Effects of Increased Calcium, Magnesium, and Potassium Ion Concentrations on Survival Conditions, Growth Performance, and Physiological Parameters in Sea Urchin (Strongylocentrotus intermedius)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Material
2.2. Experimental Design
2.3. Data Measurement
2.3.1. Survival Rate
2.3.2. Growth
2.3.3. Gonad Traits
2.3.4. Determination of Digestive Enzyme and Na+/K+-ATPase Activities
2.3.5. Determination of Immune Enzyme Activity
2.4. Statistical Analysis
3. Results
3.1. Survival Rate of S. intermedius Under Different Calcium, Magnesium, and Potassium Ion Concentrations
3.2. SGR of S. intermedius Under Different Calcium, Magnesium, and Potassium Ion Concentrations
3.3. FCR of S. intermedius Under Different Calcium, Magnesium, and Potassium Ion Concentrations
3.4. GI of S. intermedius Under Different Calcium, Magnesium, and Potassium Ion Concentrations
3.5. Gonad Colour Variation of S. intermedius Under Different Calcium, Magnesium, and Potassium Ion Concentrations
3.6. Effects of Calcium, Magnesium, and Potassium Ion Concentrations on Digestive Enzyme Activities in S. intermedius
3.6.1. Pepsin
3.6.2. Amylase
3.6.3. Lipase
3.7. Effects of Calcium, Magnesium, and Potassium Ion Concentrations on Immune Enzyme Activities in S. intermedius
3.7.1. ACP
3.7.2. Lysozyme
3.7.3. SOD
3.8. Effects of Calcium, Magnesium, and Potassium Ion Concentrations on Na+/K+-ATPase Activity in S. intermedius
4. Discussion
4.1. Tolerance of S. intermedius to High Concentrations of Calcium, Magnesium, and Potassium Ions
4.2. Influences of Calcium, Magnesium, and Potassium Ion Concentrations on SGR, FCR, GI, and Gonad Colour
4.3. Influences of Calcium, Magnesium, and Potassium Ion Concentrations on Digestive and Immune Enzyme Activities
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agatsuma, Y. Strongylocentrotus intermedius. Dev. Aquacult. Fish. Sci. 2013, 38, 437–447. [Google Scholar]
- Chang, Y.; Ding, J.; Song, J.; Yang, W. Biology and Aquaculture of Sea Cucumbers and Sea Urchins; Ocean Press: Beijing, China, 2004; p. 217. [Google Scholar]
- Chang, Y.; Wang, Z. Raft culture techniques for the sea urchin Strongylocentrotus intermedius. J. Dalian Ocean U. 1997, 12, 7–14. (In Chinese) [Google Scholar]
- Ding, J.; Zheng, D.; Sun, J.; Hu, F.; Yu, Y.; Zhao, C.; Chang, Y. Effects of water temperature on survival, behaviors and growth of the sea urchin Mesocentrotus nudus: New insights into the stock enhancement. Aquaculture 2020, 519, 734873. [Google Scholar] [CrossRef]
- Han, X.; Peng, Y. Light-scattering characteristics of hydrated ions in dilute solutions of major sea salts. Optik 2016, 127, 1455–1459. [Google Scholar] [CrossRef]
- Wu, Z.; Li, F. Development of magnesium chloride resources in salt lakes of Qinghai. J. Salt Lake Res. 2001, 9.2, 61–65. [Google Scholar]
- Liang, S.; Guo, J.; Wu, P.; Feng, Y.; Wang, X.; Wang, G.; Xu, W.; Luo, Y.; Wan, L. Hydrogeochemical and isotopic characteristics of surface water and groundwater in the Qinghai Lake catchment (China). Arab. J. Geosci. 2020, 13, 135. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, Q.; Li, Q.; Du, Y.; Qin, Z.; Wei, H.; Shan, F. The source, distribution, and sedimentary pattern of K-rich brines in the Qaidam Basin, western China. Minerals 2019, 9, 655. [Google Scholar] [CrossRef]
- Cai, N.; Wang, W.; Xiao, G.; Yang, Z.; Zhu, H.; Wang, X. Geochemical Characteristics and Origin of Heavy Metals and Dispersed Elements in Qarhan Salt Lake Brine. Water 2025, 17, 1927. [Google Scholar] [CrossRef]
- Li, X.; Lan, H.; Dai, X. The effects of Ca2+ and Mg2+ in the water column on the growth and molting of Macrobrachium rosenbergii. Aquacult. Int. 2024, 32, 8823–8841. [Google Scholar] [CrossRef]
- Evans, D.; Millar, Z.; Wolvin, S.; Pham, P.; LePage, V.; Lumsden, J. Magnesium concentration influences size and pulse rate in the upside-down jellyfish, Cassiopea andromeda. Zoo Biol. 2021, 40, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Dall, W.; Smith, D.M. Ionic regulation of four species of penaeid prawn. J. Exp. Mar. Biol. Ecol. 1981, 55, 219–232. [Google Scholar] [CrossRef]
- Wilson, R.P.; Naggar, G.E. Potassium requirement of fingerling channel catfish (Ictalurus punctatus). Aquaculture 1992, 108, 169–175. [Google Scholar] [CrossRef]
- Lall, S.P.; Kaushik, S.J. Nutrition and metabolism of minerals in fish. Animals 2021, 11, 2711. [Google Scholar] [CrossRef] [PubMed]
- Chen, J. Water Chemistry; China Agriculture Press: Beijing, China, 1996. [Google Scholar]
- Woods, C.M.C.; James, P.J.; Moss, G.A.; Wright, J.; Siikavuopio, S. A comparison of the effect of urchin size and diet on gonad yield and quality in the sea urchin Evechinus chloroticus Valenciennes. Aquacult. Int. 2008, 16, 49–68. [Google Scholar] [CrossRef]
- Luo, M.R.; Cui, G.; Rigg, B. The development of the CIE 2000 colour-difference formula: CIEDE2000. Color Res. Appl. 2001, 26, 340–350. [Google Scholar] [CrossRef]
- McBride, S.C.; Price, R.J.; Tom, P.D.; Lawrence, J.M.; Lawrence, A.L. Comparison of gonad quality factors: Color, hardness and resilience, of Strongylocentrotus franciscanus between sea urchins fed prepared feed or algal diets and sea urchins harvested from the northern California fishery. Aquaculture 2004, 233, 405–422. [Google Scholar] [CrossRef]
- Song, Z.; Li, P.; Hu, S.; Liu, C.; Hao, T.; Han, X. Influence of dietary phosphorus on the growth, feed utilization, proximate composition, intestinal enzymes, and oxidation resistance of sea cucumber Apostichopus japonicus. Aquacult. Nutr. 2023, 1, 2266191. [Google Scholar] [CrossRef]
- Deshimaru, O.; Yone, Y. Requirement of prawn for dietary minerals. Bull. Jpn. Soc. Sci. Fish. 1978, 44, 907–910. [Google Scholar] [CrossRef]
- Coote, T.A.; Hone, P.W.; Kenyon, R.; Maguire, G.B. The effect of different combinations of dietary calcium and phosphorus on the growth of juvenile Haliotis laevigata. Aquaculture 1996, 145, 267–279. [Google Scholar] [CrossRef]
- Davis, D.A.; Gatlin III, D.M. Dietary mineral requirements of fish and marine crustaceans. Rev. Fish. Sci. 1996, 4, 75–99. [Google Scholar] [CrossRef]
- Lall, S.P. Fish Nutrition, 2nd ed.; Academic Press: San Diego, CA, USA, 1989; p. 231. [Google Scholar]
- Lovell, T. Nutrition and Feeding of Fish; Van Nostrand Reinhold: New York, NY, USA, 1989; p. 260. [Google Scholar]
- Kaneko, T.; Hirano, T. Role of prolactin and somatolactin in calcium regulation in fish. J. Exp. Biol. 1993, 184, 31–45. [Google Scholar] [CrossRef]
- Riccardi, D. Cell surface, Ca2+ (cation)-sensing receptor(s): One or many? Cell Calcium 1999, 26, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Clapham, D.E. Calcium signaling. Cell 2007, 131, 1047–1058. [Google Scholar] [CrossRef] [PubMed]
- Alomaim, H.; Griffin, P.; Swist, E.; Plouffe, L.J.; Vandeloo, M.; Demonty, I.; Kumar, A.; Bertinato, J. Dietary calcium affects body composition and lipid metabolism in rats. PLoS ONE 2019, 14, e0210760. [Google Scholar] [CrossRef] [PubMed]
- Cuesta-Gomez, D.M.; Lazo, J.P.; Sánchez-Saavedra, M.D.P. Effects of dietary fish oil and soya bean lecithin on gonad index, colour and biochemical composition of the purple sea urchin, Strongylocentrotus purpuratus (Stimpson 1857). Aquac. Res. 2020, 51, 3384–3402. [Google Scholar] [CrossRef]
- Gao, W.; Xu, L.; Tian, J.; Chen, X. The research progress on calcium and phosphorus requirements in aquatic animal. Freshw. Fish. 2023, 53, 104–112. [Google Scholar]
- Furuichi, M.; Furusho, Y.; Hossain, M.A.; Matsui, S. Essentiality of Ca supplement to white fish meal diet for tiger puffer. J. Fac. Agr. Kyushu Univ. 1997, 42, 69–76. [Google Scholar] [CrossRef]
- Lall, S.P. Fish Nutrition, 3rd ed.; Academic Press Inc.: San Diego, CA, USA, 2002; pp. 259–308. [Google Scholar]
- Dabrowska, H.; Meyer-Burgdorff, K.; Günther, K.D. Interaction between dietary protein and magnesium level in tilapia (Oreochromis niloticus). Aquaculture 1989, 76, 277–291. [Google Scholar] [CrossRef]
- Dabrowska, H.; Meyer-Burgdorff, K.H.; Günther, K.D. Magnesium status in freshwater fish, common carp (Cyprinus carpio, L.) and the dietary protein-magnesium interaction. Fish Physiol. Biochem. 1991, 9, 165–172. [Google Scholar] [CrossRef]
- Han, D.; Liu, H.; Liu, M.; Xiao, X.; Zhu, X.; Yang, Y.; Xie, S. Effect of dietary magnesium supplementation on the growth performance of juvenile gibel carp, Carassius auratus gibelio. Aquac. Nutr. 2011, 23, 512–520. [Google Scholar] [CrossRef]
- Epstein, F.H.; Silva, P.; Kormanik, G. Role of Na+-K+ ATPase in chloride cell function. Am. J. Physiol. 1980, 238, 246–250. [Google Scholar] [CrossRef]
- Mcdonough, A.A.; Thompson, C.B.; Youn, J.H. Skeletal muscle regulates extracellular potassium. Am. J. Physiol. 2002, 282, 967–974. [Google Scholar] [CrossRef]
- Marshall, W.S.; Bryson, S.E. Transport mechanisms of seawater teleost chloride cells: An inclusive model of a multifunctional cell. Comp. Biochem. Phys. A 1998, 119, 97–106. [Google Scholar] [CrossRef]
- Evans, D.H.; Piermarini, P.M.; Choe, K.P. The multifunctional fish gill: Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of Nitrogenous waste. Physiol. Rev. 2005, 85, 97–177. [Google Scholar] [CrossRef]
- Zhu, C.; Dong, S.; Wang, F.; Zhang, H. Effects of sea water potassium concentration on the dietary potassium requirement of Litopenaeus vannamei. Aquaculture 2006, 258, 543–550. [Google Scholar] [CrossRef]
- Sakamoto, S.; Yone, Y. Requirement of red sea bream for dietary Na and K. J. Fac. Agr. Kyushu Univ. 1978, 23, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, E.J.; Robinson, S.M.C.; Parsons, G.J.; Castell, J.D. Effect of lipid source and concentration on somatic growth of juvenile green sea urchins, Strongylocentrotus droebachiensis. J. World Aquacult. Soc. 2007, 38, 335–352. [Google Scholar] [CrossRef]
- Wever, L.A.; Lysyk, T.J.; Clapperton, M.J. The influence of soil moisture and temperature on the survival, aestivation, growth and development of juvenile Aporrectodea tuberculata (Eisen) (Lumbricidae). Pedobiologia 2001, 45, 121–133. [Google Scholar] [CrossRef]
- Galgani, F.G.; Benyamin, Y.; Wormhoudt, A.V. Purification properties and immunoassay of trypsin from the shrimp Penaeus japonicus. Comp. Biochem. Phys. B 1985, 81, 447–452. [Google Scholar] [CrossRef]
- Hu, Y.; Pan, L. Effects of ten metal ions on digestive enzyme activities of Portunus trituberculatus. J. Trop. Oceanogr. 2006, 25, 52–57. [Google Scholar]
- Zhang, Y.; Ni, M.; Bai, Y.; Shi, Q.; Zheng, J.; Cui, Z. Full-length transcriptome analysis provides new insights into the diversity of immune-related genes in Portunus trituberculatus. Front. Immunol. 2022, 13, 843347. [Google Scholar] [CrossRef]
- Yu, Z.; Zhao, Y.; Jiang, N.; Zhang, A.; Li, M. Bioflocs attenuates lipopolysac charide—Induced inflammation, immunosuppression and oxidative stress in Channa argus. Fish Shellfish Immun. 2021, 114, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Garcia, M.M.; Cerbón, J.; Talamas-Rohana, P. Purification and properties of an acid phosphatase from Entamoeba histolytica HM-1: IMSS. Int. J. Parasitol. 2000, 30, 585–591. [Google Scholar] [CrossRef]
- Yoneyama, T.; Taira, M.; Suzuki, T.; Nakamura, M.; Niwa, K.; Watanabe, T.; Ohyama, T. Expression and characterization of a recombinant unique acid phosphatase from kidney bean hypocotyl exhibiting chloroperoxidase activity in the yeast Pichia pastoris. Protein Expres. Purif. 2007, 53, 31–39. [Google Scholar] [CrossRef]
- Gao, J.; Zhao, X.; Zhan, F.; Zhang, Y.; Yu, T. Properties of acid phosphatase from carassias auratus and effects of several effectors on the activity of the enzyme. J. Hydrobiol. 2010, 34, 394–401. [Google Scholar]
- Masui, D.C.; Mantelatto, F.L.M.; McNamara, J.C.; Furriel, R.P.M.; Leone, F.A. Na+-K+ ATPase activity in gill microsomes from the blue crab, Callinectes danae, acclimated to low salinity: Novel perspectives on ammonia excretion. Comp. Biochem. Phys. A 2009, 153, 141–148. [Google Scholar] [CrossRef]
- Tsai, J.R.; Lin, H.C. V-type H+-ATPase and Na+, K+-ATPase in the gills of 13 euryhaline crabs during salinity acclimation. J. Exp. Biol. 2007, 210, 620–627. [Google Scholar] [CrossRef]
- Giese, A.C. Cell Physiology; Science Press: Beijing, China, 1986; pp. 92–407. [Google Scholar]
- Dennis, W. Animal Physiology; People’s Education Press: Beijing, China, 1982; p. 180. [Google Scholar]
- Thomson, A.J.; Sargent, J.R. Changes in the levels of chloride cells and (Na++K+)-dependent ATPase in the gills of yellow and silver eels adapting to seawater. J. Exp. Zool. 1977, 200, 33–40. [Google Scholar] [CrossRef]
- Fontaine, Y.A.; Pisam, M.; Moal, C.L.; Rambourg, A. Silvering and gill “mitochondria-rich” cells in the eel, Anguilla anguilla. Cell Tissue Res. 1995, 281, 465–471. [Google Scholar] [CrossRef]
- Lucu, C.; Pavičić, D. Role of seawater concentration and major ions in oxygen consumption rate of isolated gills of the shore crab Carcinus mediterraneus Csrn. Comp. Biochem. Phys. A 1995, 112, 565–572. [Google Scholar] [CrossRef]
- Perez-Velazquez, M.; Davis, D.A.; Roy, L.A.; González-Félix, M.L. Effects of water temperature and Na+/K+ ratio on physiological and production parameters of Litopenaeus vannamei reared in low salinity water. Aquaculture 2012, 342–343, 13–17. [Google Scholar] [CrossRef]
Groups | Concentrations (mg/L) | Items | |
---|---|---|---|
Survival Counts (Mean ± S.D.) | Survival Rates (Mean ± S.D.) | ||
calcium ion | 550 | 15 ± 0 | 100% ± 0.0% |
733 | 13 ± 0.5 | 86.7% ± 11.6% | |
magnesium ion | 1727 | 11 ± 0.5 | 73.3% ± 11.6% * |
2302 | 0 ± 0 | 0% ± 0.0% * | |
potassium ion | 533 | 15 ± 0 | 100% ± 0.0% |
710 | 15 ± 0 | 100% ± 0.0% | |
control | calcium ion 366.5, magnesium ion 1151, and potassium ion 355 | 15 ± 0 | 100% ± 0.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Ou, F.; Jia, T.; Guo, H.; Liu, P.; Tian, W.; Wu, S.; Chen, S.; Feng, W.; Zhang, W. Effects of Increased Calcium, Magnesium, and Potassium Ion Concentrations on Survival Conditions, Growth Performance, and Physiological Parameters in Sea Urchin (Strongylocentrotus intermedius). Biology 2025, 14, 1046. https://doi.org/10.3390/biology14081046
Jiang X, Ou F, Jia T, Guo H, Liu P, Tian W, Wu S, Chen S, Feng W, Zhang W. Effects of Increased Calcium, Magnesium, and Potassium Ion Concentrations on Survival Conditions, Growth Performance, and Physiological Parameters in Sea Urchin (Strongylocentrotus intermedius). Biology. 2025; 14(8):1046. https://doi.org/10.3390/biology14081046
Chicago/Turabian StyleJiang, Xuechun, Fanjiang Ou, Tongshan Jia, Hao Guo, Peng Liu, Wenzhuo Tian, Shuaichen Wu, Siyuan Chen, Wenping Feng, and Weijie Zhang. 2025. "Effects of Increased Calcium, Magnesium, and Potassium Ion Concentrations on Survival Conditions, Growth Performance, and Physiological Parameters in Sea Urchin (Strongylocentrotus intermedius)" Biology 14, no. 8: 1046. https://doi.org/10.3390/biology14081046
APA StyleJiang, X., Ou, F., Jia, T., Guo, H., Liu, P., Tian, W., Wu, S., Chen, S., Feng, W., & Zhang, W. (2025). Effects of Increased Calcium, Magnesium, and Potassium Ion Concentrations on Survival Conditions, Growth Performance, and Physiological Parameters in Sea Urchin (Strongylocentrotus intermedius). Biology, 14(8), 1046. https://doi.org/10.3390/biology14081046