N-Doping/KOH Synergy in Waste Moss Biochar for Geosmin Removal in Aquaculture Water: Elucidating Surface Functionalization and Activation Mechanisms
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of the N-Doped Hydrochar
2.3. Characterization Methods for Biochar
2.4. Adsorption Experiments of GSM on Hydrochar
2.5. Data Processing and Statistical Analysis
3. Results and Discussion
3.1. RSM for Selecting the Optimal KNBC
3.2. Characterization of Biochar
3.2.1. Elemental Analysis
3.2.2. Textural Properties
3.2.3. Evolution of the Functional Groups and Properties
3.3. GSM Adsorption Ability of N-Doped Hydrochar
3.3.1. Effect of the Hydrochar Content
3.3.2. Effect of pH and Natural Organic Matter
3.3.3. Adsorption Kinetics
3.3.4. Adsorption Isotherms
3.3.5. Adsorption Thermodynamics
3.4. Regeneration and Practical Application
3.5. Adsorption Mechanism
3.5.1. Role of Pore Structure
3.5.2. Role of Surface Functional Groups
3.5.3. Role of KOH Activation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BC | Unmodified moss biochar |
NBC | N-doped moss biochar |
KNBC | KOH-activated N-doped moss biochar |
References
- Zhao, H.-X.; He, H.; Zeng, C.; Zhang, T.-Y.; Hu, C.-Y.; Pan, R.; Xu, M.-Y.; Tang, Y.-L.; Xu, B. Overlooked Role of Fungi in Drinking Water Taste and Odor Issues. Environ. Sci. Technol. 2024, 58, 17817–17827. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.; Liang, J.; Hong, H.; Luo, Y.; Li, B.; Tan, Y. From formation to solutions: Off-flavors and innovative removal strategies for farmed freshwater fish. Trends Food Sci. Technol. 2024, 144, 104318. [Google Scholar] [CrossRef]
- Peng, D.; Zhou, G.; An, K.; Guo, W.; Yang, T.; Kong, W.; Shen, B.; Wang, X.; Lyu, H.; Ma, J. Critical review on the adsorption of taste and odor compounds by activated carbon: Influencing factors, modifications methods, mechanism. Chem. Eng. J. 2025, 507, 160677. [Google Scholar] [CrossRef]
- Liu, F.; Wang, Q.; Zietzschmann, F.; Yang, F.; Nie, S.; Zhang, J.; Yang, M.; Yu, J. Competition & UV254 projection in odorants vs natural organic matter adsorption onto activated carbon surfaces: Is the chemistry right? Water Res. 2025, 268, 122764. [Google Scholar] [CrossRef]
- Bong, T.; Kang, J.-K.; Yargeau, V.; Nam, H.-L.; Lee, S.-H.; Choi, J.-W.; Kim, S.-B.; Park, J.-A. Geosmin and 2-methylisoborneol adsorption using different carbon materials: Isotherm, kinetic, multiple linear regression, and deep neural network modeling using a real drinking water source. J. Clean. Prod. 2021, 314, 127967. [Google Scholar] [CrossRef]
- Fotiou, T.; Triantis, T.M.; Kaloudis, T.; Hiskia, A. Evaluation of the photocatalytic activity of TiO2 based catalysts for the degradation and mineralization of cyanobacterial toxins and water off-odor compounds under UV-A, solar and visible light. Chem. Eng. J. 2015, 261, 17–26. [Google Scholar] [CrossRef]
- Karimpour Zahraei, S.; Salemi, A.; Schmidt, T.C. Sample preparation for determination of water taste and odor compounds: A review. Trends Environ. Anal. Chem. 2021, 32, e00149. [Google Scholar] [CrossRef]
- Zhao, Z.; Huang, X.; Zhang, Z.; Pang, H.; Wang, X.; Li, P.; Li, C.; Lu, J. Removal efficiency and mechanism of geosmin by modified micro-nano bubbles in drinking water treatment process. J. Water Process Eng. 2024, 60, 105125. [Google Scholar] [CrossRef]
- Zamyadi, A.; Henderson, R.K.; Stuetz, R.; Newcombe, G.; Newtown, K.; Gladman, B. Cyanobacterial management in full-scale water treatment and recycling processes: Reactive dosing following intensive monitoring. Environ. Sci. Water Res. Technol. 2016, 2, 362–375. [Google Scholar] [CrossRef]
- Zamyadi, A.; Henderson, R.; Stuetz, R.; Hofmann, R.; Ho, L.; Newcombe, G. Fate of geosmin and 2-methylisoborneol in full-scale water treatment plants. Water Res. 2015, 83, 171–183. [Google Scholar] [CrossRef]
- Hardy, T.; Wu, W. Impact of different restoration methods on coastal wetland loss in Louisiana: Bayesian analysis. Environ. Monit. Assess. 2020, 193, 1. [Google Scholar] [CrossRef] [PubMed]
- Pedrosa, M.; Ribeiro, R.S.; Guerra-Rodríguez, S.; Rodríguez-Chueca, J.; Rodríguez, E.; Silva, A.M.T.; Ðolic, M.; Rita Lado Ribeiro, A. Spirulina-based carbon bio-sorbent for the efficient removal of metoprolol, diclofenac and other micropollutants from wastewater. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100720. [Google Scholar] [CrossRef]
- Yang, R.; Li, Z.; Pitakrattanawong, C.; Zhu, L.; Li, B.; Fang, L.; Fan, L.; Song, C.; Meng, S. Magnetic nanoparticle modified moss Biochar: A novel solution for effective removal of enrofloxacin from aquaculture water. J. Environ. Manag. 2025, 373, 123956. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Chen, X.; Pitakrattanawong, C.; Du, X.; Qiu, L.; Xu, H.; Chen, J.; Meng, S.; Fan, L.; Song, C. Adsorption efficiency of biochar produced by aquaculture by-products for removing geosmin in aquaculture environment. Water Reuse 2024, 14, 65–79. [Google Scholar] [CrossRef]
- Antonopoulou, M.; Tzamaria, A.; Pedrosa, M.F.F.; Ribeiro, A.R.L.; Silva, A.M.T.; Kaloudis, T.; Hiskia, A.; Vlastos, D. Spirulina-based carbon materials as adsorbents for drinking water taste and odor control: Removal efficiency and assessment of cyto-genotoxic effects. Sci. Total Environ. 2024, 927, 172227. [Google Scholar] [CrossRef]
- Mao, Y.; Cai, B.; Huang, M.; Liu, X.; Zhang, W.; Ma, Z. A sustainable preparation strategy for the nitrogen-doped hierarchical biochar with high surface area for the enhanced removal of organic dye. Biochar 2023, 5, 70. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Li, Q.; Xu, L.; Ai, Y.; Liu, W.; Zhou, Y.; Zhang, B.; Guo, N.; Cao, B.; et al. Effective amendment of cadmium in water and soil before and after aging of nitrogen-doped biochar: Preparation optimization, removal efficiency and mechanism. J. Hazard. Mater. 2024, 477, 135356. [Google Scholar] [CrossRef]
- Zhen, Y.; Zhu, S.; Sun, Z.; Tian, Y.; Li, Z.; Yang, C.; Ma, J. Identifying the Persistent Free Radicals (PFRs) Formed as Crucial Metastable Intermediates during Peroxymonosulfate (PMS) Activation by N-Doped Carbonaceous Materials. Environ. Sci. Technol. 2021, 55, 9293–9304. [Google Scholar] [CrossRef]
- Leng, L.; Xu, S.; Liu, R.; Yu, T.; Zhuo, X.; Leng, S.; Xiong, Q.; Huang, H. Nitrogen containing functional groups of biochar: An overview. Bioresour. Technol. 2020, 298, 122286. [Google Scholar] [CrossRef]
- Feng, D.; Guo, D.; Zhang, Y.; Sun, S.; Zhao, Y.; Shang, Q.; Sun, H.; Wu, J.; Tan, H. Functionalized construction of biochar with hierarchical pore structures and surface O-/N-containing groups for phenol adsorption. Chem. Eng. J. 2021, 410, 127707. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Lu, T. A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J. Chem. Phys. 2024, 161, 082503. [Google Scholar] [CrossRef]
- Zhou, G.; Gao, F.; Liu, T.; Shi, S.; Wang, H.; Yuan, Y.; Wang, N. Polyamidoxime-Coated Coconut Haustorium Derived Magnetic Biochar Adsorbent with Photothermal Conversion for Highly Efficient Uranium Recovery from Nuclear Wastewater. Adv. Funct. Mater. 2024, 34, 2406329. [Google Scholar] [CrossRef]
- Wu, J.; Li, K.; Luo, H.; Li, A.; Yang, X.; Zhou, D. Preparation of imprinted phenol gel with ultra-high adsorption capacity based on porous biochar: 5-stage tandem column, response surface method, and mechanism analysis. Sep. Purif. Technol. 2024, 349, 127789. [Google Scholar] [CrossRef]
- Li, C.; Zhu, L.; Ma, Z.; Yang, Y.; Cai, W.; Ye, J.; Qian, J.; Liu, X.; Zuo, Z. Optimization of the nitrogen and oxygen element distribution in microalgae by ammonia torrefaction pretreatment and subsequent fast pyrolysis process for the production of N-containing chemicals. Bioresour. Technol. 2021, 321, 124461. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, S.; Wu, Y.; Zhu, X.; Xu, Z.; Li, B.; Hu, X.; Sun, H.; Zhou, J.; Zhang, S. Volatile-char interactions during biomass pyrolysis: Contribution of amino group on graphitized carbon nanotube to xylose evolution based on experimental and theoretical studies. Fuel 2020, 282, 118921. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, J.; Li, C.; Yang, Y.; Liu, X.; Zhao, C.; Chen, D. New sight on the lignin torrefaction pretreatment: Relevance between the evolution of chemical structure and the properties of torrefied gaseous, liquid, and solid products. Bioresour. Technol. 2019, 288, 121528. [Google Scholar] [CrossRef]
- Lü, F.; Lu, X.; Li, S.; Zhang, H.; Shao, L.; He, P. Dozens-fold improvement of biochar redox properties by KOH activation. Chem. Eng. J. 2022, 429, 132203. [Google Scholar] [CrossRef]
- Zhou, M.; Li, K.; Hu, J.; Tang, L.; Li, M.; Su, L.; Zhao, H.; Ko, F.; Cai, Z.; Zhao, Y. Sustainable production of oxygen-rich hierarchically porous carbon network from corn straw lignin and silk degumming wastewater for high-performance electrochemical energy storage. Renew. Energy 2022, 191, 141–150. [Google Scholar] [CrossRef]
- Zheng, X.; Zhou, Y.; Liu, X.; Fu, X.; Peng, H.; Lv, S. Enhanced adsorption capacity of MgO/N-doped active carbon derived from sugarcane bagasse. Bioresour. Technol. 2020, 297, 122413. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Su, Y.; Zhang, H. Prediction index of final activated carbon performance: The regulation of mesopore ratio/mesopore volume in biochar precursor. Biomass Convers. Biorefinery 2024, 15, 8655–8664. [Google Scholar] [CrossRef]
- Liu, W.; Yang, M.; Wang, S.; Bao, Y.-S.; Cui, Y.-H.; Meng, L.-X.; Li, L.-C.; Wu, Y.; Zhang, Y.-Y. Efficient detection of geosmin and 2-methylisoborneol in natural/drinking water by UIO66-NH2 composite-derived porous carbon. J. Environ. Chem. Eng. 2024, 12, 112728. [Google Scholar] [CrossRef]
- Zheng, L.; Cui, X.; Wang, X.; Xu, D.; Lu, X.; Guo, Y. Pt/N co-doped porous carbon derived from bio-tar: A remarkable catalyst for efficient oxidation of 5-hydroxymethylfurfural under alkali-free condition: Performance, mechanism and kinetics. Chem. Eng. J. 2023, 454, 140179. [Google Scholar] [CrossRef]
- Tang, L.; Yu, J.; Pang, Y.; Zeng, G.; Deng, Y.; Wang, J.; Ren, X.; Ye, S.; Peng, B.; Feng, H. Sustainable efficient adsorbent: Alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal. Chem. Eng. J. 2018, 336, 160–169. [Google Scholar] [CrossRef]
- Qu, S.; Yuan, Y.; Yang, X.; Xu, H.; Mohamed, A.K.; Zhang, J.; Zhao, C.; Liu, L.; Wang, B.; Wang, X.; et al. Carbon defects in biochar facilitated nitrogen doping: The significant role of pyridinic nitrogen in peroxymonosulfate activation and ciprofloxacin degradation. Chem. Eng. J. 2022, 441, 135864. [Google Scholar] [CrossRef]
- Zhu, S.; Huang, X.; Ma, F.; Wang, L.; Duan, X.; Wang, S. Catalytic Removal of Aqueous Contaminants on N-Doped Graphitic Biochars: Inherent Roles of Adsorption and Nonradical Mechanisms. Environ. Sci. Technol. 2018, 52, 8649–8658. [Google Scholar] [CrossRef]
- Tang, R.; Gong, D.; Deng, Y.; Xiong, S.; Zheng, J.; Li, L.; Zhou, Z.; Su, L.; Zhao, J. π-π stacking derived from graphene-like biochar/g-C3N4 with tunable band structure for photocatalytic antibiotics degradation via peroxymonosulfate activation. J. Hazard. Mater. 2022, 423, 126944. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Zhang, Y.; Li, C.; Yang, Y.; Zhang, W.; Zhao, C.; Wang, S. N-doping of biomass by ammonia (NH3) torrefaction pretreatment for the production of renewable N-containing chemicals by fast pyrolysis. Bioresour. Technol. 2019, 292, 122034. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Yang, S.; Liu, X.; Zhu, C.; Qi, F.; Wang, K.; Wang, J.; Wang, Q.; Wang, T.; Ma, P. Adsorption of antibiotics from wastewater by cabbage-based N, P co-doped mesoporous carbon materials. J. Clean. Prod. 2023, 391, 136174. [Google Scholar] [CrossRef]
- Li, Z.; Zhong, L.; Chen, X.; Qiu, L.; Zhang, H.; Xu, H.; Fan, L.; Meng, S.; Song, C. Fugacity and kinetic models reveal specific-fate of geosmin in air-water-fish microcosm and channel catfish (Ictalurus punctatus). Aquac. Rep. 2024, 38, 102290. [Google Scholar] [CrossRef]
- Song, W.; Gao, B.; Xu, X.; Xing, L.; Han, S.; Duan, P.; Song, W.; Jia, R. Adsorption–desorption behavior of magnetic amine/Fe3O4 functionalized biopolymer resin towards anionic dyes from wastewater. Bioresour. Technol. 2016, 210, 123–130. [Google Scholar] [CrossRef]
- Omer, A.M.; El-Sayed, M.; Abd El-Monaem, E.M.; El-Subruiti, G.M.; Eltaweil, A.S. Graphene oxide@Fe3O4-decorated iota-carrageenan composite for ultra-fast and highly efficient adsorption of lead (II) from water. Int. J. Biol. Macromol. 2023, 253, 127437. [Google Scholar] [CrossRef]
- Zhang, H.; Tong, W.; Li, H.; Li, C.; Ma, M.; Dong, Z.; Zhang, G.; Qu, J.; Zhang, Y. One-pot hydrothermal preparation of pomegranate peels-derived nitrogen/lanthanum co-doped magnetic hydrochar for efficient phosphate adsorption: Insights into performance and mechanisms. J. Clean. Prod. 2025, 490, 144620. [Google Scholar] [CrossRef]
- Ahmed, I.; Adhikary, K.K.; Kim, K.; Ahn, W.-S. Aqueous adsorption of sulfamethoxazole on an N-doped zeolite beta-templated carbon. J. Colloid Interface Sci. 2021, 582, 467–477. [Google Scholar] [CrossRef]
- Zhou, S.; Xia, L.; Fu, Z.; Zhang, C.; Duan, X.; Zhang, S.; Wang, Y.; Ding, C.; Liu, X.; Xu, W. Purification of dye-contaminated ethanol-water mixture using magnetic cellulose powders derived from agricultural waste biomass. Carbohydr. Polym. 2021, 258, 117690. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Ma, Y.; Wan, J.; Wang, Y.; Li, Z.; Chen, Y. Adsorption properties and mechanisms of novel biomaterials from banyan aerial roots via simple modification for ciprofloxacin removal. Sci. Total Environ. 2020, 708, 134630. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, S.; Chen, R.; Liu, Y.; Wang, J. Magnetic COFs for the adsorptive removal of diclofenac and sulfamethazine from aqueous solution: Adsorption kinetics, isotherms study and DFT calculation. J. Hazard. Mater. 2020, 385, 121596. [Google Scholar] [CrossRef]
- Abd El-Monaem, E.M.; Omer, A.M.; Eltaweil, A.S. Durable and Low-Cost Chitosan Decorated Fe/MOF-5 Bimetallic MOF Composite Film for High Performance of the Congo Red Adsorption. J. Polym. Environ. 2024, 32, 2075–2090. [Google Scholar] [CrossRef]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 3039817. [Google Scholar] [CrossRef]
- Yuan, J.; Huang, Y.; Nie, Z.; Hofmann, R. The effect of water temperature on the removal of 2-methylisoborneol and geosmin by preloaded granular activated carbon. Water Res. 2020, 183, 116065. [Google Scholar] [CrossRef] [PubMed]
- Ellis, A.C.; Boyer, T.H.; Strathmann, T.J. Regeneration of conventional and emerging PFAS-selective anion exchange resins used to treat PFAS-contaminated waters. Sep. Purif. Technol. 2025, 355, 129789. [Google Scholar] [CrossRef]
- Zhao, L.; Azhar, M.R.; Li, X.; Duan, X.; Sun, H.; Wang, S.; Fang, X. Adsorption of cerium (III) by HKUST-1 metal-organic framework from aqueous solution. J. Colloid Interface Sci. 2019, 542, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Henriksson, P.J.G.; Troell, M.; Banks, L.K.; Belton, B.; Beveridge, M.C.M.; Klinger, D.H.; Pelletier, N.; Phillips, M.J.; Tran, N. Interventions for improving the productivity and environmental performance of global aquaculture for future food security. One Earth 2021, 4, 1220–1232. [Google Scholar] [CrossRef]
- Başer, B.; Yousaf, B.; Yetis, U.; Abbas, Q.; Kwon, E.E.; Wang, S.; Bolan, N.S.; Rinklebe, J. Formation of nitrogen functionalities in biochar materials and their role in the mitigation of hazardous emerging organic pollutants from wastewater. J. Hazard. Mater. 2021, 416, 126131. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, B.; Shen, J.; Yan, P.; Kang, J.; Wang, W.; Bi, L.; Zhu, X.; Li, Y.; Wang, S.; et al. Preparation of novel N-doped biochar and its high adsorption capacity for atrazine based on π–π electron donor-acceptor interaction. J. Hazard. Mater. 2022, 432, 128757. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Sun, Y.; Yan, J.; Liu, R.; Zhang, J.; Song, J. Rapid adsorption of per- and polyfluoroalkyl substances (PFAS) on N-doped porous carbons (NPCs) derived from ZIF-8 over a wide pH range: Adsorption behaviors and mechanisms. Sep. Purif. Technol. 2025, 365, 132575. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Q.; Kong, J.; Zhang, L.; Qian, F.; Gao, M.; Ding, Y.; Dahlgren, R.A.; Wang, X. Enhanced adsorption/extraction of bisphenols by pyrrolic N-based 3D magnetic carbon nanocomposites for effervescence-assisted solid-phase microextraction of bisphenols from juices and the underlying interaction mechanisms. Chem. Eng. J. 2022, 448, 137690. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, D.; Cheng, X.; Yuan, C.; Wang, S.; He, Z.; Esakkimuthu, S. Adsorption properties of seaweed-based biochar with the greenhouse gases (CO2, CH4, N2O) through density functional theory (DFT). Biomass Bioenergy 2022, 163, 106519. [Google Scholar] [CrossRef]
- Cook, D.; Newcombe, G.; Sztajnbok, P. The application of powdered activated carbon for mib and geosmin removal: Predicting pac doses in four raw waters. Water Res. 2001, 35, 1325–1333. [Google Scholar] [CrossRef]
- Yu, J.; Yang, M.; Lin, T.-F.; Guo, Z.; Zhang, Y.; Gu, J.; Zhang, S. Effects of surface characteristics of activated carbon on the adsorption of 2-methylisobornel (MIB) and geosmin from natural water. Sep. Purif. Technol. 2007, 56, 363–370. [Google Scholar] [CrossRef]
- Bertone, E.; Chang, C.; Thiel, P.; O’Halloran, K. Analysis and modelling of powdered activated carbon dosing for taste and odour removal. Water Res. 2018, 139, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Pochiraju, S.; Hoppe-Jones, C.; Weinrich, L.; Maalouf, S.; Adams, C. Treatability of 18 taste and odor compounds using powdered activated carbon in drinking water utilities. AWWA Water Sci. 2022, 4, e1289. [Google Scholar] [CrossRef]
- Alver, A.; Baştürk, E.; Altaş, L.; Işık, M. A solution of taste and odor problem with activated carbon adsorption in drinking water: Detailed kinetics and isotherms. Desalination Water Treat. 2022, 252, 300–318. [Google Scholar] [CrossRef]
- Cerón-Vivas, A.; Villamizar León, M.P.; Cajigas, Á.A. Geosmin and 2-methylisoborneol removal in drinking water treatment. Water Pract. Technol. 2022, 18, 159–167. [Google Scholar] [CrossRef]
- Pirbazari, M.; Borow, H.S.; Craig, S.; Ravindran, V.; McGuire, M.J. Physical Chemical Characterization of Five Earthy-Musty-Smelling Compounds. Water Sci. Technol. 1992, 25, 81–88. [Google Scholar] [CrossRef]
- Moretto, J.A.; Freitas, P.N.N.; Souza, J.P.; Oliveira, T.M.; Brites, I.; Pinto, E. Off-Flavors in Aquacultured Fish: Origins and Implications for Consumers. Fishes 2022, 7, 34. [Google Scholar] [CrossRef]
Biochar | BET Surface Area (m2/g) a | Langmuir Surface Area (m2/g) | Average Pore Diameter (nm) | Pore Volume (cm3/g) | Mesopore Area (m2/g) | Mesopore Diameter (nm) a | Mesopore Volume (cm3/g) a | Micropore Area (m2/g) | Micropore Volume (cm3/g) a | Mesopore Volume/Pore Volume (%) |
---|---|---|---|---|---|---|---|---|---|---|
BC | 18.55 | / | 9.584 | 0.044 | 8.954 | 4.302 | 0.040 | 2.394 | 0.000 | 90.91 |
NBC | 57.05 | 148.10 | 5.655 | 0.081 | 21.489 | 12.139 | 0.065 | 32.441 | 0.014 | 80.25 |
KNBC | 62.13 | 267.33 | 14.029 | 0.218 | 37.179 | 22.203 | 0.206 | 22.354 | 0.010 | 94.50 |
Water Bodies | Biochar | qe,exp (μg/g) | Pseudo-First-Order | Pseudo-Second-Order | Avrami Fractional Order | Elovich | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
qe,cal (μg/g) | k1 (min−1) | R2 | SD | qe,cal (μg/g) | k2 (g/μg·min−1) | R2 | SD | qe,cal (μg/g) | k3 | n | R2 | SD | α (μg/g·min−1) | β (μg/g) | R2 | SD | |||
Purified water | NBC | 3.807 | 3.679 | 6.504 | 0.996 | 0.071 | 3.707 | 2.288 | 0.997 | 0.059 | 4.919 | 0.250 | 0.114 | 0.999 | 1.184 | 2.778 × 105 | 4.989 | 0.999 | 0.316 |
KNBC | 3.933 | 3.910 | 2.172 | 0.999 | 0.020 | 3.927 | 0.905 | 0.999 | 0.014 | 3.952 | 4.779 | 0.259 | 0.999 | 0.006 | 1.480 × 1016 | 11.311 | 0.999 | 2.055 | |
Lake water | NBC | 2.868 | 2.639 | 3.106 | 0.978 | 0.118 | 2.711 | 1.669 | 0.989 | 0.089 | 3.053 | 0.767 | 0.214 | 0.999 | 0.111 | 2.153 × 103 | 4.966 | 0.998 | 0.235 |
KNBC | 3.630 | 3.359 | 1.706 | 0.972 | 0.168 | 3.442 | 0.672 | 0.983 | 0.139 | 5.491 | 0.011 | 0.173 | 0.999 | 1.856 | 221.098 | 3.203 | 0.998 | 0.147 | |
Aquaculture water | NBC | 2.423 | 2.179 | 2.418 | 0.988 | 0.075 | 2.240 | 1.922 | 0.994 | 0.054 | 2.508 | 1.488 | 0.222 | 0.999 | 0.073 | 3.764 × 103 | 5.987 | 0.999 | 0.308 |
KNBC | 3.259 | 3.155 | 0.495 | 0.987 | 0.110 | 3.222 | 0.244 | 0.992 | 0.090 | 3.756 | 0.129 | 0.232 | 0.999 | 0.399 | 127.795 | 3.429 | 0.998 | 0.174 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Chen, X.; Qiu, L.; Xu, H.; Fan, L.; Meng, S.; Jiang, Z.; Song, C. N-Doping/KOH Synergy in Waste Moss Biochar for Geosmin Removal in Aquaculture Water: Elucidating Surface Functionalization and Activation Mechanisms. Biology 2025, 14, 1045. https://doi.org/10.3390/biology14081045
Li Z, Chen X, Qiu L, Xu H, Fan L, Meng S, Jiang Z, Song C. N-Doping/KOH Synergy in Waste Moss Biochar for Geosmin Removal in Aquaculture Water: Elucidating Surface Functionalization and Activation Mechanisms. Biology. 2025; 14(8):1045. https://doi.org/10.3390/biology14081045
Chicago/Turabian StyleLi, Zhonghua, Xi Chen, Liping Qiu, Huimin Xu, Limin Fan, Shunlong Meng, Zhongquan Jiang, and Chao Song. 2025. "N-Doping/KOH Synergy in Waste Moss Biochar for Geosmin Removal in Aquaculture Water: Elucidating Surface Functionalization and Activation Mechanisms" Biology 14, no. 8: 1045. https://doi.org/10.3390/biology14081045
APA StyleLi, Z., Chen, X., Qiu, L., Xu, H., Fan, L., Meng, S., Jiang, Z., & Song, C. (2025). N-Doping/KOH Synergy in Waste Moss Biochar for Geosmin Removal in Aquaculture Water: Elucidating Surface Functionalization and Activation Mechanisms. Biology, 14(8), 1045. https://doi.org/10.3390/biology14081045