The Distribution Characteristics and Influencing Factors of Global Armed Conflict Clusters
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Armed Conflict Dataset
2.1.2. Covariates Dataset
- Conflict-related variables
- 2.
- Socio-economic variables
- 3.
- Geographical environment
- 4.
- Climatic variability
2.2. Extraction of Armed Conflict Clusters and Feature Calculation
2.2.1. Construction of Armed Conflict Event Network Based on Spatio-Temporal Proximity
2.2.2. Detection of Armed Conflict Clusters
2.2.3. Calculation of Armed Conflict Cluster Indicators
- Number of conflicts—operationalized as the number of conflict events between conflict cell-years within a given cluster during a given year .This indicator allows us to measure the total number of conflict events that occurred in all cells in a particular conflict cluster in a given year, which indicates the frequency of conflict events in a conflict cluster and provides a visual indication of the intensity of conflict in a conflict area.
- Average intensity—operationalized as the average degree between conflict cell-years within a given cluster during a given year . This variable captures the average activity level of a given conflict node (cell-year).This indicator captures how destabilizing it is to be around a particular conflict cell in a given year, which actually reflects the likelihood that conflict will spread to other parts of the cluster in space and time, i.e., how unstable inside a conflict cluster.
- Dispersion—operationalized as the number of active cell-month (i.e., that experienced conflict events) during a given year within a cluster .The indicator reflects how many cell-months experiencing conflict in a given year, which captures the influence extent of conflict within a conflict cluster.
- Intra-connectivity—operationalized as the number of links between conflict cell-years in each cluster . i.e., the number of edges in the cluster.This indicator allows us to measure the level of activity within a conflict cluster, i.e., how many cells in a given conflict cluster are in conflict at the same time period in a given year. The higher the intra-connectivity, the more overall conflict the corresponding cluster experiences in time and space, and the easier it is for conflicts to move and spread across locations.
2.2.4. Analysis of Influencing Factors of Armed Conflict Clusters
3. Results
3.1. The Spatio-Temporal Evolution Characteristics of Armed Conflict Clusters
3.2. Modeling Results of Random Forest Regression
3.3. The Influencing Factors of the Armed Conflict Cluster Indicators
3.4. Analysis of Spatial Heterogeneity of Covariate Effects
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GDP | Gross domestic product |
UCDP | Uppsala Conflict Data Program |
WOPR | WorldPop Open Population Repository |
SEDAC | Socioeconomic Data and Applications Center |
GERG | Geo-referencing of ethnic groups |
NDVI | Normalized Difference Vegetation Index |
DAAC | Distributed Active Archive Center |
AVHRR | Advanced Very-High-Resolution Radiometer |
GRIP | Global Roads Inventory Project |
CI | Critical infrastructure |
GMBA | Global Mountain Biodiversity Assessment |
NCAS | National Centre for Atmospheric Sciences |
GHCN | Global Historical Climatology Network |
RF | Random Forest regression |
SHAP | SHapley Additive Explanations |
SPI | Standardized precipitation index |
STI | Standardized temperature index |
Appendix A
Method | Resolution | Communities | Min | Mean | Median | Max | Modularity |
---|---|---|---|---|---|---|---|
Greedy Modularity Optimization | 0 | 98 | 1 | 55.86 | 4 | 1234 | 0.15 |
1 | 107 | 1 | 51.16 | 4 | 808 | 0.28 | |
10 | 181 | 1 | 30.24 | 2 | 538 | 0.12 | |
100 | 357 | 1 | 15.33 | 1 | 277 | 0.07 | |
Louvain Community Detection | 0 | 225 | 1 | 24.33 | 6 | 226 | 0.18 |
1 | 228 | 1 | 24.01 | 6 | 226 | 0.27 | |
10 | 289 | 1 | 18.94 | 3 | 278 | 0.12 | |
100 | 458 | 1 | 11.95 | 2 | 213 | 0.07 | |
Asynchronous Label Propagation | - | 610 | 1 | 8.97 | 1 | 228 | 0.15 |
References
- Kurecic, P. Geoeconomic and Geopolitical Conflicts: Outcomes of the Geopolitical Economy in a Contemporary World. World Rev. Political Econ. 2015, 6, 522–543. [Google Scholar] [CrossRef]
- Sundberg, R.; Melander, E. Introducing the UCDP Georeferenced Event Dataset. J. Peace Res. 2013, 50, 523–532. [Google Scholar] [CrossRef]
- Li, A.; Yang, Y.; Li, M.; Niu, L. Research on the Spatiotemporal Evolution Characteristics of Armed Conflicts in Africa from 1989 to 2021. World Reg. Stud. 2024, 33, 18. [Google Scholar] [CrossRef]
- Ugwu, C.N.; Ugwu, O.P.-C.; Alum, E.U.; Eze, V.H.U.; Basajja, M.; Ugwu, J.N.; Ogenyi, F.C.; Ejemot-Nwadiaro, R.I.; Okon, M.B.; Egba, S.I.; et al. Sustainable Development Goals (SDGs) and Resilient Healthcare Systems: Addressing Medicine and Public Health Challenges in Conflict Zones. Medicine 2025, 104, e41535. [Google Scholar] [CrossRef] [PubMed]
- Collier, P. On the Economic Consequences of Civil War. Oxf. Econ. Pap. 1999, 51, 168–183. [Google Scholar] [CrossRef]
- Rajmil, D.; Morales, L. The Role of Geopolitical Risk in Conflict Analysis: Critical Insights. Peace Rev. 2023, 35, 603–613. [Google Scholar] [CrossRef]
- Camargo, G.; Sampayo, A.M.; Peña Galindo, A.; Escobedo, F.J.; Carriazo, F.; Feged-Rivadeneira, A. Exploring the Dynamics of Migration, Armed Conflict, Urbanization, and Anthropogenic Change in Colombia. PLoS ONE 2020, 15, e0242266. [Google Scholar] [CrossRef]
- Cederman, L.-E.; Weidmann, N.B.; Gleditsch, K.S. Horizontal Inequalities and Ethnonationalist Civil War: A Global Comparison. Am. Political Sci. Rev. 2011, 105, 478–495. [Google Scholar] [CrossRef]
- Stephenne, N. Analyzing Spatial Drivers in Quantitative Conflict Studies: The Potential and Challenges of Geographic Information Systems. Int. Stud. Rev. 2009, 11, 502–522. [Google Scholar] [CrossRef]
- Cantillo, T.; Garza, N. Armed Conflict, Institutions and Deforestation: A Dynamic Spatiotemporal Analysis of Colombia 2000–2018. World Dev. 2022, 160, 106041. [Google Scholar] [CrossRef]
- Johnson, D.; Toft, M. Grounds for War: The Evolution of Territorial Conflict. Int. Secur. 2013, 38, 7–38. [Google Scholar] [CrossRef]
- Raleigh, C. Political Hierarchies and Landscapes of Conflict across Africa. Political Geogr. 2014, 42, 92–103. [Google Scholar] [CrossRef]
- Ge, Q.; Hao, M.; Ding, F.; Jiang, D.; Scheffran, J.; Helman, D.; Ide, T. Modelling Armed Conflict Risk under Climate Change with Machine Learning and Time-Series Data. Nat. Commun. 2022, 13, 2839. [Google Scholar] [CrossRef]
- Wang, Q.; Hao, M.; Helman, D.; Ding, F.; Jiang, D.; Xie, X.; Chen, S.; Ma, T. Quantifying the Influence of Climate Variability on Armed Conflict in Africa, 2000–2015. Environ. Dev. Sustain. 2023, 25, 9289–9306. [Google Scholar] [CrossRef]
- Madu, I.A.; Nwankwo, C.F. Spatial Pattern of Climate Change and Farmer–Herder Conflict Vulnerabilities in Nigeria. GeoJournal 2021, 86, 2691–2707. [Google Scholar] [CrossRef]
- Ide, T. Rise or Recede? How Climate Disasters Affect Armed Conflict Intensity. Int. Secur. 2023, 47, 50–78. [Google Scholar] [CrossRef]
- Scartozzi, C.M. Reframing Climate-Induced Socio-Environmental Conflicts: A Systematic Review. Int. Stud. Rev. 2021, 23, 696–725. [Google Scholar] [CrossRef]
- Collier, P. Greed and Grievance in Civil War. Oxf. Econ. Pap. 2004, 56, 563–595. [Google Scholar] [CrossRef]
- Hegre, H.; Ellingsen, T.; Gates, S.; Gleditsch, N.P. Toward a Democratic Civil Peace? Democracy, Political Change, and Civil War, 1816–1992. Am. Political Sci. Rev. 2001, 95, 33–48. [Google Scholar] [CrossRef]
- Nordås, R.; Gleditsch, N.P. Climate Change and Conflict. Political Geogr. 2007, 26, 627–638. [Google Scholar] [CrossRef]
- Tollefsen, A.F.; Strand, H.; Buhaug, H. PRIO-GRID: A Unified Spatial Data Structure. J. Peace Res. 2012, 49, 363–374. [Google Scholar] [CrossRef]
- Mjelva, M.B. Rainfall Variability and Violent, State-Based Conflict; Department of Political Science University of Oslo: Oslo, Norway, 2020. [Google Scholar]
- Hegre, H.; Karlsen, J.; Nygård, H.M.; Strand, H.; Urdal, H. Predicting Armed Conflict, 2010–20501. Int. Stud. Q. 2013, 57, 250–270. [Google Scholar] [CrossRef]
- Trinn, C.; Wencker, T. Integrating the Quantitative Research on the Onset and Incidence of Violent Intrastate Conflicts. Int. Stud. Rev. 2021, 23, 115–139. [Google Scholar] [CrossRef]
- Buhaug, H.; Lujala, P. Accounting for Scale: Measuring Geography in Quantitative Studies of Civil War. Political Geogr. 2005, 24, 399–418. [Google Scholar] [CrossRef]
- Guha-Sapir, D.; Van Panhuis, W.G. Conflict-related Mortality: An Analysis of 37 Datasets. Disasters 2004, 28, 418–428. [Google Scholar] [CrossRef]
- Schutte, S.; Weidmann, N.B. Diffusion Patterns of Violence in Civil Wars. Political Geogr. 2011, 30, 143–152. [Google Scholar] [CrossRef]
- Kumarihamy, R.M.K.; Shahnawaz, A.S.L.; Tripathi, T.N.K. Spatio-Temporal Patterns of Armed Conflicts in Sri Lanka: 1989–2016. Trans. Inst. Indian Geogr. 2020, 42, 47. [Google Scholar]
- Maswanganye, M. Spatial and Temporal Patterns of Conflict Events in Africa: An Exploratory Analysis; University of the Witwatersrand: Johannesburg, South Africa, 2018. [Google Scholar]
- Kibris, A. The Geo-Temporal Evolution of Violence in Civil Conflicts: A Micro Analysis of Conflict Diffusion on a New Event Data Set. J. Peace Res. 2021, 58, 885–899. [Google Scholar] [CrossRef]
- Tadesse, H. Modelling Conflict Dynamics: Evidence from Africa: What Do the Data Show via Spatiotemporal Global ACLED Dataset? Appl. Spat. Anal. Policy 2023, 16, 1541–1559. [Google Scholar] [CrossRef]
- Oliveros, D.A.V.; Koren, O. Measuring Spatio-Temporal Civil War Dimensions Using Community-Based Dynamic Network Representation (CoDNet). IEEE Trans. Comput. Soc. Syst. 2023, 11, 1506–1516. [Google Scholar] [CrossRef]
- Buhaug, H.; Gleditsch, K.S. Contagion or Confusion? Why Conflicts Cluster in Space. Int. Stud. Q. 2008, 52, 215–233. [Google Scholar] [CrossRef]
- Masrur, A.; Yu, M.; Mitra, P.; Peuquet, D.; Taylor, A. Interpretable Machine Learning for Analysing Heterogeneous Drivers of Geographic Events in Space-Time. Int. J. Geogr. Inf. Sci. 2021, 36, 692–719. [Google Scholar] [CrossRef]
- Hao, M.; Ding, F.; Xie, X.; Fu, J.; Qian, Y.; Ide, T.; Maystadt, J.-F.; Chen, S.; Ge, Q.; Jiang, D. Varying Climatic-Social-Geographical Patterns Shape the Conflict Risk at Regional and Global Scales. Humanit. Soc. Sci. Commun. 2022, 9, 276. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Zhang, Y.; Kong, X.; Jing, Y.; Cai, E.; Zhang, L.; Liu, Y.; Wang, Z.; Liu, Y. Spatial Patterns and Driving Forces of Conflicts among the Three Land Management Red Lines in China: A Case Study of the Wuhan Urban Development Area. Sustainability 2019, 11, 2025. [Google Scholar] [CrossRef]
- Cappelli, F.; Castronuovo, G.; Grimaldi, S.; Telesca, V. Random Forest and Feature Importance Measures for Discriminating the Most Influential Environmental Factors in Predicting Cardiovascular and Respiratory Diseases. Int. J. Environ. Res. Public Health 2024, 21, 867. [Google Scholar] [CrossRef]
- Burke, M.; Hsiang, S.M.; Miguel, E. Climate and Conflict. Annu. Rev. Econ. 2015, 7, 577–617. [Google Scholar] [CrossRef]
- Hegre, H.; Allansson, M.; Basedau, M.; Colaresi, M.; Croicu, M.; Fjelde, H.; Hoyles, F.; Hultman, L.; Högbladh, S.; Jansen, R.; et al. ViEWS: A Political Violence Early-Warning System. J. Peace Res. 2019, 56, 155–174. [Google Scholar] [CrossRef]
- Besley, T.; Reynal-Querol, M. The Legacy of Historical Conflict: Evidence from Africa. Am. Polit. Sci. Rev. 2014, 108, 319–336. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Liu, Y. Global 1 Km × 1 Km Gridded Revised Real Gross Domestic Product and Electricity Consumption during 1992–2019 Based on Calibrated Nighttime Light Data. Sci. Data 2022, 9, 202. [Google Scholar] [CrossRef]
- Goldstone, J.A. Population and Security: How Demographic Change Can Lead to Violent Conflict. J. Int. Aff. 2002, 56, 3–21. [Google Scholar]
- WorldPop. Global 1km Population. Available online: https://hub.worldpop.org/project/categories?id=3 (accessed on 3 June 2025).
- Garry, S.; Checchi, F. Armed Conflict and Public Health: Into the 21st Century. J. Public Health 2020, 42, e287–e298. [Google Scholar] [CrossRef]
- Yuan, B.; Wang, Z.; Li, J. Social Vulnerability and Infant Mortality in Space Dimension: An Investigation of the World’s Most Underdeveloped West Africa Coastal Area. Int. J. Hum. Rights Healthc. 2020, 13, 239–248. [Google Scholar] [CrossRef]
- Earth Science Data Systems, N. SEDAC|NASA Earthdata. Available online: https://www.earthdata.nasa.gov/centers/sedac-daac (accessed on 28 April 2025).
- Bleaney, M.; Dimico, A. Ethnic Diversity and Conflict. J. Institutional Econ. 2017, 13, 357–378. [Google Scholar] [CrossRef]
- Montalvo, J.G.; Reynal-Querol, M. Ethnic Polarization, Potential Conflict, and Civil Wars. Am. Econ. Rev. 2005, 95, 796–816. [Google Scholar] [CrossRef]
- Weidmann, N.B.; Rød, J.K.; Cederman, L.-E. Representing Ethnic Groups in Space: A New Dataset. J. Peace Res. 2010, 47, 491–499. [Google Scholar] [CrossRef]
- Le Billon, P. Resources and Armed Conflicts. Adelphi Pap. 2005, 45, 29–49. [Google Scholar] [CrossRef]
- Maus, V.; Giljum, S.; da Silva, D.M.; Gutschlhofer, J.; da Rosa, R.P.; Luckeneder, S.; Gass, S.L.B.; Lieber, M.; McCallum, I. An Update on Global Mining Land Use. Sci. Data 2022, 9, 433. [Google Scholar] [CrossRef]
- Eastin, J. Fuel to the Fire: Natural Disasters and the Duration of Civil Conflict. Int. Interact. 2016, 42, 322–349. [Google Scholar] [CrossRef]
- Nel, P.; Righarts, M. Natural Disasters and the Risk of Violent Civil Conflict. Int. Stud. Q. 2008, 52, 159–185. [Google Scholar] [CrossRef]
- Agwe, J.N.; Arnold, M.; Buys, P.; Chen, R.S.; Deichmann, U.K.; Dilley, M.; Kjevstad, O.; Lerner-Lam, A.L.; Lyon, B.; Yetman, G. Natural Disaster Hotspots: A Global Risk Analysis; World Bank: Washington, DC, USA, 2005. [Google Scholar]
- Meier, P.; Bond, D.; Bond, J. Environmental Influences on Pastoral Conflict in the Horn of Africa. Political Geogr. 2007, 26, 716–735. [Google Scholar] [CrossRef]
- Pinzon, J.E.; Pak, E.W.; Tucker, C.J.; Bhatt, U.S.; Frost, G.V.; Macander, M.J. Vegetation CollectionGlobal Vegetation Greenness (NDVI) from AVHRR GIMMS-3G+, 1981–2022. 2023. Available online: https://daac.ornl.gov/VEGETATION/guides/Global_Veg_Greenness_GIMMS_3G.html (accessed on 3 June 2025).
- Zhukov, Y.M. Roads and the Diffusion of Insurgent Violence: The Logistics of Conflict in Russia’s North Caucasus. Political Geogr. 2012, 31, 144–156. [Google Scholar] [CrossRef]
- Meijer, J.R.; Huijbregts, M.A.J.; Schotten, K.C.G.J.; Schipper, A.M. Global Patterns of Current and Future Road Infrastructure. Environ. Res. Lett. 2018, 13, 064006. [Google Scholar] [CrossRef]
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global Land Use Changes Are Four Times Greater than Previously Estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef]
- Nirandjan, S.; Koks, E.E.; Ward, P.J.; Aerts, J.C.J.H. A Spatially-Explicit Harmonized Global Dataset of Critical Infrastructure. Sci. Data 2022, 9, 150. [Google Scholar] [CrossRef]
- Carter, D.B.; Shaver, A.C.; Wright, A.L. Places to Hide: Terrain, Ethnicity, and Civil Conflict. J. Politics 2019, 81, 1446–1465. [Google Scholar] [CrossRef]
- Snethlage, M.A.; Geschke, J.; Ranipeta, A.; Jetz, W.; Yoccoz, N.G.; Körner, C.; Spehn, E.M.; Fischer, M.; Urbach, D. A Hierarchical Inventory of the World’s Mountains for Global Comparative Mountain Science. Sci. Data 2022, 9, 149. [Google Scholar] [CrossRef]
- Hendrix, C.S.; Salehyan, I. Climate Change, Rainfall, and Social Conflict in Africa. J. Peace Res. 2012, 49, 35–50. [Google Scholar] [CrossRef]
- van Weezel, S. On Climate and Conflict: Precipitation Decline and Communal Conflict in Ethiopia and Kenya. J. Peace Res. 2019, 56, 514–528. [Google Scholar] [CrossRef]
- Habibi, N. Conflict in Ethiopia: The Impact of Precipitation and Its Transmission Mechanism; HiCN Working Papers; Households in Conflict Network: Berlin, Germany, 2017; No 248. [Google Scholar]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS Monthly High-Resolution Gridded Multivariate Climate Dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef]
- Breckner, M.; Sunde, U. Temperature Extremes, Global Warming, and Armed Conflict: New Insights from High Resolution Data. World Dev. 2019, 123, 104624. [Google Scholar] [CrossRef]
- Guo, Y.; Gao, Y.; He, C.; Zhu, Y.; Zhou, L.; Kan, H.; Chen, R. Short-Term High Temperature May Increase the Incidence Risk of Collective Conflicts: A Case-Crossover Study in the Greater Middle East. Sci. Total Environ. 2024, 915, 170105. [Google Scholar] [CrossRef]
- Helman, D.; Zaitchik, B.F. Temperature Anomalies Affect Violent Conflicts in African and Middle Eastern Warm Regions. Glob. Environ. Chang. 2020, 63, 102118. [Google Scholar] [CrossRef]
- Hsiang, S.M.; Burke, M.; Miguel, E. Quantifying the Influence of Climate on Human Conflict. Science 2013, 341, 1235367. [Google Scholar] [CrossRef]
- Fan, Y.; Van Den Dool, H. A Global Monthly Land Surface Air Temperature Analysis for 1948–Present. J. Geophys. Res. 2008, 113, D01103. [Google Scholar] [CrossRef]
- Basnet, S. Analysis of Social Unrest Events Using Spatio-Temporal Data Clustering and Agent-Based Modelling. Department of Computer Science and Engineering: Dissertations, Theses, and Student Research. Master’s Thesis, University of Nebraska-Lincoln, Lincoln, NE, USA, 2019. [Google Scholar]
- Sehgal, G.; Sharma, K.; Chatterjee, A.; Chakraborti, A. Spatio-Temporal Networks of Social Conflicts: Analysis and Modeling. In Proceedings of the 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Barcelona, Spain, 28–31 August 2018; IEEE Press: Piscataway, NJ, USA, 2018; pp. 740–743. [Google Scholar]
- Wu, J. Analysis and Spatio-Temporal Simulation of Diffusion Characteristics of Geo-Conflict Events. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2024. [Google Scholar]
- Lee, E.D.; Daniels, B.C.; Myers, C.R.; Krakauer, D.C.; Flack, J.C. Scaling Theory of Armed-Conflict Avalanches. Phys. Rev. E 2020, 102, 042312. [Google Scholar] [CrossRef]
- Raleigh, C.; Hegre, H. Population Size, Concentration, and Civil War. A Geographically Disaggregated Analysis. Political Geogr. 2009, 28, 224–238. [Google Scholar] [CrossRef]
- Blondel, V.D.; Guillaume, J.-L.; Lambiotte, R.; Lefebvre, E. Fast Unfolding of Communities in Large Networks. J. Stat. Mech. 2008, 2008, P10008. [Google Scholar] [CrossRef]
- Dugué, N.; Perez, A. Directed Louvain: Maximizing Modularity in Directed Networks; Université d’Orléans: Orléans, France, 2015. [Google Scholar]
- Traag, V.A.; Waltman, L.; van Eck, N.J. From Louvain to Leiden: Guaranteeing Well-Connected Communities. Sci. Rep. 2019, 9, 5233. [Google Scholar] [CrossRef]
- Singha, S.P.; Hossain, M.M.; Rahman, M.A.; Sharmin, N. Investigation of Graph-Based Clustering Approaches along with Graph Neural Networks for Modeling Armed Conflict in Bangladesh. Int. J. Data Sci. 2024, 18, 187–203. [Google Scholar] [CrossRef]
- Oh, W.; Muneepeerakul, R.; Rubenstein, D.; Levin, S. Emergent Network Patterns of Internal Displacement in Somalia Driven by Natural Disasters and Conflicts. Glob. Environ. Chang. 2024, 84, 102793. [Google Scholar] [CrossRef]
- Yue, H.; Chen, J. Interpretable Spatial Machine Learning for Understanding Spatial Heterogeneity in Factors Affecting Street Theft Crime. Appl. Geogr. 2025, 175, 103503. [Google Scholar] [CrossRef]
- Oshiro, T.M.; Perez, P.S.; Baranauskas, J.A. How Many Trees in a Random Forest? In Proceedings of the Machine Learning and Data Mining in Pattern Recognition; Perner, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 154–168. [Google Scholar]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 4768–4777. [Google Scholar]
- Matsuo, T.; Schmidt, T.S. Managing Tradeoffs in Green Industrial Policies: The Role of Renewable Energy Policy Design. World Dev. 2019, 122, 11–26. [Google Scholar] [CrossRef]
- Ahram, A.I. War and Conflict in the Middle East and North Africa; John Wiley & Sons: Hoboken, NJ, USA, 2020; ISBN 978-1-5095-3284-1. [Google Scholar]
- Richani, N. The Political Economy of Violence: The War-System in Colombia. J. Interam. Stud. World Aff. 1997, 39, 37–81. [Google Scholar] [CrossRef]
- Brown, O.; Hammill, A.; McLeman, R. Climate Change as the “New” Security Threat: Implications for Africa. Int. Aff. 2007, 83, 1141–1154. [Google Scholar] [CrossRef]
- Walter, B.F. Why Bad Governance Leads to Repeat Civil War. J. Confl. Resolut. 2015, 59, 1242–1272. [Google Scholar] [CrossRef]
- Walter, B.F. Does Conflict Beget Conflict? Explaining Recurring Civil War. J. Peace Res. 2004, 41, 371–388. [Google Scholar] [CrossRef]
- Collier, P.; Hoeffler, A.; Söderbom, M. On the Duration of Civil War. J. Peace Res. 2004, 41, 253–273. [Google Scholar] [CrossRef]
- Buhaug, H.; Rød, J.K. Local Determinants of African Civil Wars, 1970–2001. Political Geogr. 2006, 25, 315–335. [Google Scholar] [CrossRef]
- Mach, K.J.; Kraan, C.M.; Adger, W.N.; Buhaug, H.; Burke, M.; Fearon, J.D.; Field, C.B.; Hendrix, C.S.; Maystadt, J.-F.; O’Loughlin, J.; et al. Climate as a Risk Factor for Armed Conflict. Nature 2019, 571, 193–197. [Google Scholar] [CrossRef]
- Stewart, F. Horizontal Inequalities and Conflict: An Introduction and Some Hypotheses. In Horizontal Inequalities and Conflict: Understanding Group Violence in Multiethnic Societies; Stewart, F., Ed.; Palgrave Macmillan: London, UK, 2008; pp. 3–24. ISBN 978-0-230-58272-9. [Google Scholar]
- Fearon, J.D.; Laitin, D.D. Ethnicity, Insurgency, and Civil War. Am. Political Sci. Rev. 2003, 97, 75–90. [Google Scholar] [CrossRef]
- Burke, M.B.; Miguel, E.; Satyanath, S.; Dykema, J.A.; Lobell, D.B. Warming Increases the Risk of Civil War in Africa. Proc. Natl. Acad. Sci. USA 2009, 106, 20670–20674. [Google Scholar] [CrossRef]
- Burke, M.B.; Miguel, E.; Satyanath, S.; Dykema, J.A.; Lobell, D.B. Climate Robustly Linked to African Civil War. Proc. Natl. Acad. Sci. USA 2010, 107, E185. [Google Scholar] [CrossRef]
- Miguel, E.; Satyanath, S.; Sergenti, E. Economic Shocks and Civil Conflict: An Instrumental Variables Approach. J. Political Econ. 2004, 112, 725–753. [Google Scholar] [CrossRef]
- Raleigh, C.; Kniveton, D. Come Rain or Shine: An Analysis of Conflict and Climate Variability in East Africa. J. Peace Res. 2012, 49, 51–64. [Google Scholar] [CrossRef]
- Theisen, O.M. Climate Clashes? Weather Variability, Land Pressure, and Organized Violence in Kenya, 1989–2004. J. Peace Res. 2012, 49, 81–96. [Google Scholar] [CrossRef]
- Selby, J.; Hoffmann, C. (Eds.) Rethinking Climate Change, Conflict and Security; Routledge: London, UK, 2017; ISBN 978-1-315-69023-0. [Google Scholar]
- Schleussner, C.-F.; Donges, J.F.; Donner, R.V.; Schellnhuber, H.J. Armed-Conflict Risks Enhanced by Climate-Related Disasters in Ethnically Fractionalized Countries. Proc. Natl. Acad. Sci. USA 2016, 113, 9216–9221. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, M.; Ma, S.; Jiang, D.; Ding, F.; Chen, S.; Zhuo, J.; Wu, G.; Dong, J.; Wu, J. The Distribution Characteristics and Influencing Factors of Global Armed Conflict Clusters. Systems 2025, 13, 670. https://doi.org/10.3390/systems13080670
Hao M, Ma S, Jiang D, Ding F, Chen S, Zhuo J, Wu G, Dong J, Wu J. The Distribution Characteristics and Influencing Factors of Global Armed Conflict Clusters. Systems. 2025; 13(8):670. https://doi.org/10.3390/systems13080670
Chicago/Turabian StyleHao, Mengmeng, Shijia Ma, Dong Jiang, Fangyu Ding, Shuai Chen, Jun Zhuo, Genan Wu, Jiping Dong, and Jiajie Wu. 2025. "The Distribution Characteristics and Influencing Factors of Global Armed Conflict Clusters" Systems 13, no. 8: 670. https://doi.org/10.3390/systems13080670
APA StyleHao, M., Ma, S., Jiang, D., Ding, F., Chen, S., Zhuo, J., Wu, G., Dong, J., & Wu, J. (2025). The Distribution Characteristics and Influencing Factors of Global Armed Conflict Clusters. Systems, 13(8), 670. https://doi.org/10.3390/systems13080670