi-Energy | Technology mix | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Biomass | Geothermal | Thermal | Hydro | Solar | Tide | Wave | Wind | Hydrogen | Nuclear/ Uranium | Gas | Oil | Diesel | Gasoline | Coal | |||||
P1 | X | N | N | ||||||||||||||||
P2 | X | X | X | X | X | X | X | X | Y | B | |||||||||
P3 | X | X | X | X | Y | R | |||||||||||||
P4 | X | Y | R | ||||||||||||||||
P5 | X | X | X | Y | B | ||||||||||||||
P6 | X | X | X | X | Y | R | |||||||||||||
P7 | X | X | X | X | X | X | Y | B | |||||||||||
P8 | X | N | R | ||||||||||||||||
P9 | - | - | |||||||||||||||||
P10 | - | - | |||||||||||||||||
P11 | X | X | X | X | Y | B, F | |||||||||||||
P12 | - | - | |||||||||||||||||
P13 | X | X | X | X | X | X | X | Y | B | ||||||||||
P14 | X | X | X | X | X | X | X | Y | B | ||||||||||
P15 | X | X | X | X | X | X | X | Y | B | ||||||||||
P16 | X | N | N | ||||||||||||||||
P17 | X | X | X | X | X | X | X | X | X | X | Y | B | |||||||
P18 | X | X | X | X | X | Y | B | ||||||||||||
P19 | X | X | X | X | X | X | X | X | X | X | Y | B | |||||||
P20 | CHP | X | X | Y | B | ||||||||||||||
P21 | - | - | |||||||||||||||||
P22 | X | X | Y | B | |||||||||||||||
P23 | X | N | R | ||||||||||||||||
P24* | - | ||||||||||||||||||
P25 | X | X | X | Y | R | ||||||||||||||
P26 | X | X | X | X | X | X | X | X | X | X | Y | B | |||||||
P27 | X | N | R | ||||||||||||||||
P28 | X | X | Y | N | |||||||||||||||
P29 | - | - | |||||||||||||||||
P30 | X | N | R | ||||||||||||||||
P31 | X | N | N | ||||||||||||||||
P32 | X | X | X | X | X | X | X | Y | B | ||||||||||
P33 | - | - | |||||||||||||||||
P34 | X | N | R | ||||||||||||||||
P35 | X | X | X | Y | B | ||||||||||||||
P36 | X | X | X | X | X | Li-Ion | Y | D | |||||||||||
P37 | X | X | X | Y | D | ||||||||||||||
P38 | X | X | Y | R | |||||||||||||||
P39 | X | X | Y | R | |||||||||||||||
P40 | X | X | Y | R | |||||||||||||||
P41 | X | X | X | Y | C | ||||||||||||||
P42 | X | X | Lithium | Y | E | ||||||||||||||
P43* | - | - | |||||||||||||||||
P44 | X | X | Y | R | |||||||||||||||
P45* | - | - | |||||||||||||||||
P46 | X | N | R | ||||||||||||||||
P47 | X | N | N | ||||||||||||||||
P48 | X | X | X | Elect. Veh. | Y | R | |||||||||||||
P49 | X | X | X | Y | R | ||||||||||||||
P50 | X | N | R | ||||||||||||||||
P51 | X | X | Y | R | |||||||||||||||
P52 | X | X | X | Y | B, F | ||||||||||||||
P53 | Generators | ||||||||||||||||||
P54 | X | X | X | Y | R | ||||||||||||||
P55 | X | N | R | ||||||||||||||||
P56 | X | X | X | X | Y | C | |||||||||||||
P57 | X | N | R | ||||||||||||||||
P58 | Strategies | ||||||||||||||||||
P59 | X | X | X | Y | B | ||||||||||||||
P60 | X | X | Y | B, F | |||||||||||||||
P61 | X | N | N | ||||||||||||||||
P62 | X | X | X | X | X | Y | E | ||||||||||||
P63 | X | X | Lithium, Cryogenic | Y | E, G | ||||||||||||||
P64 | X | X | Y | C | |||||||||||||||
P65 | CHP | BESS | Y | C | |||||||||||||||
P66 | X | X | X | Y | B | ||||||||||||||
P67 | X | X | X | Y | B, F | ||||||||||||||
P68 | X | X | X | BESS | Y | E | |||||||||||||
P69 | X | Heat Pump | X | X | X | X | BESS | Y | E | ||||||||||
P70 | X | X | X | BESS | Y | E | |||||||||||||
P71* | - | - | |||||||||||||||||
P72 | X | X | Y | B, F | |||||||||||||||
P73 | X | X | BESS | Y | E | ||||||||||||||
P74 | X | X | X | X | X | Y | E | ||||||||||||
P75 | X | X | X | Y | B, F | ||||||||||||||
Freq. | 15 | 6 | 5 | 10 | 39 | 17 | 5 | 24 | 17 | 9 | 11 | 7 | 16 | 2 | 11 | 16 | |||
% | 20. | 8.0 | 6.7 | 13.3 | 52.0 | 22.7 | 6.7 | 32.0 | 22.7 | 12.0 | 14.7 | 9.3 | 21.3 | 2.7 | 14.7 | 21.3 |
Article | GE | TR | ST | DS | CN | ES | Others | N of C |
---|---|---|---|---|---|---|---|---|
P1 | X | X | X | X | X | 5 | ||
P2 | X | ES | ||||||
P3 | X | 1 | ||||||
P4 | X | 1 | ||||||
P5 | X | X | 2 | |||||
P6 | X | X | X | 3 | ||||
P7 | X | 1 | ||||||
P8 | X | 1 | ||||||
P9 | X | 1 | ||||||
P10 | X | ES | ||||||
P11 | X | X | 2 | |||||
P12 | Sector | 1 | ||||||
P13 | X | 1 | ||||||
P14 | X | 1 | ||||||
P15 | X | 1 | ||||||
P16 | X | X | X | X | X | 5 | ||
P17 | X | 1 | ||||||
P18 | X | ES | ||||||
P19 | X | ES | ||||||
P20 | X | X | X | 3 | ||||
P21 | X | X | X | 3 | ||||
P22 | X | 1 | ||||||
P23 | X | 1 | ||||||
P24 | X | X | X | Demand | 4 | |||
P25 | X | 1 | ||||||
P26 | X | ES | ||||||
P27 | X | 1 | ||||||
P28 | X | X | X | X | 4 | |||
P29 | X | ES | ||||||
P30 | X | ES | ||||||
P31 | X | 1 | ||||||
P32 | X | ES | ||||||
P33 | X | ES | ||||||
P34 | X | 1 | ||||||
P35 | X | 1 | ||||||
P36 | X | ES | ||||||
P37 | X | X | 2 | |||||
P38 | X | 1 | ||||||
P39 | X | 1 | ||||||
P40 | X | X | 2 | |||||
P41 | X | X | 2 | |||||
P41 | X | 1 | ||||||
P43 | X | 1 | ||||||
P44 | X | 1 | ||||||
P45 | X | 1 | ||||||
P46 | X | 1 | ||||||
P47 | X | 1 | ||||||
P48 | X | 1 | ||||||
P49 | X | X | 1 | |||||
P50 | X | X | 2 | |||||
P51 | Supply | 1 | ||||||
P52 | X | 1 | ||||||
P53 | X | ES | ||||||
P54 | X | ES | ||||||
P55 | X | ES | ||||||
P56 | X | X | 2 | |||||
P57 | X | 1 | ||||||
P58 | X | ES | ||||||
P59 | X | ES | ||||||
P60 | X | 1 | ||||||
P61 | Supply | 1 | ||||||
P62 | X | 1 | ||||||
P63 | X | Supply, demand | 2 | |||||
P64 | X | 1 | ||||||
P65 | X | ES | ||||||
P66 | X | 1 | ||||||
P67 | X | 1 | ||||||
P68 | X | 1 | ||||||
P69 | X | |||||||
P70 | X | |||||||
P71 | X | ES | ||||||
P72 | X | ES | ||||||
P73 | X | 1 | ||||||
P74 | X | X | 2 | |||||
P75 | Supply | 1 | ||||||
Count | 48 | 11 | 7 | 10 | 5 | 18 | ||
% | 64.0 | 14.6 | 9.3 | 13.3 | 6.7 | 24.0 |
Scope | Number of Studies |
---|---|
National | 14 |
Local/community | 24 |
Power plant/energy generation/ project/specific system | 9 |
Global | 3 |
City/urban/municipal/county/sub-national/regional | 11 |
Organizational | 4 |
Sub- continent or continent | 2 |
General | 2 |
Not clear/stated | 6 |
Time Horizon | Frequency | Entity | Frequency |
---|---|---|---|
Current (C) | 9 | Project-based | 6 |
Future (F) | 52 | Technology-based | 65 |
Current–Future (C,F) | 14 | General | 4 |
Total | 75 | 75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aasa, O.P.; Phoya, S.; Monko, R.J.; Musonda, I. Integrating Sustainability and Resilience Objectives for Energy Decisions: A Systematic Review. Resources 2025, 14, 97. https://doi.org/10.3390/resources14060097
Aasa OP, Phoya S, Monko RJ, Musonda I. Integrating Sustainability and Resilience Objectives for Energy Decisions: A Systematic Review. Resources. 2025; 14(6):97. https://doi.org/10.3390/resources14060097
Chicago/Turabian StyleAasa, Olaoluwa Paul, Sarah Phoya, Rehema Joseph Monko, and Innocent Musonda. 2025. "Integrating Sustainability and Resilience Objectives for Energy Decisions: A Systematic Review" Resources 14, no. 6: 97. https://doi.org/10.3390/resources14060097
APA StyleAasa, O. P., Phoya, S., Monko, R. J., & Musonda, I. (2025). Integrating Sustainability and Resilience Objectives for Energy Decisions: A Systematic Review. Resources, 14(6), 97. https://doi.org/10.3390/resources14060097