The Father’s Microbiome: A Hidden Contributor to Fetal and Long-Term Child Health
Simple Summary
Abstract
1. Introduction
2. Male Microbiota
2.1. Gut Microbiota
2.2. Oral Microbiota
2.3. Semen Microbiota
2.4. Male Genital Microbiota and Technical Issues
3. Environmental Factors Effects on Male Microbiota and Male Reproductive Health
3.1. Diet and Lifestyle
3.2. Endocrine Disruptors and Pesticides
3.3. Plastics
Environmental Factors | Specific Exposure | Study Type/Population | Microbiota Changes | Clinical Impact on Male Reproduction Health | References |
---|---|---|---|---|---|
Diet | HFD | Mice model | >15% abundance of intestinal Prevotella copri related to reduced sperm motility | Altered spermatogenesis | Ding et al. [52] |
LPD | Mice model | Higher abundance of fecal Enterococcus and Lactobacillus and significantly reduced levels of fecal Bifidobacterium in the male offspring of mice fed LDP | Global sperm DNA hypomethylation, decreased gene expression for folate metabolism | Watkins et al. [55] | |
Fiber supplementation | Boar model | Increased abundance of Lactobacillus, Ruminococcus, Rikenellaceae_RC9_gut_group, and UCG-005, reduced abundance of Turicibacter, Romboutsia, and Clostridium_sensu_ stricto_1 | Higher levels of acetate and butyrate, involved in spermatogenesis and sperm motility | Lin et al. [57] | |
Smoke | Cigarette-smoke | Mice model | Significantly increased relative abundances of Firmicutes and Actinobacteria and decreased relative abundances of Bacteroidetes and Proteobacteria in gut microbiota | Reduced size and weight of testes, reduced sperm motility | Zhong et al. [51] |
EDCs | DEHP | Rats model | Major differences in the microbial profile in jejunal tract in DEHP group (Lactobacillus, Streptococcus, Gemella, Mycoplasmataceae, and Rothia—the most prevalent genera) | Induced testicular damage and significantly reduced serum levels of testosterone and LH | Zhao et al. [65] |
DBP | Rats model | Increased relative abundance of Bacteroidetes, Prevotella, and P. copri | Intergenerational testicular damage, such as increased seminiferous atrophy and spermatogenic cells apoptosis | Zhang et al. [66] | |
BPA | Rats model | Alloprevotella, uncultured_organism, and Prevotellaceae_UCG_ 001—dominant genera in medium-dose BPA-exposed groups; Parasutterella was significantly higher in high-dose BPA-exposed groups | Reduced levels of DHT, FSH, LH, estradiol, inhibin B, and testosterone, lower testicular fructose, disrupted testicular architecture, decreased sperm count, and sperm abnormalities | Liu et al. [69] | |
Cl-PFESA | Rats model | Significantly higher levels of Ruminococcaceae and Desulfovibrionaceae and significanty lower levels of Pasteurellaceae and Micrococcaceae after 6:2 Cl-PFESA exposure | Significantly altered serum levels of testosterone, progesterone, and cortisol | Zhao et al. [70] | |
Pesticides | CPF | Rats model | More evident dysbiosis in rats fed HFD and exposed beginning at newly weaned; specifically, CPF depletion of the relative abundances of unclassified_f Ruminococcaceae, Oscillibacter, Paenalcaligenes, and Peptococcus and enrichment of Escherichia-Shigella | Decreased serum concentrations of LH, FSH, and testosterone, and induced systemic inflammation, (elevated monocyte chemoattractant protein-1, TNF-α, and IL-6) | Li et al. [71] |
GLY | Avian model | Decreased abundance of Firmicutes and Lactobacillus; increased abundance of Actinobacteria | Decreased testosterone levels both at puberty and after 52 weeks of exposure | Ruuskanen et al. [73] | |
Rats model | Significantly increased relative abundance of Bacteroides and Prevotella_1; significant decrease in the relative abundance of Firmicutes | Reduction in spermatogenic cells in seminiferous tubules, malformed nuclei in Sertoli cells, decreased sperm motility, and affected spermatogenesis | Liu et al. [74] | ||
Plastics | Polystyrene MPs | Mice model (FMT) | Increased abundance of Bacteroides and Prevotellaceae_UCG-001 | Altered testicular structure and destruction of BTB, significantly decreased levels of LH, FSH, and testosterone, and higher sperm abnormality | Wen et al. [75] |
Polystyrene NPs and amino-modified polystyrene NPs | Mice model | Higher abundance of Desulfovibrio and Lachnospiraceae_NK4A136_group and significantly decreased levels of Blautia and Parabacteroides | Impaired spermatogenesis | Zhou et al. [77] | |
Polyethylene NPs | Mice model | Increased abundance of Desulfovibrio (C21_c20) and Ruminococcus (gnavus) and decreased abundance of Allobaculum | Intergenerational induced histological damage in the testicular tissue and altered sperm quality, sex hormone synthesis, and spermatogenesis | Sun et al. [76] |
4. Paternal Microbiota Effect on Offspring Health
4.1. Offspring Neurodevelopment and Behavior
4.2. Offspring Metabolic Health
4.3. Offspring Growth and Gastrointestinal Disease
5. Main Findings, Research Gaps, and Further Perspectives
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
bEV | bacteria-derived extracellular vesicles |
DHT | dihydrotestosterone |
MAMPs | microbial-associated molecular patterns |
LPS | lipopolysaccharide |
PRRs | pattern recognition receptors |
ROS | reactive oxygen species |
BTB | blood–testis barrier |
LH | luteinizing hormone |
LBP | lipopolysaccharide-binding protein |
IR | insulin resistance |
T2DM | type 2 diabetes mellitus |
CRP | C-peptide |
HOMA-IR | homeostatic model assessment of insulin resistance |
FSH | follicle-stimulating hormone |
ED | erectile dysfunction |
IBS | irritable bowel syndrome |
TMAO | trimethylamine N-oxide |
NGS | next-generation sequencing |
FMT | fecal microbiota transplantation |
HIV | human immunodeficiency virus |
LPD | low-protein diet |
NPD | normal-protein-diet |
SCFAs | short-chain fatty acids |
HDACs | histone deacetylases |
EDCs | endocrine-disrupting chemicals |
DEHP | di(2-ethylhexyl) phthalate |
DBP | di-n-butyl phthalate |
BPA | Bisphenol A |
ERα | estrogen receptor α |
Cl-PFESA | chlorinated polyfluorinated ether sulfonic acid |
CPF | chlorpyrifos |
TNF | tumor necrosis factor |
IL | interleukin |
MPs | microplastics |
GLY | glyphosate |
HELMi | Health and Early Life Microbiota |
piRNAs | PIWI-interacting RNAs |
HFD | high-fat diet |
MDD | major depressive disorder |
HFSSD | high-fat, high-sucrose, and high-salt diet |
PYY | peptide tyrosine tyrosine |
TCDD | 2,3,7,8-tetrachlorodibenzo-p-dioxin |
NEC | necrotizing enterocolitis |
GELDING | Gut Endotoxin Leading to a Decline IN Gonadal function |
MiRNAs | microRNAs |
TGF-β | Transforming Growth Factor-beta |
PGE | Prostaglandin E |
TLR | Toll-like receptor |
nABX | non-absorbable antibiotics |
PLGF | placental growth factor |
sncRNAs | small non-coding RNAs |
Nrf2 | Nuclear factor erythroid 2-related factor 2 |
Th | T helper |
IVF | In Vitro Fertilization |
FFQs | Food Frequency Questionnaires |
References
- Chatzokou, D.; Tsarna, E.; Davouti, E.; Siristatidis, C.S.; Christopoulou, S.; Spanakis, N.; Tsakris, A.; Christopoulos, P. Semen Microbiome, Male Infertility, and Reproductive Health. Int. J. Mol. Sci. 2025, 26, 1446. [Google Scholar] [CrossRef]
- Robertson, S.A.; Sharkey, D.J. Seminal fluid and fertility in women. Fertil. Steril. 2016, 106, 511–519. Available online: https://www.fertstert.org/action/showFullText?pii=S0015028216625384 (accessed on 22 May 2025). [CrossRef] [PubMed]
- Harada, N.; Hanaoka, R.; Hanada, K.; Izawa, T.; Inui, H.; Yamaji, R. Hypogonadism alters cecal and fecal microbiota in male mice. Gut Microbes 2016, 7, 533–539. Available online: https://pubmed.ncbi.nlm.nih.gov/27656762/ (accessed on 22 May 2025). [CrossRef]
- Colldén, H.; Landin, A.; Wallenius, V.; Elebring, E.; Fändriks, L.; Nilsson, M.E.; Ryberg, H.; Poutanen, M.; Sjögren, K.; Vandenput, L.; et al. The gut microbiota is a major regulator of androgen metabolism in intestinal contents. Am. J. Physiol. Endocrinol. Metab. 2019, 317, E1182–E1192. Available online: https://pubmed.ncbi.nlm.nih.gov/31689143/ (accessed on 22 May 2025). [CrossRef] [PubMed]
- Klinger, A.; Hain, B.; Yaffe, H.; Schonberger, O. Periodontal status of males attending an in vitro fertilization clinic. J. Clin. Periodontol. 2011, 38, 542–546. Available online: https://pubmed.ncbi.nlm.nih.gov/21443558/ (accessed on 22 May 2025). [CrossRef] [PubMed]
- Liu, X.; Tong, X.; Jie, Z.; Zhu, J.; Tian, L.; Sun, Q.; Ju, Y.; Zou, L.; Lu, H.; Qiu, X.; et al. Sex differences in the oral microbiome, host traits, and their causal relationships. iScience 2023, 20, 26. Available online: https://pubmed.ncbi.nlm.nih.gov/36660475/ (accessed on 22 May 2025). [CrossRef]
- Di Simone, N.; Santamaria Ortiz, A.; Specchia, M.; Tersigni, C.; Villa, P.; Gasbarrini, A.; Scambia, G.; D’Ippolito, S. Recent Insights on the Maternal Microbiota: Impact on Pregnancy Outcomes. Front. Immunol. 2020, 11, 528202. Available online: www.frontiersin.org (accessed on 4 April 2025). [CrossRef]
- Zambella, E.; Peruffo, B.; Guarano, A.; Inversetti, A.; Di Simone, N. The Hidden Relationship between Intestinal Microbiota and Immunological Modifications in Preeclampsia Pathogenesis. Int. J. Mol. Sci. 2024, 25, 10099. Available online: https://pubmed.ncbi.nlm.nih.gov/39337584/ (accessed on 4 April 2025). [CrossRef]
- Kilama, J.; Dahlen, C.R.; Reynolds, L.P.; Amat, S. Contribution of the seminal microbiome to paternal programming. Biol. Reprod. 2024, 111, 242–268. Available online: https://pubmed.ncbi.nlm.nih.gov/38696371/ (accessed on 30 March 2025). [CrossRef]
- Argaw-Denboba, A.; Schmidt, T.S.B.; Di Giacomo, M.; Ranjan, B.; Devendran, S.; Mastrorilli, E.; Lloyd, C.T.; Pugliese, D.; Paribeni, V.; Dabin, J.; et al. Paternal microbiome perturbations impact offspring fitness. Nature 2024, 629, 652–659. Available online: https://www.nature.com/articles/s41586-024-07336-w (accessed on 30 March 2025). [CrossRef]
- Yurkovetskiy, L.; Burrows, M.; Khan, A.A.; Graham, L.; Volchkov, P.; Becker, L.; Antonopoulos, D.; Umesaki, Y.; Chervonsky, A.V. Gender bias in autoimmunity is influenced by microbiota. Immunity 2013, 39, 400–412. Available online: https://pubmed.ncbi.nlm.nih.gov/23973225/ (accessed on 22 May 2025). [CrossRef]
- Falony, G.; Joossens, M.; Vieira-Silva, S.; Wang, J.; Darzi, Y.; Faust, K.; Kurilshikov, A.; Bonder, M.J.; Valles-Colomer, M.; Vandeputte, D.; et al. Population-level analysis of gut microbiome variation. Science 2016, 352, 560–564. Available online: https://pubmed.ncbi.nlm.nih.gov/27126039/ (accessed on 22 May 2025). [CrossRef]
- Li, X.; Cheng, W.; Shang, H.; Wei, H.; Deng, C. The Interplay Between Androgen and Gut Microbiota: Is There a Microbiota-Gut-Testis Axis. Reproductive Sciences; Springer Science and Business Media Deutschland GmbH: Berlin/Heidelberg, Germany, 2022; Volume 29, pp. 1674–1684. [Google Scholar] [CrossRef]
- Zhao, S.; Zhu, W.; Xue, S.; Han, D. Testicular defense systems: Immune privilege and innate immunity. Cell. Mol. Immunol. 2014, 11, 428–437. Available online: https://www.nature.com/articles/cmi201438 (accessed on 29 April 2025). [CrossRef]
- Sarkar, O.; Bahrainwala, J.; Chandrasekaran, S.; Kothari, S.; Mathur, P.P.; Agarwal, A. Impact of inflammation on male fertility. Front. Biosci. Elite 2011, 3, 89–95. Available online: https://www.imrpress.com/journal/FBE/3/1/10.2741/E223 (accessed on 29 April 2025).
- Tremellen, K. Gut Endotoxin Leading to a Decline IN Gonadal function (GELDING)–a novel theory for the development of late onset hypogonadism in obese men. Basic Clin. Androl. 2016, 26, 7. [Google Scholar] [CrossRef]
- Liu, S.; Cao, R.; Liu, L.; Lv, Y.; Qi, X.; Yuan, Z.; Fan, X.; Yu, C.; Guan, Q. Correlation Between Gut Microbiota and Testosterone in Male Patients with Type 2 Diabetes Mellitus. Front. Endocrinol. 2022, 13, 836485. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.Y.; Lin, C.L.; Kao, C.H. Irritable bowel syndrome is associated not only with organic but also psychogenic erectile dysfunction. Int. J. Impot. Res. 2015, 27, 233–238. Available online: https://www.nature.com/articles/ijir201525 (accessed on 22 May 2025). [CrossRef] [PubMed]
- Zhu, T.; Liu, X.; Yang, P.; Ma, Y.; Gao, P.; Gao, J.; Jiang, H.; Zhang, X. The Association between the Gut Microbiota and Erectile Dysfunction. World J. Men’s Health 2024, 42, 772. [Google Scholar] [CrossRef] [PubMed]
- Costalonga, M.; Herzberg, M.C. The oral microbiome and the immunobiology of periodontal disease and caries. Immunol. Lett. 2014, 162, 22–38. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC4346134/ (accessed on 22 May 2025). [CrossRef]
- Qin, H.; Liu, J.; Li, Y.Y.; Xu, Y.L.; Yan, Y.F. Gender-specific microbial signatures in saliva: Unveiling the association between the oral microbiome and the pathogenesis of glioma. Heliyon 2024, 10, e37284. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC11407923/ (accessed on 22 May 2025). [CrossRef]
- Zhao, Y.-Q.; Zhou, Y.-H.; Zhao, J.; Feng, Y.; Gao, Z.-R.; Ye, Q.; Liu, Q.; Chen, Y.; Zhang, S.-H.; Tan, L.; et al. Sex Variations in the Oral Microbiomes of Youths with Severe Periodontitis. J. Immunol. Res. 2021, 2021, 8124593. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC8550847/ (accessed on 22 May 2025). [CrossRef]
- Cornejo Ulloa, P.; Krom, B.P.; van der Veen, M.H. Sex Steroid Hormones as a Balancing Factor in Oral Host Microbiome Interactions. Front. Cell. Infect. Microbiol. 2021, 11, 714229. Available online: https://pubmed.ncbi.nlm.nih.gov/34660339/ (accessed on 22 May 2025). [CrossRef] [PubMed]
- Stokowa-Sołtys, K.; Wojtkowiak, K.; Jagiełło, K. Fusobacterium nucleatum—Friend or foe? J. Inorg. Biochem. Elsevier Inc. 2021, 224, 111586. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Wu, Z.; Li, M.; Shao, M.; Hu, T. Interleukin-1β is a potential therapeutic target for periodontitis: A narrative review. Int. J. Oral Sci. 2020, 12, 2. Available online: https://pubmed.ncbi.nlm.nih.gov/31900383/ (accessed on 22 May 2025). [CrossRef] [PubMed]
- Mortazavi, V.; Roozbeh, N.; Banaei, M.; Kutenaei, M.A. Exploring the link between periodontal disease and sperm quality: A comprehensive systematic review study. BMC Oral Health 2025, 25, 742. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC12093808/ (accessed on 22 May 2025). [CrossRef]
- Zhou, X.; Cao, F.; Lin, Z.; Wu, D. Updated Evidence of Association Between Periodontal Disease and Incident Erectile Dysfunction. J. Sex. Med. 2019, 16, 61–69. Available online: https://pubmed.ncbi.nlm.nih.gov/30621927/ (accessed on 22 May 2025). [CrossRef] [PubMed]
- Singh, V.; Nettemu, S.; Nettem, S.; Hosadurga, R.; Nayak, S. Oral Health and Erectile Dysfunction. J. Hum. Reprod. Sci. 2017, 10, 162. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC5672720/ (accessed on 22 May 2025). [CrossRef]
- Robertson, S.A.; Mau, V.J.; Tremellen, K.P.; Seamark, R.F. Role of high molecular weight seminal vesicle proteins in eliciting the uterine inflammatory response to semen in mice. J. Reprod. Fertil. 1996, 107, 265–277. Available online: https://pubmed.ncbi.nlm.nih.gov/8882294/ (accessed on 3 April 2025). [CrossRef]
- Chen, J.C.; Johnson, B.A.; Erikson, D.W.; Piltonen, T.T.; Barragan, F.; Chu, S.; Kohgadai, N.; Irwin, J.C.; Greene, W.C.; Giudice, L.C.; et al. Seminal plasma induces global transcriptomic changes associated with cell migration, proliferation and viability in endometrial epithelial cells and stromal fibroblasts. Hum. Reprod. 2014, 29, 1255–1270. Available online: https://pubmed.ncbi.nlm.nih.gov/24626806/ (accessed on 3 April 2025). [CrossRef]
- Crawford, G.; Ray, A.; Gudi, A.; Shah, A.; Homburg, R. The role of seminal plasma for improved outcomes during in vitro fertilization treatment: Review of the literature and meta-analysis. Hum. Reprod. Update 2015, 21, 275–284. Available online: https://pubmed.ncbi.nlm.nih.gov/25281684/ (accessed on 22 May 2025). [CrossRef]
- Sharkey, D.J.; Macpherson, A.M.; Tremellen, K.P.; Mottershead, D.G.; Gilchrist, R.B.; Robertson, S.A. TGF-β Mediates Proinflammatory Seminal Fluid Signaling in Human Cervical Epithelial Cells. J. Immunol. 2012, 189, 1024–1035. [Google Scholar] [CrossRef]
- Bromfield, J.J.; Schjenken, J.E.; Chin, P.Y.; Care, A.S.; Jasper, M.J.; Robertson, S.A. Maternal tract factors contribute to paternal seminal fluid impact on metabolic phenotype in offspring. Proc. Natl. Acad. Sci. USA 2014, 111, 2200–2205. [Google Scholar] [CrossRef]
- Weng, S.-L.; Chiu, C.-M.; Lin, F.-M.; Huang, W.-C.; Liang, C.; Yang, T.; Yang, T.-L.; Liu, C.-Y.; Wu, W.-Y.; Chang, Y.-A.; et al. Bacterial communities in semen from men of infertile couples: Metagenomic sequencing reveals relationships of seminal microbiota to semen quality. PLoS ONE 2014, 23, 9. Available online: https://pubmed.ncbi.nlm.nih.gov/25340531/ (accessed on 3 April 2025). [CrossRef] [PubMed]
- Baud, D.; Pattaroni, C.; Vulliemoz, N.; Castella, V.; Marsland, B.J.; Stojanov, M. Sperm microbiota and its impact on semen parameters. Front. Microbiol. 2019, 10, 234. Available online: https://pubmed.ncbi.nlm.nih.gov/30809218/ (accessed on 3 April 2025). [CrossRef]
- Monteiro, C.; Marques, P.I.; Cavadas, B.; Damião, I.; Almeida, V.; Barros, N.; Barros, A.; Carvalho, F.; Gomes, S.; Seixas, S. Characterization of microbiota in male infertility cases uncovers differences in seminal hyperviscosity and oligoasthenoteratozoospermia possibly correlated with increased prevalence of infectious bacteria. Am. J. Reprod. Immunol. 2018, 79, e12838. [Google Scholar] [CrossRef]
- Lundy, S.D.; Sangwan, N.; Parekh, N.V.; Selvam, M.K.P.; Gupta, S.; McCaffrey, P.; Bessoff, K.; Vala, A.; Agarwal, A.; Sabanegh, E.S.; et al. Functional and Taxonomic Dysbiosis of the Gut, Urine, and Semen Microbiomes in Male Infertility. Eur. Urol. 2021, 79, 826–836. Available online: https://www.sciencedirect.com/science/article/pii/S0302283821000191?via%3Dihub (accessed on 3 April 2025). [CrossRef]
- Zuber, A.; Peric, A.; Pluchino, N.; Baud, D.; Stojanov, M. Human Male Genital Tract Microbiota. Int. J. Mol. Sci. 2023, 24, 6939. Available online: https://www.mdpi.com/1422-0067/24/8/6939 (accessed on 3 April 2025). [CrossRef]
- Baud, D.; Peric, A.; Vidal, A.; Weiss, J.M.; Engel, P.; Das, S.; Stojanov, M. Genital microbiota in infertile couples. bioRxiv 2024. [Google Scholar] [CrossRef]
- Inversetti, A.; Zambella, E.; Guarano, A.; Dell’Avanzo, M.; Di Simone, N. Endometrial Microbiota and Immune Tolerance in Pregnancy. Int. J. Mol. Sci. 2023, 24, 2995. Available online: https://pubmed.ncbi.nlm.nih.gov/36769318/ (accessed on 3 April 2025). [CrossRef] [PubMed]
- Molina, N.M.; Plaza-Díaz, J.; Vilchez-Vargas, R.; Sola-Leyva, A.; Vargas, E.; Mendoza-Tesarik, R.; Galán-Lázaro, M.; de Guevara, N.M.-L.; Tesarik, J.; Altmäe, S. Assessing the testicular sperm microbiome: A low-biomass site with abundant contamination. Reprod. Biomed. Online 2021, 43, 523–531. Available online: https://www.rbmojournal.com/action/showFullText?pii=S1472648321003059 (accessed on 3 April 2025). [CrossRef]
- Jain, S.; Samal, A.G.; Das, B.; Pradhan, B.; Sahu, N.; Mohapatra, D.; Behera, P.K.; Satpathi, P.S.; Mohanty, A.K.; Satpathi, S.; et al. Escherichia coli, a common constituent of benign prostate hyperplasia-associated microbiota induces inflammation and DNA damage in prostate epithelial cells. Prostate 2020, 80, 1341–1352. Available online: https://pubmed.ncbi.nlm.nih.gov/32835423/ (accessed on 3 April 2025). [CrossRef]
- Okada, K.; Takezawa, K.; Tsujimura, G.; Imanaka, T.; Kuribayashi, S.; Ueda, N.; Hatano, K.; Fukuhara, S.; Kiuchi, H.; Fujita, K.; et al. Localization and potential role of prostate microbiota. Front. Cell. Infect. Microbiol. 2022, 12, 1048319. Available online: https://huttenhower.sph.harvard.edu/galaxy/ (accessed on 3 April 2025). [CrossRef]
- Gonçalves, M.F.M.; Fernandes, Â.R.; Rodrigues, A.G.; Lisboa, C. Microbiome in Male Genital Mucosa (Prepuce, Glans, and Coronal Sulcus): A Systematic Review. Microorganisms 2022, 10, 2312. Available online: https://pubmed.ncbi.nlm.nih.gov/36557565/ (accessed on 3 April 2025). [CrossRef]
- Prodger, J.L.; Abraham, A.G.; Tobian, A.A.; Park, D.E.; Aziz, M.; Roach, K.; Gray, R.H.; Buchanan, L.; Kigozi, G.; Galiwango, R.M.; et al. Penile bacteria associated with HIV seroconversion, inflammation, and immune cells. JCI Insight 2021, 6, e147363. Available online: https://pubmed.ncbi.nlm.nih.gov/33884964/ (accessed on 3 April 2025). [CrossRef] [PubMed]
- Aitken, R.J. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Mol. Reprod. Dev. 2017, 84, 1039–1052. [Google Scholar] [CrossRef] [PubMed]
- Takalani, N.B.; Monaneng, E.M.; Mohlala, K.; Monsees, T.K.; Henkel, R.; Opuwari, C.S. Role of oxidative stress in male infertility. Reprod. Fertil. 2023, 4, e230024. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC10388648/ (accessed on 3 April 2025). [CrossRef]
- Zeng, Q.; Feng, X.; Hu, Y.; Su, S. The human gut microbiota is associated with host lifestyle: A comprehensive narrative review. Front. Microbiol. 2025, 16, 1549160. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.L.T.; Vaughan-Constable, D.R.; Ramsay, J.; Jayasena, C.; Tharakan, T.; Yap, T.; Whiteman, I.; Graham, N.; Minhas, S.; Homa, S.T. The relationship between genitourinary microorganisms and oxidative stress, sperm DNA fragmentation and semen parameters in infertile men. Andrologia 2022, 54, e14322. Available online: https://pubmed.ncbi.nlm.nih.gov/34817086/ (accessed on 3 April 2025). [CrossRef]
- Yauk, C.L.; Berndt, M.L.; Williams, A.; Rowan-Carroll, A.; Douglas, G.R.; Stämpfli, M.R. Mainstream tobacco smoke causes paternal germ-line DNA mutation. Cancer Res. 2007, 67, 5103–5106. Available online: https://pubmed.ncbi.nlm.nih.gov/17545587/ (accessed on 15 March 2025). [CrossRef]
- Zhong, L.; Qin, L.; Ding, X.; Ma, L.; Wang, Y.; Liu, M.; Chen, H.; Yan, H.; Song, L. The regulatory effect of fermented black barley on the gut microbiota and metabolic dysbiosis in mice exposed to cigarette smoke. Food Res. Int. 2022, 157, 111465. Available online: https://pubmed.ncbi.nlm.nih.gov/35761699/ (accessed on 15 March 2025). [CrossRef]
- Ding, N.; Zhang, X.; Di Zhang, X.; Jing, J.; Liu, S.S.; Mu, Y.P.; Peng, L.L.; Yan, Y.J.; Xiao, G.M.; Bi, X.Y.; et al. Impairment of spermatogenesis and sperm motility by the high-fat diet-induced dysbiosis of gut microbes. Gut 2020, 69, 1608–1619. Available online: https://pubmed.ncbi.nlm.nih.gov/31900292/ (accessed on 15 March 2025). [CrossRef]
- Zhang, T.; Sun, P.; Geng, Q.; Fan, H.; Gong, Y.; Hu, Y.; Shan, L.; Sun, Y.; Shen, W.; Zhou, Y. Disrupted spermatogenesis in a metabolic syndrome model: The role of vitamin A metabolism in the gut–testis axis. Gut 2022, 71, 78–87. Available online: https://pubmed.ncbi.nlm.nih.gov/33504491/ (accessed on 15 March 2025). [CrossRef]
- Murphy, E.A.; Velazquez, K.T.; Herbert, K.M. Influence of high-fat diet on gut microbiota: A driving force for chronic disease risk. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 515–520. Available online: https://pubmed.ncbi.nlm.nih.gov/26154278/ (accessed on 15 March 2025). [CrossRef] [PubMed]
- Watkins, A.J.; Dias, I.; Tsuro, H.; Allen, D.; Emes, R.D.; Moreton, J.; Wilson, R.; Ingram, R.J.; Sinclair, K.D. Paternal diet programs offspring health through sperm- and seminal plasma-specific pathways in mice. Proc. Natl. Acad. Sci. USA 2018, 115, 10064–10069. Available online: https://pubmed.ncbi.nlm.nih.gov/30150380/ (accessed on 15 March 2025). [CrossRef] [PubMed]
- Wu, S.; Bhat, Z.F.; Gounder, R.S.; Ahmed, I.A.M.; Al-Juhaimi, F.Y.; Ding, Y.; Bekhit, A.E.-D.A. Effect of Dietary Protein and Processing on Gut Microbiota—A Systematic Review. Nutrients 2022, 14, 453. Available online: https://www.mdpi.com/2072-6643/14/3/453/htm (accessed on 15 March 2025). [CrossRef] [PubMed]
- Lin, Y.; Wang, K.; Che, L.; Fang, Z.; Xu, S.; Feng, B.; Zhuo, Y.; Li, J.; Wu, C.; Zhang, J.; et al. The Improvement of Semen Quality by Dietary Fiber Intake Is Positively Related with Gut Microbiota and SCFA in a Boar Model. Front. Microbiol. 2022, 13, 863315. Available online: https://www.scopus.com/record/display.uri?eid=2-s2.0-85130880651&origin=inward (accessed on 15 March 2025). [CrossRef]
- Shock, T.; Badang, L.; Ferguson, B.; Martinez-Guryn, K. The interplay between diet, gut microbes, and host epigenetics in health and disease. J. Nutr. Biochem. 2021, 95, 108631. Available online: https://pubmed.ncbi.nlm.nih.gov/33789148/ (accessed on 15 March 2025). [CrossRef]
- Dong, Y.; Zhang, K.; Wei, J.; Ding, Y.; Wang, X.; Hou, H.; Wu, J.; Liu, T.; Wang, B.; Cao, H. Gut microbiota-derived short-chain fatty acids regulate gastrointestinal tumor immunity: A novel therapeutic strategy? Front. Immunol. 2023, 14, 1158200. Available online: https://pubmed.ncbi.nlm.nih.gov/37122756/ (accessed on 24 May 2025). [CrossRef] [PubMed]
- Foster, J.A.; Rinaman, L.; Cryan, J.F. Stress & the gut-brain axis: Regulation by the microbiome. Neurobiol. Stress 2017, 7, 124–136. Available online: https://www.sciencedirect.com/science/article/pii/S2352289516300509 (accessed on 24 May 2025). [CrossRef]
- Karl, P.J.; Hatch, A.M.; Arcidiacono, S.M.; Pearce, S.C.; Pantoja-Feliciano, I.G.; Doherty, L.A.; Soares, J.W. Effects of psychological, environmental and physical stressors on the gut microbiota. Front. Microbiol. 2018, 9, 2013. Available online: https://pubmed.ncbi.nlm.nih.gov/30258412/ (accessed on 15 April 2025). [CrossRef]
- Cai, H.; Cao, X.; Qin, D.; Liu, Y.; Liu, Y.; Hua, J.; Peng, S. Gut microbiota supports male reproduction via nutrition, immunity, and signaling. Front. Microbiol. 2022, 13, 977574. [Google Scholar] [CrossRef] [PubMed]
- Pascoal, G.d.F.L.; Geraldi, M.V.; Maróstica, M.R.; Ong, T.P. Effect of Paternal Diet on Spermatogenesis and Offspring Health: Focus on Epigenetics and Interventions with Food Bioactive Compounds. Nutrients 2022, 14, 2150. Available online: https://pubmed.ncbi.nlm.nih.gov/35631291/ (accessed on 28 May 2025). [CrossRef]
- Monneret, C. What is an endocrine disruptor? Comptes Rendus Biol. 2017, 340, 403–405. Available online: https://pubmed.ncbi.nlm.nih.gov/29126512/ (accessed on 15 March 2025). [CrossRef]
- Zhao, T.-X.; Wei, Y.-X.; Wang, J.-K.; Han, L.-D.; Sun, M.; Wu, Y.-H.; Shen, L.-J.; Long, C.-L.; Wu, S.-D.; Wei, G.-H. The gut-microbiota-testis axis mediated by the activation of the Nrf2 antioxidant pathway is related to prepuberal steroidogenesis disorders induced by di-(2-ethylhexyl) phthalate. Environ. Sci. Pollut. Res. 2020, 27, 35261–35271. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, X.; Zhang, X.; Ren, X.; Wu, J.; Wang, Z.; Wang, S.; Wang, Z. Gut microbiota may contribute to the postnatal male reproductive abnormalities induced by prenatal dibutyl phthalate exposure. Chemosphere 2022, 287, 132046. Available online: https://www.sciencedirect.com/science/article/pii/S0045653521025182 (accessed on 17 March 2025). [CrossRef]
- Xue, S.; Li, X.; Zhou, S.; Zhang, J.; Sun, K.; Peng, X.; Chen, N.; Dong, M.; Jiang, T.; Chen, Y.; et al. Effects and mechanisms of endocrine disruptor bisphenol AF on male reproductive health: A mini review. Ecotoxicol. Environ. Saf. 2024, 276, 116300. Available online: https://pubmed.ncbi.nlm.nih.gov/38583312/ (accessed on 17 March 2025). [CrossRef] [PubMed]
- Chiu, K.; Warner, G.; Nowak, R.A.; Flaws, J.A.; Mei, W. The Impact of Environmental Chemicals on the Gut Microbiome. Toxicol. Sci. 2020, 176, 253–284. [Google Scholar] [CrossRef]
- Liu, R.; Cai, D.; Li, X.; Liu, B.; Chen, J.; Jiang, X.; Li, H.; Li, Z.; Teerds, K.; Sun, J.; et al. Effects of Bisphenol A on reproductive toxicity and gut microbiota dysbiosis in male rats. Ecotoxicol. Environ. Saf. 2022, 239, 113623. [Google Scholar] [CrossRef]
- Zhao, N.; Kong, Y.; Yuan, Q.; Wei, Z.; Gu, J.; Ji, C.; Jin, H.; Zhao, M. The toxic mechanism of 6:2 Cl-PFESA in adolescent male rats: Endocrine disorders and liver inflammation regulated by the gut microbiota-gut-testis/liver axis. J. Hazard. Mater. 2023, 459, 132155. Available online: https://www.sciencedirect.com/science/article/pii/S0304389423014383 (accessed on 17 March 2025). [CrossRef]
- Li, J.W.; Fang, B.; Pang, G.F.; Zhang, M.; Ren, F.Z. Age- and diet-specific effects of chronic exposure to chlorpyrifos on hormones, inflammation and gut microbiota in rats. Pestic. Biochem. Physiol. 2019, 159, 68–79. Available online: https://www.sciencedirect.com/science/article/pii/S0048357518306011 (accessed on 17 March 2025). [CrossRef] [PubMed]
- Djekkoun, N.; Lalau, J.D.; Bach, V.; Depeint, F.; Khorsi-Cauet, H. Chronic oral exposure to pesticides and their consequences on metabolic regulation: Role of the microbiota. Eur. J. Nutr. 2021, 60, 4131–4149. Available online: https://pubmed.ncbi.nlm.nih.gov/33837455/ (accessed on 18 March 2025). [CrossRef]
- Ruuskanen, S.; Rainio, M.J.; Gómez-Gallego, C.; Selenius, O.; Salminen, S.; Collado, M.C.; Saikkonen, K.; Saloniemi, I.; Helander, M. Glyphosate-based herbicides influence antioxidants, reproductive hormones and gut microbiome but not reproduction: A long-term experiment in an avian model. Environ. Pollut. 2020, 266, 115108. Available online: https://www.sciencedirect.com/science/article/pii/S0269749120325379 (accessed on 18 March 2025). [CrossRef]
- Liu, J.B.; Chen, K.; Li, Z.F.; Wang, Z.Y.; Wang, L. Glyphosate-induced gut microbiota dysbiosis facilitates male reproductive toxicity in rats. Sci. Total Environ. 2022, 805, 150368. Available online: https://www.sciencedirect.com/science/article/pii/S0048969721054450 (accessed on 18 March 2025). [CrossRef]
- Wen, S.; Zhao, Y.; Liu, S.; Yuan, H.; You, T.; Xu, H. Microplastics-perturbed gut microbiota triggered the testicular disorder in male mice: Via fecal microbiota transplantation. Environ. Pollut. 2022, 309, 119789. Available online: https://www.sciencedirect.com/science/article/pii/S026974912201003X (accessed on 19 March 2025). [CrossRef] [PubMed]
- Sun, J.; Teng, M.; Zhu, W.; Zhao, X.; Zhao, L.; Li, Y.; Zhang, Z.; Liu, Y.; Bi, S.; Wu, F. MicroRNA and Gut Microbiota Alter Intergenerational Effects of Paternal Exposure to Polyethylene Nanoplastics. ACS Nano 2024, 18, 18085–18100. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhong, X.; Chen, L.; Gong, L.; Luo, L.; He, Q.; Zhu, L.; Tian, K. Gut microbiota combined with metabolome dissects long-term nanoplastics exposure-induced disturbed spermatogenesis. Ecotoxicol. Environ. Saf. 2023, 267, 115626. Available online: https://www.sciencedirect.com/science/article/pii/S0147651323011302?via%3Dihub (accessed on 19 March 2025). [CrossRef]
- Bogaert, D.; van Beveren, G.J.; de Koff, E.M.; Parga, P.L.; Lopez, C.E.B.; Koppensteiner, L.; Clerc, M.; Hasrat, R.; Arp, K.; Chu, M.L.J.; et al. Mother-to-infant microbiota transmission and infant microbiota development across multiple body sites. Cell Host Microbe 2023, 31, 447–460.e6. Available online: https://pubmed.ncbi.nlm.nih.gov/36893737/ (accessed on 22 April 2025). [CrossRef] [PubMed]
- Dubois, L.; Valles-Colomer, M.; Ponsero, A.; Helve, O.; Andersson, S.; Kolho, K.-L.; Asnicar, F.; Korpela, K.; Salonen, A.; Segata, N.; et al. Paternal and induced gut microbiota seeding complement mother-to-infant transmission. Cell Host Microbe 2024, 32, 1011–1024.e4. Available online: https://www.cell.com/action/showFullText?pii=S1931312824001768 (accessed on 22 April 2025). [CrossRef] [PubMed]
- Podlesny, D.; Fricke, W.F. Strain inheritance and neonatal gut microbiota development: A meta-analysis. Int. J. Med. Microbiol. 2021, 311, 151483. Available online: https://www.sciencedirect.com/science/article/pii/S1438422121000126?via%3Dihub (accessed on 22 April 2025). [CrossRef]
- Korpela, K.; Costea, P.; Coelho, L.P.; Kandels-Lewis, S.; Willemsen, G.; Boomsma, D.I.; Segata, N.; Bork, P. Selective maternal seeding and environment shape the human gut microbiome. Genome Res. 2018, 28, 561–568. Available online: http://genome.cshlp.org/content/28/4/561.full (accessed on 22 April 2025). [CrossRef] [PubMed]
- Valles-Colomer, M.; Blanco-Míguez, A.; Manghi, P.; Asnicar, F.; Dubois, L.; Golzato, D.; Armanini, F.; Cumbo, F.; Huang, K.D.; Manara, S.; et al. The person-to-person transmission landscape of the gut and oral microbiomes. Nature 2023, 614, 125–135. Available online: https://www.nature.com/articles/s41586-022-05620-1 (accessed on 22 April 2025). [CrossRef]
- Contu, L.; Hawkes, C.A. A Review of the Impact of Maternal Obesity on the Cognitive Function and Mental Health of the Offspring. Int. J. Mol. Sci. 2017, 18, 1093. Available online: https://www.mdpi.com/1422-0067/18/5/1093/htm (accessed on 13 March 2025). [CrossRef]
- Govic, A.; Penman, J.; Tammer, A.H.; Paolini, A.G. Paternal calorie restriction prior to conception alters anxiety-like behavior of the adult rat progeny. Psychoneuroendocrinology 2016, 64, 1–11. Available online: https://pubmed.ncbi.nlm.nih.gov/26571216/ (accessed on 13 March 2025). [CrossRef] [PubMed]
- Sasaki, A.; de Vega, W.C.; St-Cyr, S.; Pan, P.; McGowan, P.O. Perinatal high fat diet alters glucocorticoid signaling and anxiety behavior in adulthood. Neuroscience 2013, 240, 1–12. Available online: https://www.sciencedirect.com/science/article/pii/S0306452213001851#aep-abstract-id16 (accessed on 13 March 2025). [CrossRef] [PubMed]
- Ng, S.F.; Lin, R.C.Y.; Laybutt, D.R.; Barres, R.; Owens, J.A.; Morris, M.J. Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature 2010, 467, 963–966. Available online: https://www.nature.com/articles/nature09491 (accessed on 13 March 2025). [CrossRef] [PubMed]
- Marmorstein, N.R.; Iacono, W.G. Associations between Depression and Obesity in Parents and Their Late-Adolescent Offspring: A Community-Based Study. Psychosom. Med. 2016, 78, 861–866. Available online: https://www.scopus.com/record/display.uri?eid=2-s2.0-84964765969&origin=inward (accessed on 13 March 2025). [CrossRef]
- Bodden, C.; Pang, T.Y.; Feng, Y.; Mridha, F.; Kong, G.; Li, S.; Watt, M.J.; Reichelt, A.C.; Hannan, A.J. Intergenerational effects of a paternal Western diet during adolescence on offspring gut microbiota, stress reactivity, and social behavior. FASEB J. 2022, 36, e21981. [Google Scholar] [CrossRef]
- Masson, B.A.; Kiridena, P.; Lu, D.; Kleeman, E.A.; Reisinger, S.N.; Qin, W.; Davies, W.J.; Muralitharan, R.R.; Jama, H.A.; Antonacci, S.; et al. Depletion of the paternal gut microbiome alters sperm small RNAs and impacts offspring physiology and behavior in mice. Brain Behav. Immun. 2025, 123, 290–305. Available online: https://pubmed.ncbi.nlm.nih.gov/39293692/ (accessed on 20 March 2025). [CrossRef]
- Korgan, A.C.; Foxx, C.L.; Hashmi, H.; Sago, S.A.; Stamper, C.E.; Heinze, J.D.; O’lEary, E.; King, J.L.; Perrot, T.S.; Lowry, C.A.; et al. Effects of paternal high-fat diet and maternal rearing environment on the gut microbiota and behavior. Sci. Rep. 2022, 12, 10179. Available online: https://www.nature.com/articles/s41598-022-14095-z (accessed on 20 March 2025). [CrossRef]
- Zhang, Y.; Hu, T.; Wang, X.; Sun, N.; Cai, Q.; Kim, H.Y.; Fan, Y.; Liu, D.; Guan, X. Profiles of gut microbiota and metabolites for high risk of transgenerational depression-like behavior by paternal methamphetamine exposure. FASEB J. 2025, 39, e70386. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, Y.; Sun, G.; Hasan, A.A.; Tian, M.; Zeng, S.; Li, J.; Zeng, S.; Ma, J.; Li, J.; et al. Paternal programming of liver function and lipid profile induced by a paternal pre-conceptional unhealthy diet: Potential association with altered gut microbiome composition. Kidney Blood Press. Res. 2019, 44, 133–148. Available online: https://pubmed.ncbi.nlm.nih.gov/30808832/ (accessed on 20 March 2025). [CrossRef]
- Chleilat, F.; Schick, A.; Deleemans, J.M.; Ma, K.; Alukic, E.; Wong, J.; Tuplin, E.W.N.; Nettleton, J.E.; Reimer, R.A. Paternal high protein diet modulates body composition, insulin sensitivity, epigenetics, and gut microbiota intergenerationally in rats. FASEB J. 2021, 35, e21847. [Google Scholar] [CrossRef] [PubMed]
- Chleilat, F.; Schick, A.; Reimer, R.A. Microbiota Changes in Fathers Consuming a High Prebiotic Fiber Diet Have Minimal Effects on Male and Female Offspring in Rats. Nutrients 2021, 13, 820. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC8001975/ (accessed on 13 March 2025). [CrossRef]
- Sheth, V.G.; Sharma, N.; Kabeer, S.W.; Tikoo, K. Lactobacillus rhamnosus supplementation ameliorates high fat diet-induced epigenetic alterations and prevents its intergenerational inheritance. Life Sci. 2022, 311, 121151. Available online: https://pubmed.ncbi.nlm.nih.gov/36343744/ (accessed on 13 March 2025). [CrossRef]
- Ding, T.; Mokshagundam, S.; Rinaudo, P.F.; Osteen, K.G.; Bruner-Tran, K.L. Paternal developmental toxicant exposure is associated with epigenetic modulation of sperm and placental Pgr and Igf2 in a mouse model. Biol. Reprod. 2018, 99, 864. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC6203877/ (accessed on 22 May 2025). [CrossRef]
- Rumph, J.T.; Stephens, V.R.; Ameli, S.; Gaines, P.N.; Osteen, K.G.; Bruner-Tran, K.L.; Nde, P.N. A Paternal Fish Oil Diet Preconception Modulates the Gut Microbiome and Attenuates Necrotizing Enterocolitis in Neonatal Mice. Mar. Drugs 2022, 20, 390. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC9230221/ (accessed on 30 March 2025). [CrossRef]
- Warner, B.B.; Deych, E.; Zhou, Y.; Hall-Moore, C.; Weinstock, G.M.; Sodergren, E.; Shaikh, N.; Hoffmann, J.A.; Linneman, L.A.; Hamvas, A.; et al. Gut bacteria dysbiosis and necrotising enterocolitis in very low birthweight infants: A prospective case-control study. Lancet 2016, 387, 1928–1936. Available online: https://pubmed.ncbi.nlm.nih.gov/26969089/ (accessed on 30 March 2025). [CrossRef]
- Manikkam, M.; Tracey, R.; Guerrero-Bosagna, C.; Skinner, M.K. Plastics Derived Endocrine Disruptors (BPA, DEHP and DBP) Induce Epigenetic Transgenerational Inheritance of Obesity, Reproductive Disease and Sperm Epimutations. PLoS ONE 2013, 8, e55387. [Google Scholar] [CrossRef]
- Akhatova, A.; Jones, C.; Coward, K.; Yeste, M. How do lifestyle and environmental factors influence the sperm epigenome? Effects on sperm fertilising ability, embryo development, and offspring health. Clin. Epigenetics 2025, 17, 7. Available online: https://pubmed.ncbi.nlm.nih.gov/39819375/ (accessed on 22 May 2025). [CrossRef] [PubMed]
- Woo, V.; Alenghat, T. Epigenetic regulation by gut microbiota. Gut Microbes 2022, 14, 2022407. Available online: https://pubmed.ncbi.nlm.nih.gov/35000562/ (accessed on 22 May 2025). [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zambella, E.; Inversetti, A.; Salerno, S.; Müller, M.; Di Simone, N. The Father’s Microbiome: A Hidden Contributor to Fetal and Long-Term Child Health. Biology 2025, 14, 1002. https://doi.org/10.3390/biology14081002
Zambella E, Inversetti A, Salerno S, Müller M, Di Simone N. The Father’s Microbiome: A Hidden Contributor to Fetal and Long-Term Child Health. Biology. 2025; 14(8):1002. https://doi.org/10.3390/biology14081002
Chicago/Turabian StyleZambella, Enrica, Annalisa Inversetti, Silvia Salerno, Martin Müller, and Nicoletta Di Simone. 2025. "The Father’s Microbiome: A Hidden Contributor to Fetal and Long-Term Child Health" Biology 14, no. 8: 1002. https://doi.org/10.3390/biology14081002
APA StyleZambella, E., Inversetti, A., Salerno, S., Müller, M., & Di Simone, N. (2025). The Father’s Microbiome: A Hidden Contributor to Fetal and Long-Term Child Health. Biology, 14(8), 1002. https://doi.org/10.3390/biology14081002