Cellular Solutions: Evaluating Single-Cell Proteins as Sustainable Feed Alternatives in Aquaculture
Simple Summary
Abstract
1. Introduction
2. SCP Market
3. Different Types of SCP
3.1. Yeast and Other Fungi
3.2. Microalgae
3.3. Bacteria
3.4. Endophytes as a Potential Source of SCP
4. Nutritional Value of SCP
5. Enhancement of the Nutritional Value of SCP
5.1. Optimizing the Production Process
5.2. Genetic Engineering
5.3. Substrate Optimization
5.4. Selective Strain Development
5.5. Metabolic Pathway Optimization
5.6. Epigenetic Modulation
5.7. Co-Cultivation Systems
5.8. Cell Wall Disruption
6. Production of SCP
7. Criteria for the Selection and Evaluation of SCPs in Aquaculture
8. Effects of SCPs in Aquaculture
8.1. Nutrigenomic Effects of SCP
8.2. Effects of SCPs on Immunomodulation
8.3. Effect of SCPs on Feed Intake and Growth Performance
8.4. Effect of SCPs on Gut Health
Type of SCP | Test Organism | Size/Stage | Duration | Concentration | Result | Reference |
---|---|---|---|---|---|---|
A. niger | Fingerlings Cirrhinus reba | Fingerlings 4.66 ± 0.2 g | 60 days | 10% and 20% |
| [61] |
Filamentous fungi Paecilomyces variotii | Atlantic Salmon (S. salar) | 24 g | 63 days | 20% |
| [212] |
Bacterial protein meal (BPM) | Atlantic Salmon (S. salar) | 170 g | 48 days | 18% and 36% |
| [213] |
S. cerevisiae (whole yeast cell) | Oreochromis niloticus | 80 ± 5 g | 2 months | Basal diet + 2 g/kg |
| [57] |
Immunowall S. cerevisiae (yeast) β-glucan (βG) and mannan oligosaccharides (MOSs) | Oreochromis niloticus | 50.7 ± 0.8 g | 2 months | 0.2% |
| [58] |
Microalgae S. pacifica | Rainbow trout (O. mykiss) | 14.66 g | 35 days | 10% Spirulina meal + basal diets |
| [205] |
Microalgae meal | Juvenile Pacific white shrimp (L. vannamei) | Juveniles 1.73 ± 0.003 g | 44 days | 10%, 20%, 30%, and 40% |
| [214] |
Tisochrysis lutea and Tetraselmis suecica | Gilthead seabream (S. aurata) | 49 ± 0.4 g | 84 days | Replaced 10% crude protein from the mixture of vegetable protein sources in the control diet |
| [15] |
S. cerevisiae SCP | Atlantic salmon (S. salar) | 28 g | 89 days | Substituting 40% of the crude protein from fishmeal |
| [46] |
Brewer’s yeast S. cerevisiae | Juvenile sea bass (Dicentrarchus labrax) | Juveniles 12 g | 84 days | 10%, 20%, 30% of dietary nitrogen from yeast |
| [215] |
S. maxima | Oreochromis mossambicus fry | 279 mg (20–30 days old, mixed sexes) | 63 days | Fishmeal was replaced with algae protein at ratios of 20% and 40% |
| [216] |
Brewer’s yeast (S. cerevisiae) | Juvenile Thai panga (Pangasianodon hypophthalmus × Pangasius bocourti) | Juveniles 36.4 ± 0.07 g | 270 days | 45% |
| [217] |
SCP methanophillic bacterial origin | Rainbow trout (Salmo guirdnerii Richardson) | 16–17 g | 112 days | 21% dry weight |
| [218] |
Methylococcus capsulatus bacteria meal | Pacific white shrimp (L. vannamei) | 0.88 ± 0.01 g | 49 days | 45% replacing fish meal |
| [219] |
Corynebacterium glutamicum SCP | Flathead grey mullet (Mugil cephalus) | 68 g | 113 days | 10%, 20% |
| [220] |
9. Challenges and Future Perspectives
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miladinov, G. Impacts of Population Growth and Economic Development on Food Security in Low-Income and Middle-Income Countries. Front. Hum. Dyn. 2023, 5, 1121662. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2024—Blue Transformation in Action; FAO: Rome, Italy, 2024. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2024—Financing to End Hunger, Food Insecurity and Malnutrition in All Its Forms; FAO: Rome, Italy, 2024. [CrossRef]
- Torres-Maravilla, E.; Parra, M.; Maisey, K.; Vargas, R.A.; Cabezas-Cruz, A.; Gonzalez, A.; Tello, M.; Bermúdez-Humarán, L.G. Importance of Probiotics in Fish Aquaculture: Towards the Identification and Design of Novel Probiotics. Microorganisms 2024, 12, 626. [Google Scholar] [CrossRef]
- Oehlenschläger, J. Seafood: Nutritional Benefits and Risk Aspects. Int. J. Vitam. Nutr. Res. 2012, 82, 168–176. [Google Scholar] [CrossRef]
- Gul, S.; Shafiq, U.; Mir, S.A.; Iqbal, G.; Lone, H.Q. Enhancing Global Food Security through Sustainable Fisheries and Aquaculture: A Comprehensive Review. Asian J. Agric. Ext. Econ. Sociol. 2024, 42, 60–70. [Google Scholar] [CrossRef]
- Fantatto, R.R.; Mota, J.; Ligeiro, C.; Vieira, I.; Guilgur, L.G.; Santos, M.; Murta, D. Exploring Sustainable Alternatives in Aquaculture Feed: The Role of Insects. Aquac. Rep. 2024, 37, 102228. [Google Scholar] [CrossRef]
- Daniel, N. A Review on Replacing Fish Meal in Aqua Feeds Using Plant Protein Sources. Int. J. Fish. Aquat. Stud. 2018, 6, 164–179. [Google Scholar]
- Serra, V.; Pastorelli, G.; German, D.E.A.; Turin, L.; Guerrini, A. Alternative Protein Sources in Aquafeed: Current Scenario and Future Perspectives. Vet. Anim. Sci. 2024, 25, 100381. [Google Scholar] [CrossRef] [PubMed]
- Barange, M.; Coetzee, J.; Takasuka, A.; Hill, K.; Gutierrez, M.; Oozeki, Y.; van der Lingen, J.; Agostini, V. Habitat Expansion and Contraction in Anchovy and Sardine Populations. Prog. Oceanogr. 2009, 83, 251–252. [Google Scholar] [CrossRef]
- Jannathulla, R.; Rajaram, V.; Kalanjiam, R.; Ambasankar, K.; Muralidhar, M.; Dayal, J.S. Fishmeal Availability in the Scenarios of Climate Change: Inevitability of Fishmeal Replacement in Aquafeeds and Approaches for the Utilization of Plant Protein Sources. Aquac. Res. 2019, 50, 3493–3506. [Google Scholar] [CrossRef]
- Ayisi, C.L.; Hua, X.; Apraku, A.; Afriyie, G.; Kyei, B.A. Recent Studies Toward the Development of Practical Diets for Shrimp and Their Nutritional Requirements. J. Biosci. 2017, 24, 109–117. [Google Scholar] [CrossRef]
- Fraijo-Valenzuela, A.; Arias-Moscoso, J.L.; García-Pérez, O.D.; Rodriguez-Anaya, L.Z.; Gonzalez-Galaviz, J.R. The Biotechnological Potential of Crickets as a Sustainable Protein Source for Fishmeal Replacement in Aquafeed. BioTech 2024, 13, 51. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.; Goda, A.S.; El-Haroun, E.R.; Chowdhury, M.A.K. Growth performance and feed utilization of Nile tilapia Oreochromis niloticus (Linnaeus, 1758) and Tilapia galilae Sarotherodon galilaeus (Linnaeus, 1758) Fingerlings Fed Plant Protein-Based Diets. Aquac. Res. 2007, 38, 827–837. [Google Scholar] [CrossRef]
- Pulcini, D.; Capoccioni, F.; Franceschini, S.; Martinoli, M.; Tibaldi, E. Skin Pigmentation in Gilthead Seabream (Sparus aurata L.) Fed Conventional and Novel Protein Sources in Diets Deprived of Fishmeal. Animals 2020, 10, 2138. [Google Scholar] [CrossRef]
- Aragão, C.; Gonçalves, A.T.; Costas, B.; Azeredo, R.; Xavier, M.J.; Engrola, S. Alternative Proteins for Fish Diets: Implications beyond Growth. Animals 2022, 12, 1211. [Google Scholar] [CrossRef]
- Woolley, L.; Chaklader, M.R.; Pilmer, L.; Stephens, F.; Wingate, C.; Salini, M.; Partridge, G. Gas to Protein: Microbial Single Cell Protein Is an Alternative to Fishmeal in Aquaculture. Sci. Total Environ. 2023, 859 Pt 1, 160141. [Google Scholar] [CrossRef]
- Pereira, A.G.; Fraga-Corral, M.; Garcia-Oliveira, P.; Otero, P.; Soria-Lopez, A.; Cassani, L.; Cao, H.; Xiao, J.; Prieto, M.A.; Simal-Gandara, J. Single-Cell Proteins Obtained by the Circular Economy Intended as a Feed Ingredient in Aquaculture. Food 2022, 11, 2831. [Google Scholar] [CrossRef]
- Garcia-Garibay, M.; Gomez-Ruiz, L.; Barzana, E. Single-Cell Protein|Yeasts and Bacteria. In Encyclo; Academic Press: London, UK, 1999; pp. 2027–2034. [Google Scholar] [CrossRef]
- Jones, S.W.; Karpol, A.; Friedman, S.; Maru, B.T.; Tracy, B.P. Recent Advances in Single Cell Protein Use as a Feed Ingredient in Aquaculture. Curr. Opin. Biotechnol. 2020, 61, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Anupama; Ravindra, P. Value-Added Food: Single Cell Protein. Biotechnol. Adv. 2000, 18, 459–479. [Google Scholar] [CrossRef]
- Bajić, B.; Vučurović, D.; Vasić, Đ.; Jevtić-Mučibabić, R.; Dodić, S. Biotechnological Production of Sustainable Microbial Proteins from Agro-Industrial Residues and By-Products. Foods 2022, 12, 107. [Google Scholar] [CrossRef]
- Saeed, M.; Yasmin, I.; Murtaza, M.A.; Fatima, I.; Saeed, S. Single Cell Proteins: A Novel Value Added Food Product. Pak. J. Food Sci. 2016, 26, 211–217. Available online: https://cabidigitallibrary.org (accessed on 15 December 2024).
- Glencross, B.D.; Huyben, D.; Schrama, J.W. The Application of Single-Cell Ingredients in Aquaculture Feeds—A Review. Fishes 2020, 5, 22. [Google Scholar] [CrossRef]
- Tibbetts, S.M. The Potential for ‘Next-Generation’, Microalgae-Based Feed Ingredients for Salmonid Aquaculture in Context of the Blue Revolution. In Microalgal Biotechnology; InTech: Rijeka, Croatia, 2018. [Google Scholar] [CrossRef]
- Raziq, A. Single Cell Protein (SCP) Production and Potential Substrates: A Comprehensive Review. Pure Appl. Biol. 2020, 9, 1743–1754. [Google Scholar] [CrossRef]
- Li, Y.P.; Ahmadi, F.; Kariman, K.; Lackner, M. Recent Advances and Challenges in Single Cell Protein (SCP) Technologies for Food and Feed Production. npj Sci. Food 2024, 8, 66. [Google Scholar] [CrossRef]
- Ritala, A.; Häkkinen, S.T.; Toivari, M.; Wiebe, M.G. Single Cell Protein—State-of-the-Art, Industrial Landscape and Patents 2001–2016. Front. Microbiol. 2017, 8, 2009. [Google Scholar] [CrossRef] [PubMed]
- Tusé, D.; Miller, M.W. Single-Cell Protein: Current Status and Future Prospects. Crit. Rev. Food Sci. Nutr. 1984, 19, 273–325. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Bogicevic, B.; Bolten, C.J.; Wittmann, C. Single-Cell Protein: Overcoming Technological and Biological Challenges towards Improved Industrialization. Curr. Opin. Biotechnol. 2024, 88, 103171. [Google Scholar] [CrossRef] [PubMed]
- Westlake, R. Large-Scale Continuous Production of Single Cell Protein. Chem. Ing. Tech. 1986, 58, 934–937. [Google Scholar] [CrossRef]
- Moore, D.; Robson, D.G.; Trinci, A.P.J. The Quorn Fermentation and Evolution in Fermenters. In 21st Century Guidebook to Fungi; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Banks, M.; Johnson, R.; Giver, L.; Bryant, G.; Guo, M. Industrial Production of Microbial Protein Products. Curr. Opin. Biotechnol. 2022, 75, 102707. [Google Scholar] [CrossRef]
- Sharif, M.; Zafar, M.H.; Aqib, A.I.; Saeed, M.; Farag, M.R.; Alagawany, M. Single Cell Protein: Sources, Mechanism of Production, Nutritional Value and Its Uses in Aquaculture Nutrition. Aquaculture 2021, 531, 735885. [Google Scholar] [CrossRef]
- Razzaq, Z.U.; Khan, M.K.I.; Maan, A.A.; Rahman, S.U. Characterization of Single Cell Protein from Saccharomyces cerevisiae for Nutritional, Functional and Antioxidant Properties. J. Food Meas. Charact. 2020, 14, 2520–2528. [Google Scholar] [CrossRef]
- Nasseri, A.T.; Rasoul-Amini, S.; Morowvat, M.H.; Ghasemi, Y. Single Cell Protein: Production and Process. Am. J. Food Technol. 2011, 6, 103–116. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Water Footprint Benchmarks for Crop Production: A First Global Assessment. Ecol. Indic. 2014, 46, 214–223. [Google Scholar] [CrossRef]
- Gundupalli, M.P.; Ansari, S.; Vital da Costa, J.P.; Qiu, F.; Anderson, J.; Luckert, M.; Bressler, D.C. Bacterial Single Cell Protein (BSCP): A Sustainable Protein Source from Methylobacterium Species. Trends Food Sci. Technol. 2024, 147, 104426. [Google Scholar] [CrossRef]
- Thiviya, P.; Gamage, A.; Kapilan, R.; Merah, O.; Madhujith, T. Single Cell Protein Production Using Different Fruit Waste: A Review. Separations 2022, 9, 178. [Google Scholar] [CrossRef]
- Suman, G.; Nupur, M.; Anuradha, S.; Pradeep, B. Single Cell Protein Production: A Review. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 251–262. Available online: http://www.ijcmas.com (accessed on 10 January 2025).
- Single Cell Protein Market Size. SkyQuest Report. 2024. Available online: https://www.skyquestt.com/report/single-cell-protein-market/market-size (accessed on 10 January 2025).
- Single-Cell Protein Market Size, Share, Forecast to 2032. 2022. Available online: https://www.factmr.com/report/1513/single-cell-protein-market (accessed on 10 January 2025).
- Pulidindi, K.; Ahuja, K. Single Cell Protein Market—By Source (Bacteria, Yeast, Algae (Chlorella, Spirulina, Haematococcus), Fungi), By Application (Food and Beverages, Animal Feed, Dietary Supplements); Global Market Insights: Pune, India, 2023; Available online: https://www.gminsights.com/industry-analysis/ice-maker-market (accessed on 13 January 2025).
- Aas, T.S.; Åsgård, T.; Ytrestøyl, T. Utilization of Feed Resources in the Production of Atlantic Salmon (Salmo salar) in Norway: An Update for 2020. Aquac. Rep. 2022, 26, 101316. [Google Scholar] [CrossRef]
- Tacon, A.G.J.; Metian, M. Global Overview on the Use of Fish Meal and Fish Oil in Industrially Compounded Aquafeeds: Trends and Future Prospects. Aquaculture 2008, 285, 146–158. [Google Scholar] [CrossRef]
- Øverland, M.; Karlsson, A.; Mydland, L.T.; Romarheim, O.H.; Skrede, A. Evaluation of Candida utilis, Kluyveromyces marxianus and Saccharomyces cerevisiae Yeasts as Protein Sources in Diets for Atlantic Salmon (Salmo salar). Aquaculture 2013, 402–403, 1–7. [Google Scholar] [CrossRef]
- Graham, A.E.; Ledesma-Amaro, R. The Microbial Food Revolution. Nat. Commun. 2023, 14, 2231. [Google Scholar] [CrossRef]
- Calysta. Production—FeedKind. 2025. Available online: https://feedkind.com/production (accessed on 18 January 2025).
- Guo, B.; He, X.; Ge, C.; Xue, M.; Wang, J.; Longshaw, M.; Wang, J.; Liang, X. A Natural Gas Fermentation Bacterial Meal (FeedKind®) as a Functional Alternative Ingredient for Fishmeal in Diet of Largemouth Bass, Micropterus salmoides. Antioxidants 2022, 11, 1479. [Google Scholar] [CrossRef]
- Zhang, Q.; Liang, H.; Longshaw, M.; Wang, J.; Ge, X.; Zhu, J.; Li, S.; Ren, M. Effects of Replacing Fishmeal with Methanotroph (Methylococcus capsulatus, Bath) Bacteria Meal (FeedKind®) on Growth and Intestinal Health Status of Juvenile Largemouth Bass (Micropterus salmoides). Fish Shellfish Immunol. 2022, 122, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Rombenso, A.N.; Duong, M.H.; Hines, B.M.; Mã, T.Ù.N.G.; Simon, C.J. The Marine Microbial Biomass, Novacq™, a Useful Feed Additive for Postlarvae and Juvenile Litopenaeus vannamei. Aquaculture 2020, 530, 735959. [Google Scholar] [CrossRef]
- Noble, T.; Rao, M.; Briggs, M.; Shinn, A.; Simon, C.; Wynne, J. Novacq™ Improves Survival of Penaeus vannamei When Challenged with Pathogenic Vibrio parahaemolyticus Causing Acute Hepatopancreatic Necrosis Disease. Aquaculture 2021, 545, 737235. [Google Scholar] [CrossRef]
- Aquafeed Media. KnipBio Meal, First Premium Single Cell Protein Approved by FDA as Aquafeed Ingredient. Aquafeed.com. 5 March 2019. Available online: https://www.aquafeed.com/products/new-products/knipbio-meal-first-premium-single-cell-protein-approved-by-fda-as-aquafeed-ingredient (accessed on 4 February 2025).
- Tlusty, M.; Rhyne, A.; Szczebak, J.T.; Bourque, B.; Bowen, J.L.; Burr, G.; Marx, C.J.; Feinberg, L. A Transdisciplinary Approach to the Initial Validation of a Single Cell Protein as an Alternative Protein Source for Use in Aquafeeds. PeerJ 2017, 5, e3170. [Google Scholar] [CrossRef] [PubMed]
- Hardy, R.W.; Patro, B.; Pujol-Baxley, C.; Marx, C.J.; Feinberg, L. Partial Replacement of Soybean Meal with Methylobacterium extorquens Single-Cell Protein in Feeds for Rainbow Trout (Oncorhynchus mykiss Walbaum). Aquac. Res. 2018, 49, 2218–2224. [Google Scholar] [CrossRef]
- Nunes, A.J.P.; Dalen, L.L.; Leonardi, G.; Burri, L. Developing Sustainable, Cost-Effective and High-Performance Shrimp Feed Formulations Containing Low Fish Meal Levels. Aquac. Rep. 2022, 27, 101422. [Google Scholar] [CrossRef]
- Abu-Elala, N.; Marzouk, M.; Moustafa, M. Use of Different Saccharomyces cerevisiae Biotic Forms as Immune-Modulator and Growth Promoter for Oreochromis niloticus Challenged with Some Fish Pathogens. Int. J. Vet. Sci. Med. 2013, 1, 21–29. [Google Scholar] [CrossRef]
- Abu-Elala, N.M.; Younis, N.A.; AbuBakr, H.O.; Ragaa, N.M.; Borges, L.L.; Bonato, M.A. Efficacy of Dietary Yeast Cell Wall Supplementation on the Nutrition and Immune Response of Nile Tilapia. Egypt. J. Aquat. Res. 2018, 44, 333–341. [Google Scholar] [CrossRef]
- Zhuang, Z.; Wan, G.; Lu, X.; Xie, L.; Yu, T.; Tang, H. Metabolic Engineering for Single-Cell Protein Production from Renewable Feedstocks and Its Applications. Adv. Biotechnol. 2024, 2, 35. [Google Scholar] [CrossRef]
- Farsi, M.A.; Thomas, R.; Bakir, A.A.; Marzouqi, A.A. Production of Single Cell Protein from Date Waste. Mater. Res. Proc. 2019, 11, 303–312. [Google Scholar] [CrossRef]
- Chakraborty, A.; Paul, B.N.; Bhattacharyya, D.K.; Bhowal, J. Evaluation of Fungal Single Cell Protein as Aqua Feed on Carcass Analysis and Growth Performance of Cirrhinus reba Fingerlings. Aquac. Res. 2022, 53, 3140–3153. [Google Scholar] [CrossRef]
- Koukoumaki, D.I.; Tsouko, E.; Papanikolaou, S.; Ioannou, Z.; Diamantopoulou, P.; Sarris, D. Recent Advances in the Production of Single Cell Protein from Renewable Resources and Applications. Carbon Resour. Convers. 2023, 7, 100195. [Google Scholar] [CrossRef]
- Bratosin, B.C.; Darjan, S.; Vodnar, D.C. Single Cell Protein: A Potential Substitute in Human and Animal Nutrition. Sustainability 2021, 13, 9284. [Google Scholar] [CrossRef]
- Salnur, S. Replacement of Fish Meal by Yeast (Saccharomyces cerevisiae): Effects on Digestibility and Blood Parameters for Gilt-Head Sea Bream (Sparus aurata). J. Anim. Vet. Adv. 2009, 8, 2557–2561. Available online: https://www.researchgate.net/publication/236213537 (accessed on 7 February 2025).
- Dahlberg, A.; Vidakovic, A. Filamentous Fungus Paecilomyces variotii in Feed for Rainbow Trout (Oncorhynchus mykiss)—Assessment of Apparent Digestibility and Early Signs of Inflammation. Master’s Thesis, SLU, Uppsala, Sweden, 2019. Available online: https://stud.epsilon.slu.se (accessed on 7 February 2025).
- Jin, K.; Xiao, Y.; Mao, Z.; Zhang, D.; Liu, C.; Tang, J. The Effect of Yeast Protein (Saccharomyces cerevisiae) Substitution of Fishmeal on the Growth Performance, Physiological and Biochemical Properties, and Muscle Quality of Hefang Crucian Carp (Carassius auratus cuvieri♀×Carassius auratus red var♂ ). 2024. Available online: https://ssrn.com/abstract=5002295 (accessed on 7 February 2025).
- Nguyen, N.H.Y.; Trinh, L.T.; Chau, D.T.; Baruah, K.; Lundh, T.; Kiessling, A. Spent Brewer’s Yeast as a Replacement for Fishmeal in Diets for Giant Freshwater Prawn (Macrobrachium rosenbergii), Reared in Either Clear Water or a Biofloc Environment. Aquac. Nutr. 2019, 25, 970–979. [Google Scholar] [CrossRef]
- Ma, M.; Hu, Q. Microalgae as Feed Sources and Feed Additives for Sustainable Aquaculture: Prospects and Challenges. Rev. Aquac. 2024, 16, 818–835. [Google Scholar] [CrossRef]
- Gatesoupe, F. Managing the Dietary Value of Artemia for Larval Turbot, Scophthalmus maximus; the Effect of Enrichment and Distribution Techniques. Aquac. Eng. 1991, 10, 111–119. [Google Scholar] [CrossRef]
- Sagaram, U.S.; Gaikwad, M.S.; Nandru, R.; Dasgupta, S. Microalgae as Feed Ingredients: Recent Developments on Their Role in Immunomodulation and Gut Microbiota of Aquaculture Species. FEMS Microbiol. Lett. 2021, 368, fnab071. [Google Scholar] [CrossRef]
- Nangul, A.; Bhatia, R. Microorganisms: A Marvelous Source of Single Cell Proteins. J. Microbiol. Biotechnol. Food Sci. 2013, 3, 15–18. Available online: https://office2.jmbfs.org/index.php/JMBFS/article/view/7069 (accessed on 12 February 2025).
- Ghaderpour, S.; Ahmadifard, N.; Agh, N.; Vahabzadeh, Z.; Estevez, A. Short-Term Enrichment of Microalgae with Inorganic Selenium and Zinc and Their Effects on the Mineral Composition of Microalgae and Marine Rotifer Brachionus plicatilis. Aquac. Nutr. 2021, 27, 2772–2785. [Google Scholar] [CrossRef]
- Ashaari, A.; Iehata, S.; Kim, H.J.; Rasdi, N.W. Recent Advancement of Zooplankton Enriched with Nutrients and Probiotic Isolates from Aquaculture Systems: A Review. J. Appl. Anim. Res. 2024, 52, 2417052. [Google Scholar] [CrossRef]
- Radhakrishnan, D.K.; AkbarAli, I.; Schmidt, B.V.; John, E.M.; Sivanpillai, S.; Vasunambesan, S.T. Improvement of Nutritional Quality of Live Feed for Aquaculture: An Overview. Aquac. Res. 2020, 51, 1–17. [Google Scholar] [CrossRef]
- Chatzopoulou, N.; Chaikali, C.; Mourkogianni, E.; Mikelis, C.M.; Andriopoulos, V.; Kornaros, M.; Augustakis, K.; Lamari, F.N.; Hatziantoniou, S. Encapsulation of Microalgae Tisochrysis lutea Extract in Nanostructured Lipid Carriers (NLCs) and Evaluation of Their Sunscreen, Wound Healing, and Skin Hydration Properties. Mar. Drugs 2024, 22, 487. [Google Scholar] [CrossRef]
- Kaparapu, J. Encapsulated Microalgae in Functional Foods. In Algal Biotechnology; CRC Press: Boca Raton, FL, USA, 2024; pp. 320–335. [Google Scholar] [CrossRef]
- Makridis, P.; Moreira, C.; Coast, R.A.; Rodriguez, P.; Dinis, M.T. Use of Bioencapsulated Microalgae in Artemia during Weaning of Senegalese Sole (Solea senegalensis Kaup). Aquaculture 2009, 292, 153–157. [Google Scholar] [CrossRef]
- Kim, S.S.; Rahimnejad, S.; Kim, K.W.; Lee, K.J. Partial Replacement of Fish Meal with Spirulina pacifica in Diets for Parrot Fish (Oplegnathus fasciatus). Turk. J. Fish. Aquat. Sci. 2013, 13, 197–204. [Google Scholar]
- Vizcaíno, A.J.; Lopez, G.; Sáez, M.I.; Jiménez, J.A.; Barros, A.; Hidalgo, L.; Camacho-Rodríguez, J.; Martínez, T.F.; Cerón-García, M.C.; Alarcón, F.J. Effects of the Microalga Scenedesmus almeriensis as Fishmeal Alternative in Diets for Gilthead Sea Bream, Sparus aurata, Juveniles. Aquaculture 2014, 431, 34–43. [Google Scholar] [CrossRef]
- Raji, A.A.; Junaid, O.Q.; Milow, P.; Taufek, N.M.; Father, A.M.; Kolawole, A.A.; Alias, Z.; Razak, S.A. Partial Replacement of Fish Meal with Spirulina Platensis and Chlorella vulgaris and Its Effect on Growth and Body Composition of African Catfish Clarias gariepinus (Burchell 1822). Indian J. Fish. 2019, 66, 100–111. [Google Scholar] [CrossRef]
- Mamun, M.A.; Hossain, M.A.; Saha, J.; Khan, S.; Acters, T.; Banu, M.R. Effects of Spirulina platen Meal as a Feed Additive on Growth Performance and Immunological Response of Gangetic Mystus Mystus cavasius. Aquac. Rep. 2023, 30, 101553. [Google Scholar] [CrossRef]
- Jin, S.; Lee, S.J.; Kim, Y.; Park, C. Spirulina Powder as a Feed Supplement to Enhance Abalone Growth. Aquac. Rep. 2020, 17, 100318. [Google Scholar] [CrossRef]
- Øverland, M.; Tauson, A.H.; Shearer, K.; Skrede, A. Evaluation of Methane-Utilising Bacteria Products as Feed Ingredients for Monogastric Animals. Arch. Anim. Nutr. 2010, 64, 171–189. [Google Scholar] [CrossRef]
- Strong, P.J.; Xie, S.; Clarke, W.P. Methane as a Resource: Can the Methanotrophs Add Value? Environ. Sci. Technol. 2015, 49, 4001–4018. [Google Scholar] [CrossRef]
- Imhoff, J.F. Anoxygenic Phototrophic Bacteria from Extreme Environments. In Modern Topics in the Phototrophic Prokaryotes; Springer: Cham, Switzerland, 2017; pp. 427–480. [Google Scholar] [CrossRef]
- Mahan, K.M.; Le, R.K.; Wells, T.; Anderson, S.; Yuan, J.S.; Stoklosa, R.J.; Bhalla, A.; Hodge, D.B.; Ragauskas, A.J. Production of Single Cell Protein from Agro-Waste Using Rhodococcus opacus. J. Ind. Microbiol. Biotechnol. 2018, 45, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Lynd, L.R.; Weimer, P.J.; Van Zyl, W.H.; Pretorius, I.S. Microbial Cellulose Utilization: Fundamentals and Biotechnology. Microbiol. Mol. Biol. Rev. 2002, 66, 739–763. [Google Scholar] [CrossRef]
- Nederlof, M.A.J.; Kaushik, S.J.; Schrama, J.W. Effect of Different Types of Bacterial Single Cell Protein on Feed Intake, Digestibility, Growth and Body Composition of Pacific White Shrimp (Penaeus vannamei). Aquac. Rep. 2023, 33, 101830. [Google Scholar] [CrossRef]
- Khanjani, M.H.; Mohammadi, A.; Emerenciano, M.G.C. Microorganisms in Biofloc Aquaculture System. Aquac. Rep. 2022, 26, 101300. [Google Scholar] [CrossRef]
- Han, J.; McClements, D.J.; Liu, X.; Liu, F. Oral Delivery of Probiotics Using Single-Cell Encapsulation. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13322. [Google Scholar] [CrossRef]
- Ghosh, K.; Dey, A.; Hazra, N. An Overview on Bioencapsulation of Live Food Organisms with Probiotics for Better Growth and Survival of Freshwater Fish Juveniles. Int. J. Res. Fish. Aquac. 2015, 5, 74–83. Available online: https://www.researchgate.net/publication/280154829 (accessed on 7 February 2025).
- Ahmadmoradi, M.; Alishahi, M.; Soltanian, S.; Shahriari, A.; Yektaseresht, A. Effects of Encapsulation of Lactobacillus plantarum on Probiotic Potential and Reducing Lead Toxicity in Rainbow Trout (Oncorhynchus mykiss Walbaum). Aquac. Int. 2023, 32, 337–359. [Google Scholar] [CrossRef]
- Cheng, A.; Ballantyne, R.; Chiu, S.; Liu, C. Microencapsulation of Bacillus subtilis E20 Probiotic, a Promising Approach for the Enrichment of Intestinal Microbiome in White Shrimp, Penaeus vannamei. Fishes 2023, 8, 264. [Google Scholar] [CrossRef]
- Wei, G.; Tay, M.Y.F.; Kamaja, V.K.; Chan-Park, M.B. Synbiotic Encapsulation against Vibrio parahaemolyticus Infection in Whiteleg Shrimps. Aquaculture 2024, 590, 741051. [Google Scholar] [CrossRef]
- Zhao, R.; Yu, T.; Li, J.; Niu, R.; Liu, D.; Wang, W. Single-Cell Encapsulation Systems for Probiotic Delivery: Armor Probiotics. Adv. Colloid Interface Sci. 2024, 332, 103270. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, A.; Sanahuja, I.; Thorringer, N.W.; Lynegaard, J.; Ntokou, E.; Furones, D.; Gisbert, E. Single Cell Protein from Methanotrophic Bacteria as an Alternative Healthy and Functional Protein Source in Aquafeeds, a Holistic Approach in Rainbow Trout (Oncorhynchus mykiss) Juveniles. Aquaculture 2023, 576, 739861. [Google Scholar] [CrossRef]
- Felix, N.; Manikandan, K.; Uma, A.; Kaushik, S.J. Evaluation of Single Cell Protein on the Growth Performance, Digestibility and Immune Gene Expression of Pacific White Shrimp, Penaeus vannamei. Anim. Feed Sci. Technol. 2022, 296, 115549. [Google Scholar] [CrossRef]
- Khanjani, M.H.; Mozanzadeh, M.T.; Sharifinia, M.; Emerenciano, M.G.C. Biofloc: A Sustainable Dietary Supplement, Nutritional Value and Functional Properties. Aquaculture 2023, 562, 738757. [Google Scholar] [CrossRef]
- Emerenciano, M.G.C.; Rombenso, A.N.; Vieira, F.D.N.; Martins, M.A.; Coman, G.J.; Truong, H.H.; Noble, T.H.; Simon, C.J. Intensification of Penaeid Shrimp Culture: An Applied Review of Advances in Production Systems, Nutrition and Breeding. Animals 2022, 12, 236. [Google Scholar] [CrossRef]
- Pimentel, M.R.; Molina, G.; Dionísio, A.P.; Maróstica, M.R., Jr.; Pastore, G.M. The Use of Endophytes to Obtain Bioactive Compounds and Their Application in Biotransformation Process. Biotechnol. Res. Int. 2011, 2011, 576286. [Google Scholar] [CrossRef]
- Gouda, S.; Das, G.; Sen, S.K.; Shin, H.S.; Patra, J.K. Endophytes: A Treasure House of Bioactive Compounds of Medicinal Importance. Front. Microbiol. 2016, 7, 1538. [Google Scholar] [CrossRef]
- Flewelling, A.J.; Currie, J.; Gray, C.A.; Johnson, J.A. Endophytes from Marine Macroalgae: Promising Sources of Novel Natural Products. Curr. Sci. 2015, 109, 88–111. Available online: https://www.cabdirect.org/cabdirect/abstract/20153297221 (accessed on 20 February 2025).
- Deutsch, Y.; Gur, L.; Berman Frank, I.; Ezra, D. Endophytes from Algae, a Potential Source for New Biologically Active Metabolites for Disease Management in Aquaculture. Front. Mar. Sci. 2021, 8, 636636. [Google Scholar] [CrossRef]
- Hardoim, P.R.; van Overbeek, L.S.; Berg, G.; Pirttilä, A.M.; Compant, S.; Campisano, A.; Döring, M.; Sessitsch, A. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiol. Mol. Biol. Rev. 2015, 79, 293–320. [Google Scholar] [CrossRef]
- Gupta, S.; Chaturvedi, P.; Kulkarni, M.G.; Van Staden, J. A Critical Review on Exploiting the Pharmaceutical Potential of Plant Endophytic Fungi. Biotechnol. Adv. 2020, 39, 107462. [Google Scholar] [CrossRef] [PubMed]
- Ogofure, A.G.; Pelo, S.P.; Green, E. Identification and Assessment of Secondary Metabolites from Three Fungal Endophytes of Solanum mauritianum Against Public Health Pathogens. Molecules 2024, 29, 4924. [Google Scholar] [CrossRef]
- Muccilli, S.; Restuccia, C. Bioprotective Role of Yeasts. Microorganisms 2015, 3, 588–611. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, J.; Krzymińska, J.; Tyburski, J. Yeasts as a Potential Biological Agent in Plant Disease Protection and Yield Improvement—A Short Review. Agriculture 2022, 12, 1404. [Google Scholar] [CrossRef]
- Ryan, R.P.; Germaine, K.; Franks, A.; Ryan, D.J.; Dowling, D.N. Bacterial Endophytes: Recent Developments and Applications. FEMS Microbiol. Lett. 2008, 278, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Golinska, P.; Wypij, M.; Agarkar, G.; Rathod, D.; Dahm, H.; Rai, M. Endophytic Actinobacteria of Medicinal Plants: Diversity and Bioactivity Antonie Van Leeuwenhoek. Int. J. Gen. Mol. Microbiol. 2015, 108, 267–289. [Google Scholar] [CrossRef]
- Singh, R.; Dubey, A.K. Endophytic Actinomycetes as Emerging Source for Therapeutic Compounds. Indo Glob. J. Pharm. Sci. 2015, 5, 106–116. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, L.; Li, L.; Zheng, C.; Guo, L.; Li, W.; Sun, P.; Qin, L. Recent Developments and Future Prospects of Antimicrobial Metabolites Produced by Endophytes. Microbiol. Res. 2010, 165, 437–449. [Google Scholar] [CrossRef]
- Paynor, K.A.; David, E.S.; Valentino, M.J.G. Endophytic Fungi Associated with Bamboo as Possible Sources of Single Cell Protein Using Corn Cob as a Substrate. Mycosphere 2016, 7, 139–147. [Google Scholar] [CrossRef]
- Valentino, M.J.G.; Ganado, M.J.; Undan, J.R. Single Cell Protein Potential of Endophytic Fungi Associated with Bamboo Using Rice Bran as Substrate. Adv. Appl. Sci. Res. 2016, 7, 68–72. Available online: https://www.imedpub.com/articles/single-cell-protein (accessed on 27 February 2025).
- Sung, W.S.; Jung, H.J.; Park, K.; Kim, H.S.; Lee, I.S.; Lee, D.G. 2,5-Dimethyl-4-hydroxy-3(2H)-furanone (DMHF): Antimicrobial Compound with Cell Cycle Arrest in Nosocomial Pathogens. Life Sci. 2007, 80, 586–591. [Google Scholar] [CrossRef] [PubMed]
- Verginer, M.; Siegmund, B.; Cardinale, M.; Müller, H.; Choi, Y.; Míguez, C.B.; Leitner, E.; Berg, G. Monitoring the Plant Epiphyte Methylobacterium extorquens DSM 21961 by Real-Time PCR and Its Influence on the Strawberry Flavor. FEMS Microbiol. Ecol. 2010, 74, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Dourado, M.N.; Bogas, A.C.; Pomini, A.M.; Andreote, F.D.; Quecine, M.C.; Marsaioli, A.J.; Araújo, W.L. Methylobacterium—Plant Interaction Genes Regulated by Plant Exudate and Quorum Sensing Molecules. Available online: www.sbmicrobiologia.org.br (accessed on 28 February 2025).
- Adedayo, M.R.; Ajiboye, E.A.; Odaibo, A. Single Cell Proteins: As Nutritional Enhancer. Adv. Appl. Sci. Res. 2011, 2, 396–409. [Google Scholar]
- Zepka, L.Q.; Jacob-Lopes, E.; Goldbeck, R.; Souza-Soares, L.A.; Queiroz, M.I. Nutritional Evaluation of Single-Cell Protein Produced by Aphanothece microscopica Nägeli. Bioresour. Technol. 2010, 101, 7107–7111. [Google Scholar] [CrossRef]
- García-Garibay, M.; Gómez-Ruiz, L.; Cruz-Guerrero, A.E.; Bárzana, E. Single Cell Protein: The Algae. In Encyclopedia of Food Microbiology, 2nd ed.; Batt, C.A., Tortorello, M.L., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 425–430. [Google Scholar]
- Ugalde, U.O.; Castrillo, J.I. Agriculture and Food Production. In Applied Mycology and Biotechnology; Elsevier: Amsterdam, The Netherlands, 2002; Volume 2, Available online: http://www.bpfoods.com (accessed on 6 March 2025).
- Agboola, J.O.; Øverland, M.; Skrede, A.; Hansen, J.Ø. Yeast as Major Protein-Rich Ingredient in Aquafeeds: A Review of the Implications for Aquaculture Production. Rev. Aquacult. 2021, 13, 949–970. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Zhang, D. Microbial Cell Factories for Green Production of Vitamins. Front. Bioeng. Biotechnol. 2021, 9, 661562. [Google Scholar] [CrossRef]
- Velásquez, A.; Arias, R.; Toneatti, M. Effect of the Type of Substrate on the Chemical Composition and Productivity of a Protein Concentrate of Yeast Origin. Cienc. Investig. Agrar. 2012, 39, 425–434. [Google Scholar] [CrossRef]
- Jeevitha, J.; Biswas, S.; Aruna, S. Nurturing Natures Harvest: Biofortifying Seaweed for Health and Nutrition. Chron. Aquat. Sci. 2024, 1, 32–37. Available online: https://chronicleofaquaticscience.in/ (accessed on 6 March 2025).
- Granby, K.; Amlund, H.; Valente, L.M.; Dias, J.; Adoff, G.; Sousa, V.; Marques, A.; Sloth, J.J.; Larsen, B.K. Growth Performance, Bioavailability of Toxic and Essential Elements and Nutrients, and Biofortification of Iodine of Rainbow Trout (Onchorynchus mykiss) Fed Blends with Sugar Kelp (Saccharina latissima). Food Chem. Toxicol. 2020, 141, 111387. [Google Scholar] [CrossRef]
- Pereira, A.; Marmelo, I.; Dias, M.; Silva, A.C.; Grade, A.C.; Barata, M.; Pousão-Ferreira, P.; Dias, J.; Anacleto, P.; Marques, A.; et al. Asparagopsis taxiformis as a Novel Antioxidant Ingredient for Climate-Smart Aquaculture: Antioxidant, Metabolic and Digestive Modulation in Juvenile White Seabream (Diplodus sargus) Exposed to a Marine Heatwave. Antioxidants 2024, 13, 949. [Google Scholar] [CrossRef]
- Marmelo, I.; Dias, M.; Grade, A.; Pousão-Ferreira, P.; Diniz, M.S.; Marques, A.; Maulvault, A.L. Immunomodulatory and Antioxidant Effects of Functional Aquafeeds Biofortified with Whole Laminaria digitata in Juvenile Gilthead Seabream (Sparus aurata). Front. Mar. Sci. 2024, 11, 1325244. [Google Scholar] [CrossRef]
- Ferreira, M.; Ribeiro, P.C.; Ribeiro, L.; Barata, M.; Domingues, V.F.; Sousa, S.; Soares, C.; Marques, A.; Pousão-Ferreira, P.; Dias, J.; et al. Biofortified Diets Containing Algae and Selenised Yeast: Effects on Growth Performance, Nutrient Utilization, and Tissue Composition of Gilthead Seabream (Sparus aurata). Front. Physiol. 2022, 12, 812884. [Google Scholar] [CrossRef]
- Barbosa, V.; Camacho, C.; Oliveira, H.; Anacleto, P.; Maulvault, A.L.; Delgado, I.; Ventura, M.; Dias, J.; Ribeiro, L.; Pousão-Ferreira, P.; et al. Physicochemical Properties of Iodine and Selenium Biofortified Sparus aurata and Cyprinus carpio During Frozen Storage. Food Chem. 2022, 397, 133780. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Navarrete, P.; Dantagnan, P.; Henriquez, D.; Soto, R.; Correa-Galeote, D.; Sáez-Arteaga, A. Selenized Non-Saccharomyces Yeasts and Their Potential Use in Fish Feed. Fish Physiol. Biochem. 2024, 50, 1879–1894. [Google Scholar] [CrossRef]
- Rajput, S.D.; Pandey, N.; Keshavkant, S. Optimization Strategies for Enhanced Production of Single Cell Protein: Recent Advances and Perspectives. Rev. Environ. Sci. Biotechnol. 2024, 23, 1015–1040. [Google Scholar] [CrossRef]
- Sagar, P.R.; Raol, G.G.; Prajapati, D.; Kapdi, D.; Kiri, B. Enhanced Productivity of Nutrient-Rich Single Cell Protein from Paradendryphiella arenariae PG1 Through Valorization of Agro-Industrial Waste: A Green Symphony from Waste-to-Protein Approach. Bioresour. Technol. Rep. 2024, 26, 101884. [Google Scholar] [CrossRef]
- Grama, S.B.; Liu, Z.; Li, J. Emerging Trends in Genetic Engineering of Microalgae for Commercial Applications. Mar. Drugs 2022, 20, 285. [Google Scholar] [CrossRef]
- Gupta, A.; Kang, K.; Pathania, R.; Saxton, L.; Saucedo, B.; Malik, A.; Torres-Tiji, Y.; Diaz, C.J.; Molino, J.V.D.; Mayfield, S.P. Harnessing Genetic Engineering to Drive Economic Bioproduct Production in Algae. Front. Bioeng. Biotechnol. 2024, 12, 1350722. [Google Scholar] [CrossRef]
- Kamal, A.H.; Hamidi, N.F.M.; Zakaria, M.F.; Ahmad, A.; Harun, M.R.; Segaran, T.C.; Jusoh, M. Genetically Engineered Microalgae for Enhanced Bioactive Compounds. Discov. Appl. Sci. 2024, 6, 482. [Google Scholar] [CrossRef]
- Li, Y.; Han, D.; Hu, G.; Sommerfeld, M.; Hu, Q. Inhibition of Starch Synthesis Results in Overproduction of Lipids in Chlamydomonas reinhardtii. Biotechnol. Bioeng. 2010, 107, 258–268. [Google Scholar] [CrossRef]
- Li, Z.; Meng, T.; Ling, X.; Li, J.; Zheng, C.; Shi, Y.; Chen, Z.; Li, Z.; Li, Q.; Lu, Y.; et al. Overexpression of Malonyl-CoA: ACP Transacylase in Schizochytrium sp. to Improve Polyunsaturated Fatty Acid Production. J. Agric. Food Chem. 2018, 66, 5382–5391. [Google Scholar] [CrossRef]
- But, S.Y.; Suleimanov, R.Z.; Oshkin, I.Y.; Rozova, O.N.; Mustakhimov, I.I.; Pimenov, N.V.; Dedysh, S.N.; Khmelenina, V.N. New Solutions in Single-Cell Protein Production from Methane: Construction of Glycogen-Deficient Mutants of Methylococcus capsulatus MIR. Fermentation 2024, 10, 265. [Google Scholar] [CrossRef]
- Yi, Y.; Li, J.; Zhou, P.; Jia, F.; Chen, Y.; Li, D. Production of Single Cell Protein Rich in Potassium by Nectaromyces ratti Using Biogas Slurry and Molasses. J. Environ. Manag. 2023, 350, 119627. [Google Scholar] [CrossRef] [PubMed]
- Olsen, D.F.; Jørgensen, J.B.; Villadsen, J.; Jørgensen, S.B. Modeling and Simulation of Single Cell Protein Production. IFAC-PapersOnLine 2010, 43, 502–507. [Google Scholar] [CrossRef]
- Esakkimuthu, S.; Siddiqui, S.A.; Cherif, M.; Saadaoui, I. Exploring Strategies to Enhance Microalgae Nutritional Quality for Functional Poultry-Sourced Food Products. Bioresour. Technol. Rep. 2023, 25, 101746. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, G.; Zhang, L. Epigenetic Regulation in Algae: Implications for Growth, Development, and Stress Response. Front. Plant Sci. 2021, 12, 711. [Google Scholar] [CrossRef]
- Yadav, J.; Bezawada, J.; Ajila, C.; Yan, S.; Tyagi, R.; Surampalli, R. Mixed Culture of Kluyveromyces marxianus and Candida krusei for Single-Cell Protein Production and Organic Load Removal from Whey. Bioresour. Technol. 2014, 164, 119–127. [Google Scholar] [CrossRef]
- Asmamaw, T.; Fassil, A. Co-culture: A Great Promising Method in Single Cell Protein Production. Biotechnol. Mol. Biol. Rev. 2014, 9, 12–20. [Google Scholar] [CrossRef]
- Ke, L.; Wu, Q.; Zhang, D. Bioconversion of Rape Straw into a Nutritionally Enriched Substrate by Ganoderma lucidum and Yeast. Afr. J. Biotechnol. 2011, 10, 5648–5653. [Google Scholar]
- Bhalla, T.C.; Joshi, M. Protein Enrichment of Apple Pomace by Co-culture of Cellulolytic Moulds and Yeasts. World J. Microbiol. Biotechnol. 1994, 10, 116–117. [Google Scholar] [CrossRef]
- Hülsen, T.; Hsieh, K.; Lu, Y.; Tait, S.; Batstone, D.J. Simultaneous Treatment and Single Cell Protein Production from Agri-industrial Wastewaters Using Purple Phototrophic Bacteria or Microalgae—A Comparison. Bioresour. Technol. 2018, 254, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.A. Novel Protein Sources: An Overview of Food Regulations. In Alternative Proteins; CRC: Boca Raton, FL, USA, 2022; pp. 407–427. [Google Scholar] [CrossRef]
- Silvani, V.A.; Fracchia, S.; Fernández, L.; Pérgola, M.; Godeas, A. A Simple Method to Obtain Endophytic Microorganisms from Field-collected Roots. Soil Biol. Biochem. 2008, 40, 1259–1263. [Google Scholar] [CrossRef]
- Emanuel, L. Isolation and Characterization of Endophytic Bacteria Isolated from the Leaves of the Common Bean (Phaseolus vulgaris). Braz. J. Microbiol. 2012, 1562–1575. Available online: http://blast.ncbi.nlm.nih.gov/blast/Blast.cgi (accessed on 19 March 2025).
- Kuhad, R.C.; Singh, A.; Tripathi, K.; Saxena, R.; Eriksson, K.L. Microorganisms as an Alternative Source of Protein. Nutr. Rev. 2009, 55, 65–75. [Google Scholar] [CrossRef]
- Palla, M.; Cristani, C.; Giovannetti, M.; Agnolucci, M. Identification and Characterization of Lactic Acid Bacteria and Yeasts of PDO Tuscan Bread Sourdough by Culture Dependent and Independent Methods. Int. J. Food Microbiol. 2017, 250, 19–26. [Google Scholar] [CrossRef]
- Pan, M.; Barrangou, R. Combining Omics Technologies with CRISPR-Based Genome Editing to Study Food Microbes. Curr. Opin. Biotechnol. 2020, 61, 198–208. [Google Scholar] [CrossRef]
- Ukaegbu-Obi, K. Single Cell Protein: A Resort to Global Protein Challenge and Waste Management. J. Microbiol. Microb. Technol. 2016, 1, 5. Available online: https://www.researchgate.net/publication/318947586 (accessed on 21 March 2025).
- Bekatorou, A.; Psarianos, C.; Koutinas, A.A. Production of Food Grade Yeasts. Food Technol. Biotechnol. 2006, 44, 407–415. [Google Scholar]
- Teuling, E.; Wierenga, P.A.; Schrama, J.W.; Gruppen, H. Comparison of Protein Extracts from Various Unicellular Green Sources. J. Agric. Food Chem. 2017, 65, 7989–8002. [Google Scholar] [CrossRef]
- Wijeyaratne, S.C.; Jayathilake, A.N. Characteristics of Two Yeast Strains (Candida tropicalis) Isolated from Caryota urens (Kithul) Toddy for Single Cell Protein Production. J. Natl. Sci. Found. Sri Lanka 2000, 28, 79. [Google Scholar] [CrossRef]
- Mohanty, B.P.; Ganguly, S.; Mahanty, A.; Mitra, T.; Mohanty, S. Nutrigenomics and Fish. CABI Rev. 2020, 15, 1–19. [Google Scholar] [CrossRef]
- Palou, A. From Nutrigenomics to Personalised Nutrition. Genes Nutr. 2007, 2, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Etekochay, M.O.; Muraleedharan, D.; Majumdar, S.; Nsengiyumva, M. Advancing Precision Nutrition in Endometriosis Care: The Role of Nutrigenomics and Nutrigenetics. Acad. Med. Surg. 2024. [Google Scholar] [CrossRef]
- Shakoor, A.; Kashani, S.A.; Bibi, K.; Bibi, A. A Recent Review on Nutrigenetics and Nutrigenomics: Current Approaches and Future Endeavors. Contemp. J. Soc. Sci. Rev. 2024, 2, 1205–1223. [Google Scholar]
- Christie, J. How to Use Nutrigenomics Testing to Personalize Your Patient’s Optimal Diet. Nutrition. 2023. Available online: https://www.rupahealth.com/post/nutrigenomics (accessed on 25 March 2025).
- Afman, L.; Müller, M. Nutrigenomics: From Molecular Nutrition to Prevention of Disease. J. Am. Diet. Assoc. 2006, 106, 569–576. [Google Scholar] [CrossRef] [PubMed]
- El-Bab, A.F.F.; Saghir, S.A.M.; El-Naser, I.A.A.; El-Kheir, S.M.M.A.; Abdel-Kader, M.F.; Alruhaimi, R.S.; Alqhtani, H.A.; Mahmoud, A.M.; Naiel, M.A.E.; El-Raghi, A.A. The Effect of Dietary Saccharomyces cerevisiae on Growth Performance, Oxidative Status, and Immune Response of Sea Bream (Sparus aurata). Life 2022, 12, 1013. [Google Scholar] [CrossRef]
- Basu, N.; Todgham, A.E.; Ackerman, P.A.; Bibeau, M.R.; Nakano, K.; Schulte, P.M.; Iwama, G.K. Heat Shock Protein Genes and Their Functional Significance in Fish. Gene 2002, 295, 173–183. Available online: https://www.elsevier.com/locate/gene (accessed on 7 April 2025). [CrossRef]
- Duan, C. Nutritional and Developmental Roles of Insulin-like Growth Factors between Species. Nutritional and Developmental Regulation of Insulin-like Growth Factors in Fish. J. Nutr. 1998, 128, 306S–314S. [Google Scholar] [CrossRef]
- Huising, M.O.; Stet, R.J.M.; Savelkoul, H.F.J.; Verburg-Van Kemenade, B.M.L. The Molecular Evolution of the Interleukin-1 Family of Cytokines; IL-18 in Teleost Fish. Dev. Comp. Immunol. 2004, 28, 395–413. [Google Scholar] [CrossRef]
- Yu, Y.; Zhong, Q.; Li, C.; Jiang, L.; Sun, Y.; Wang, X.; Wang, Z.; Zhang, Q. Molecular Cloning and Characterization of Interleukin-1β in Half-Smooth Tongue Sole Cynoglossus semilaevis. Vet. Immunol. Immunopathol. 2012, 146, 270–276. [Google Scholar] [CrossRef]
- Hasegawa, M.; Kamada, N.; Jiao, Y.; Liu, M.Z.; Núñez, G.; Inohara, N. Protective Role of Commensals Against Clostridium difficile Infection via an IL-1β–Mediated Positive-Feedback Loop. J. Immunol. 2012, 189, 3085–3091. [Google Scholar] [CrossRef]
- Ramos, H.J.; Lanteri, M.C.; Blahnik, G.; Negash, A.; Suthar, M.S.; Brassil, M.M.; Sodhi, K.; Treuting, P.M.; Busch, M.P.; Norris, P.J.; et al. IL-1β Signaling Promotes CNS-Intrinsic Immune Control of West Nile Virus Infection. PLoS Pathog. 2012, 8, e1003039. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.S.; Chen, C.W.; Lin, C.H.; Tzeng, C.S.; Chang, C.Y. Differential Expression Profiling of Orange-Spotted Grouper Larvae, Epinephelus coioides (Hamilton), that Survived a Betanodavirus Outbreak. J. Fish Dis. 2012, 35, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Rajalakshmi, K.; Felix, N.; Ranjan, A.; Arumugam, U.; Nazir, M.I.; Sathishkumar, G. Effects of Diets Formulated with Different Combinations of Novel Feed Ingredients on Growth Performance, Apparent Digestibility, Digestive Enzymes and Gene Expression Activities of Pacific White Shrimp, Penaeus vannamei. Aquacult. Int. 2025, 33, 120. [Google Scholar] [CrossRef]
- Duan, C. The Insulin-Like Growth Factor System and Its Biological Actions in Fish. Am. Zool. 1997, 37, 491–503. [Google Scholar] [CrossRef]
- Yada, T. Effects of Insulin-Like Growth Factor-1 on Non-Specific Immune Functions in Rainbow Trout. Zool. Sci. 2009, 26, 338–343. [Google Scholar] [CrossRef]
- Franz, A.C.; Faass, O.; Kollner, B.; Shved, N.; Link, K.; Casanova, A.; Wenger, M.; D’cotta, H.; Baroiller, J.F.; Ullrich, O.; et al. Endocrine and Local IGF-I in the Bony Fish Immune System. Biology 2016, 5, 9. [Google Scholar] [CrossRef]
- Li, K.; Qiu, H.; Yan, J.; Shen, X.; Wei, X.; Duan, M.; Yang, J. The Involvement of TNF-α and TNF-β as Proinflammatory Cytokines in Lymphocyte-Mediated Adaptive Immunity of Nile Tilapia by Initiating Apoptosis. Dev. Comp. Immunol. 2020, 115, 103884. [Google Scholar] [CrossRef]
- Cerezuela, R.; Guardiola, F.A.; Meseguer, J.; Esteban, M.Á. Enrichment of Gilthead Seabream (Sparus aurata L.) Diet with Microalgae: Effects on the Immune System. Fish Physiol. Biochem. 2012, 38, 1729–1739. [Google Scholar] [CrossRef]
- Teimouri, M.; Yeganeh, S.; Mianji, G.R.; Najafi, M.; Mahjoub, S. The Effect of Spirulina platensis Meal on Antioxidant Gene Expression, Total Antioxidant Capacity, and Lipid Peroxidation of Rainbow Trout (Oncorhynchus mykiss). Fish Physiol. Biochem. 2019, 45, 977–986. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, M.; Wang, J.; Longshaw, M.; Song, K.; Wang, L.; Li, X.; Zhang, C.; Lu, K. Methanotroph (Methylococcus capsulatus, Bath) Bacteria Meal Alleviates Soybean Meal-Induced Enteritis in Spotted Seabass (Lateolabrax maculatus) by Modulating Immune Responses and the Intestinal Flora. Aquaculture 2023, 575, 739795. [Google Scholar] [CrossRef]
- Shukry, M.; El-Kader, M.F.A.; Hendam, B.M.; Dawood, M.A.O.; Farrag, F.A.; Aboelenin, S.M.; Soliman, M.M.; Abdel-Latif, H.M.R. Dietary Aspergillus oryzae Modulates Serum Biochemical Indices, Immune Responses, Oxidative Stress, and Transcription of HSP70 and Cytokine Genes in Nile Tilapia Exposed to Salinity Stress. Animals 2021, 11, 1621. [Google Scholar] [CrossRef]
- Dawood, M.A.; Eweedah, N.M.; Moustafa, E.M.; Farahat, E.M. Probiotic Effects of Aspergillus oryzae on the Oxidative Status, Heat Shock Protein, and Immune Related Gene Expression of Nile Tilapia (Oreochromis niloticus) under Hypoxia Challenge. Aquaculture 2019, 520, 734669. [Google Scholar] [CrossRef]
- Bacon, J.S.D.; Farmer, V.C.; Jones, D.; Taylor, I.F. The Glucan Components of the Cell Wall of Baker’s Yeast (Saccharomyces cerevisiae) Considered in Relation to Its Ultrastructure. Biochem. J. 1969, 114, 557–567. [Google Scholar] [CrossRef]
- Fleet, G.H.; Manners, D.D.J. Isolation and Composition of an Alkali-Soluble Glucan from the Cell Walls of Saccharomyces cerevisiae. J. Gen. Microbiol. 1976, 94, 180–192. [Google Scholar] [CrossRef]
- Burrells, C.; Williams, P.; Forno, P. Dietary Nucleotides: A Novel Supplement in Fish Feeds. Aquaculture 2001, 199, 159–169. [Google Scholar] [CrossRef]
- Volman, J.J.; Ramakers, J.D.; Plat, J. Dietary Modulation of Immune Function by β-Glucans. Physiol. Behav. 2008, 94, 276–284. [Google Scholar] [CrossRef]
- Porter, D.; Peggs, D.; McGurk, C.; Martin, S.A.M. In-Vivo Analysis of ProtecTM and β-Glucan Supplementation on Innate Immune Performance and Intestinal Health of Rainbow Trout. Fish Shellfish Immunol. 2023, 134, 108573. [Google Scholar] [CrossRef]
- Jørgensen, J.B.; Robertsen, B. Yeast Beta-Glucan Stimulates Respiratory Burst Activity of Atlantic Salmon (Salmo salar L.) Macrophages. Dev. Comp. Immunol. 1995, 19, 43–57. [Google Scholar] [CrossRef]
- Engstad, R.E.; Robertsen, B. Recognition of Yeast Cell Wall Glucan by Atlantic Salmon (Salmo salar L.) Macrophages. Dev. Comp. Immunol. 1993, 17, 319–330. [Google Scholar] [CrossRef]
- Refstie, S.; Baeverfjord, G.; Seim, R.R.; Elvebø, O. Effects of Dietary Yeast Cell Wall β-Glucans and MOS on Performance, Gut Health, and Salmon Lice Resistance in Atlantic Salmon (Salmo salar) Fed Sunflower and Soybean Meal. Aquaculture 2010, 305, 109–116. [Google Scholar] [CrossRef]
- Staykov, Y.; Spring, P.; Denev, S.; Sweetman, J. Effect of a Mannan Oligosaccharide on the Growth Performance and Immune Status of Rainbow Trout (Oncorhynchus mykiss). Aquacult. Int. 2007, 15, 153–161. [Google Scholar] [CrossRef]
- Torrecillas, S.; Makol, A.; Caballero, M.J.; Montero, D.; Dhanasiri, A.K.S.; Sweetman, J.; Izquierdo, M. Effects on Mortality and Stress Response in European Sea Bass, Dicentrarchus labrax (L.), Fed Mannan Oligosaccharides (MOS) After Vibrio anguillarum Exposure. J. Fish Dis. 2012, 35, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Torrecillas, S.; Montero, D.; Izquierdo, M. Improved Health and Growth of Fish Fed Mannan Oligosaccharides: Potential Mode of Action. Fish Shellfish Immunol. 2014, 36, 525–544. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, J.B.; Sharp, G.J.; Secombes, C.J.; Robertsen, B. Effect of a Yeast-Cell-Wall Glucan on the Bactericidal Activity of Rainbow Trout Macrophages. Fish Shellfish Immunol. 1993, 3, 267–277. [Google Scholar] [CrossRef]
- Bulfon, C.; Pacorig, V.; Sarti, M.; Luzzana, U.; Galeotti, M.; Volpatti, D. ProtecTM Improves Innate Immune Response and Specific Antibody Response Against Lactococcus garvieae in Rainbow Trout (Oncorhynchus mykiss). Vet. Immunol. Immunopathol. 2019, 213, 109885. [Google Scholar] [CrossRef]
- Maliwat, G.C.; Velasquez, S.; Robil, J.L.; Chan, M.; Traifalgar, R.F.; Tayamen, M.; Ragaza, J.A. Growth and Immune Response of Giant Freshwater Prawn Macrobrachium rosenbergii (De Man) Postlarvae Fed Diets Containing Chlorella vulgaris (Beijerinck). Aquacult. Res. 2016, 48, 1666–1676. [Google Scholar] [CrossRef]
- Xie, J.; Fang, H.; Liao, S.; Guo, T.; Yin, P.; Liu, Y.; Tian, L.; Niu, J. Study on Schizochytrium sp. Improving the Growth Performance and Non-Specific Immunity of Golden Pompano (Trachinotus ovatus) While Not Affecting the Antioxidant Capacity. Fish Shellfish Immunol. 2019, 95, 617–623. [Google Scholar] [CrossRef]
- Esteban, M.A. Glucan Receptor but Not Mannose Receptor Is Involved in the Phagocytosis of Saccharomyces cerevisiae by Seabream (Sparus aurata L.) Blood Leucocytes. Fish Shellfish Immunol. 2004, 16, 447–451. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Esteban, M.Á.; Cuesta, A.; Sun, Y.Z. Prebiotics and Fish Immune Response: A Review of Current Knowledge and Future Perspectives. Rev. Fish. Sci. Aquac. 2015, 23, 315–328. [Google Scholar] [CrossRef]
- Liang, H.; Li, Y.; Li, M.; Zhou, W.; Chen, J.; Zhang, Z.; Yang, Y.; Ran, C.; Zhou, Z. The Effect and Underlying Mechanism of Yeast β-Glucan on Antiviral Resistance of Zebrafish Against Spring Viremia of Carp Virus Infection. Front. Immunol. 2022, 13, 1031962. [Google Scholar] [CrossRef] [PubMed]
- McFarlin, B.K.; Carpenter, K.C.; Davidson, T.; McFarlin, M.A. Baker’s Yeast Beta Glucan Supplementation Increases Salivary IgA and Decreases Cold/Flu Symptomatic Days After Intense Exercise. J. Diet. Suppl. 2013, 10, 171–183. [Google Scholar] [CrossRef]
- Kousoulaki, K.; Østbye, T.K.K.; Krasnov, A.; Torgersen, J.S.; Mørkøre, T.; Sweetman, J. Metabolism, Health and Fillet Nutritional Quality in Atlantic Salmon (Salmo salar) Fed Diets Containing n-3-Rich Microalgae. J. Nutr. Sci. 2015, 4, e24. [Google Scholar] [CrossRef]
- Adissin, T.O.O.; Manabu, I.; Shunsuke, K.; Saichiro, Y.; Moss, A.S.; Dossou, S. Effects of Dietary Nannochloropsis sp. Powder and Lipids on the Growth Performance and Fatty Acid Composition of Larval and Postlarval Kuruma Shrimp, Marsupenaeus japonicus. Aquacult. Nutr. 2020, 26, 186–200. [Google Scholar] [CrossRef]
- Hussein, E.E.S.; Dabrowski, K.; El-Saidy, D.M.S.D.; Lee, B.J. Enhancing the Growth of Nile Tilapia Larvae/Juveniles by Replacing Plant (Gluten) Protein with Algae Protein. Aquacult. Res. 2013, 44, 937–949. [Google Scholar] [CrossRef]
- Sirakov, I.; Velichkova, K.; Nikolov, G. The Effect of Algae Meal (Spirulina) on the Growth Performance and Carcass Parameters of Rainbow Trout (Oncorhynchus mykiss). J. BioSci. Biotechnol. 2012, 151–156. [Google Scholar]
- Gamboa-Delgado, J.; Fernández-Díaz, B.; Nieto-López, M.; Cruz-Suárez, L.E. Nutritional Contribution of Torula Yeast and Fish Meal to the Growth of Shrimp Litopenaeus vannamei as Indicated by Natural Nitrogen Stable Isotopes. Aquaculture 2016, 453, 116–121. Available online: http://www.sciencedirect.com/science/article/pii/S0044848615302544 (accessed on 11 April 2025). [CrossRef]
- Simon, C.J.; Blyth, D.; Ahmad Fatan, N.; Suri, S. Microbial Biomass (Novacq™) Stimulates Feeding and Improves the Growth Performance on Extruded Low to Zero-Fishmeal Diets in Tilapia (GIFT Strain). Aquaculture 2019, 501, 319–324. [Google Scholar] [CrossRef]
- Lyons, P.P.; Turnbull, J.F.; Dawson, K.A.; Crumlish, M. Effects of Low-Level Dietary Microalgae Supplementation on the Distal Intestinal Microbiome of Farmed Rainbow Trout Oncorhynchus mykiss (Walbaum). Aquac. Res. 2017, 48, 2438–2452. [Google Scholar] [CrossRef]
- Liu, H.; Li, J.; Guo, X.; Liang, Y.; Wang, W. Yeast Culture Dietary Supplementation Modulates Gut Microbiota, Growth and Biochemical Parameters of Grass Carp. Microb. Biotechnol. 2018, 11, 551–565. [Google Scholar] [CrossRef]
- Sun, J.; Li, Y.; Ren, T.; Gao, Q.; Yin, L.; Liang, Y.; Liu, H. Effects of Yeast Extract Supplemented in Diet on Growth Performance, Digestibility, Intestinal Histology, and the Antioxidant Capacity of the Juvenile Turbot (Scophthalmus maximus). Front. Physiol. 2024, 15, 1329721. [Google Scholar] [CrossRef]
- Romarheim, O.H.; Øverland, M.; Mydland, L.T.; Skrede, A.; Landsverk, T. Bacteria Grown on Natural Gas Prevent Soybean Meal-Induced Enteritis in Atlantic Salmon. J. Nutr. 2011, 141, 124–130. [Google Scholar] [CrossRef]
- Hooft, J.M.; Montero, R.; Morales-Lange, B.; Blihovde, V.F.; Purushothaman, K.; Press, C.M.; Mensah, D.D.; Agboola, J.O.; Javed, S.; Mydland, L.T.; et al. Paecilomyces variotii (PEKILO®) in Novel Feeds for Atlantic Salmon: Effects on Pellet Quality, Growth Performance, Gut Health, and Nutrient Digestibility and Utilization. Aquaculture 2024, 589, 740905. [Google Scholar] [CrossRef]
- Aas, T.S.; Grisdale-Helland, B.; Terjesen, B.F.; Helland, S.J. Improved Growth and Nutrient Utilisation in Atlantic Salmon (Salmo salar) Fed Diets Containing a Bacterial Protein Meal. Aquaculture 2006, 259, 365–376. [Google Scholar] [CrossRef]
- Basri, N.A.; Shaleh, S.R.M.; Matanjun, P.; Noor, N.M.; Shapawi, R. The Potential of Microalgae Meal as an Ingredient in the Diets of Early Juvenile Pacific White Shrimp, Litopenaeus vannamei. J. Appl. Phycol. 2015, 27, 857–863. [Google Scholar] [CrossRef]
- Oliva-Teles, A.; Gonçalves, P. Partial Replacement of Fishmeal by Brewer’s Yeast (Saccharomyces cerevisiae) in Diets for Sea Bass (Dicentrarchus labrax) Juveniles. Aquaculture 2001, 202, 269–278. [Google Scholar] [CrossRef]
- Olvera-Novoa, M.A.; Domínguez-Cen, L.J.; Olivera-Castillo, L.; Martínez-Palacios, C.A. Effect of the Use of the Microalga Spirulina maxima as Fish Meal Replacement in Diets for Tilapia, Oreochromis mossambicus (Peters), Fry. Aquac. Res. 1998, 29, 709–715. [Google Scholar] [CrossRef]
- Pongpet, J.; Ponchunchoovong, S.; Payooha, K. Partial Replacement of Fishmeal by Brewer’s Yeast (Saccharomyces cerevisiae) in the Diets of Thai Panga (Pangasianodon hypophthalmus × Pangasius bocourti). Aquac. Nutr. 2016, 22, 575–585. [Google Scholar] [CrossRef]
- Kaushik, S.J.; Luquet, P. Influence of Bacterial Protein Incorporation and of Sulphur Amino Acid Supplementation to Such Diets on Growth of Rainbow Trout, Salmo gairdnerii Richardson. Aquaculture 1980, 19, 163–175. [Google Scholar] [CrossRef]
- Chen, Y.; Chi, S.; Zhang, S.; Dong, X.; Yang, Q.; Liu, H.; Zhang, W.; Deng, J.; Tan, B.; Xie, S. Replacement of Fish Meal with Methanotroph (Methylococcus capsulatus, Bath) Bacteria Meal in the Diets of Pacific White Shrimp (Litopenaeus vannamei). Aquaculture 2021, 541, 736801. [Google Scholar] [CrossRef]
- Bertini, A.; Natale, S.; Gisbert, E.; Andrée, K.B.; Concu, D.; Dondi, F.; De Cesare, A.; Indio, V.; Gatta, P.P.; Bonaldo, A.; et al. Exploring the Application of Corynebacterium glutamicum Single Cell Protein in the Diet of Flathead Grey Mullet (Mugil cephalus): Effects on Growth Performance, Digestive Enzymes Activity and Gut Microbiota. Front. Mar. Sci. 2023, 10, 1172505. [Google Scholar] [CrossRef]
- Teuling, E.; Wierenga, P.A.; Agboola, J.O.; Gruppen, H.; Schrama, J.W. Cell Wall Disruption Increases Bioavailability of Nannochloropsis gaditana Nutrients for Juvenile Nile Tilapia (Oreochromis niloticus). Aquaculture 2019, 499, 269–282. [Google Scholar] [CrossRef]
- Zhou, Y.M.; Chen, Y.P.; Guo, J.S.; Shen, Y.; Yan, P.; Yang, J.X. Recycling of Orange Waste for Single Cell Protein Production and the Synergistic and Antagonistic Effects on Production Quality. J. Clean. Prod. 2019, 213, 384–392. [Google Scholar] [CrossRef]
- Tibbetts, S.M.; Mann, J.; Dumas, A. Apparent Digestibility of Nutrients, Energy, Essential Amino Acids and Fatty Acids of Juvenile Atlantic Salmon (Salmo salar L.) Diets Containing Whole-Cell or Cell-Ruptured Chlorella vulgaris Meals at Five Dietary Inclusion Levels. Aquaculture 2017, 481, 25–39. [Google Scholar] [CrossRef]
Type of SCP | Examples | Crude Protein Content (%) | Fish Used | Characteristics | Challenges | Source(s) |
---|---|---|---|---|---|---|
Microalgae | Spirulina spp., Chlorella vulgaris, Desmodesmus sp. | 60–70 | Oreochromis niloticus, Clarus gariepinus, Salmo salar |
|
| [18,25] |
Yeast | Saccharomyces cerevisiae, Candida utilis, Kluyveromyces marxianus | 45–65 | Oncorhynchus mykiss, Penaeus vannamei, Salvelinus alpinus, Perca fluviatilis, S. salar |
|
| [26] |
Fungi | Aspergillus oryzae, Yarrowia lipolytica, Myrothecium verrucaria | 30–45 | O. niloticus, L. vannamei, S. salar |
|
| [18,27] |
Bacteria | Methylococcus capsulatus, Methylobacterium extorquens, Cupravidus necator | 50–80 | L. vannamei, Lateolabrax maculatus, S. salar, O. mykiss, Seriola quinqueradiata |
|
| [18,28] |
Company | Country | Product | Type of SCP | Target Species | Administration Method | Focus Areas |
---|---|---|---|---|---|---|
Calysta | USA | FeedKind Aqua® | M. capsulatus | Shrimp, salmon, and warm water carnivorous finfish | Feed ingredient |
|
Calysta | USA | FeedKind Terra® | M. capsulatus | Piglet and chick | Starter diets (early animal nutrition) |
|
KnipBio | USA | KnipBio Meal (KBM) | M. extorquens | Salmon, shrimp | Feed ingredient |
|
Arbiom | USA | Yusto | Yeast protein | Human | Sublimate all types of foods such as animal-free meat and dairy products, snacks, sauces, and specialized nutrition products, food ingredient |
|
Leiber GmbH | Germany | CeFi® pro | Brewer’s yeast | Fish and shrimp | Feed ingredient |
|
Algenuity | UK | Chlorella | Chlorella sp. | Human | As a food ingredient |
|
Unibio | Denmark | Uniprotein® | Methanotrophic bacteria | Pig, salmon, trout, shrimp, sea bream, sturgeon | Feed ingredient |
|
Lallemand | Canada | Lyfe®, Engevita®, Lake States®, Toravita®, Bakon®, and Lalvita® | Baker’s and brewer’s yeast | Human | Food ingredient |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chamodi, K.K.D.; Vu, N.T.; Domingos, J.A.; Loh, J.-Y. Cellular Solutions: Evaluating Single-Cell Proteins as Sustainable Feed Alternatives in Aquaculture. Biology 2025, 14, 764. https://doi.org/10.3390/biology14070764
Chamodi KKD, Vu NT, Domingos JA, Loh J-Y. Cellular Solutions: Evaluating Single-Cell Proteins as Sustainable Feed Alternatives in Aquaculture. Biology. 2025; 14(7):764. https://doi.org/10.3390/biology14070764
Chicago/Turabian StyleChamodi, Korale Kankanamge Dinuka, Nguyen Thanh Vu, Jose A. Domingos, and Jiun-Yan Loh. 2025. "Cellular Solutions: Evaluating Single-Cell Proteins as Sustainable Feed Alternatives in Aquaculture" Biology 14, no. 7: 764. https://doi.org/10.3390/biology14070764
APA StyleChamodi, K. K. D., Vu, N. T., Domingos, J. A., & Loh, J.-Y. (2025). Cellular Solutions: Evaluating Single-Cell Proteins as Sustainable Feed Alternatives in Aquaculture. Biology, 14(7), 764. https://doi.org/10.3390/biology14070764