Chromosome-Level Genome and Variation Map of Eri Silkworm Samia cynthia ricini
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Genome, Transcriptome, and Hi-C Sequencing
2.2. Genome Assembly
- (a)
- All short-read sequencing data were aligned to the assembled genome to calculate genome-wide coverage and mapping efficiency (considering all successfully mapped reads).
- (b)
- Genome integrity was evaluated using Benchmarking Universal Single-Copy Orthologs (BUSCO) v5.5.0 [30] with the Lepidoptera_odb10 database, which reports percentages of complete single-copy, duplicated, and fragmented orthologs.
2.3. Genome Annotation
- (a)
- Sequence homology: Diamond v2.1.10 [34] was used for NR and SwissProt database searches.
- (b)
- Domain identification: Pfam domains were annotated using InterProScan v5.72-103.0 [35].
- (c)
- Pathway mapping: Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were assigned using the eggNOG-mapper v2.1.12 (http://eggnog-mapper.embl.de (accessed on 14 March 2025)) online tool.
2.4. Collinearity Analysis
2.5. Identification and Annotation of SNPs, InDels, and SVs
3. Results
3.1. Genome Sequencing and Assembly
3.2. Genome Annotation
3.3. Collinearity with Bombyx Mori Genome
3.4. Variation Map
3.5. Visit Samia Ricini Genome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Richard Steven Peigler, S.N. A Revision of the Silkmoth Genus Samia; University of the Incarnate Word: San Antonio, TX, USA, 2003. [Google Scholar]
- Kongsup, P.; Lertjirakul, S.; Chotimanothum, B.; Chundang, P.; Kovitvadhi, A. Effects of eri silkworm (Samia ricini) pupae inclusion in broiler diets on growth performances, health, carcass characteristics and meat quality. Anim. Biosci. 2022, 35, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Longvah, T.; Manghtya, K.; Qadri, S.S. Eri silkworm: A source of edible oil with a high content of alpha-linolenic acid and of significant nutritional value. J. Sci. Food Agric. 2012, 92, 1988–1993. [Google Scholar] [CrossRef]
- Longvah, T.; Mangthya, K.; Ramulu, P. Nutrient composition and protein quality evaluation of eri silkworm (Samia ricinii) prepupae and pupae. Food Chem. 2011, 128, 400–403. [Google Scholar] [CrossRef]
- Lee, J.; Nishiyama, T.; Shigenobu, S.; Yamaguchi, K.; Suzuki, Y.; Shimada, T.; Katsuma, S.; Kiuchi, T. The genome sequence of Samia ricini, a new model species of lepidopteran insect. Mol. Ecol. Resour. 2021, 21, 327–339. [Google Scholar] [CrossRef]
- Yoshido, A.; Sichova, J.; Kubickova, S.; Marec, F.; Sahara, K. Rapid turnover of the W chromosome in geographical populations of wild silkmoths, Samia cynthia ssp. Chromosome Res. 2013, 21, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Zhou, Z.; Lu, C.; Cheng, D.; Dai, F.; Li, B.; Zhao, P.; Zha, X.; Cheng, T.; Chai, C.; et al. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 2004, 306, 1937–1940. [Google Scholar]
- International Silkworm Genome, C. The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem. Mol. Biol. 2008, 38, 1036–1045. [Google Scholar] [CrossRef]
- Kawamoto, M.; Jouraku, A.; Toyoda, A.; Yokoi, K.; Minakuchi, Y.; Katsuma, S.; Fujiyama, A.; Kiuchi, T.; Yamamoto, K.; Shimada, T. High-quality genome assembly of the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 2019, 107, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Guo, Y.; Zhang, Z.; Li, D.; Xuan, Z.; Li, Z.; Dai, F.; Li, Y.; Cheng, D.; Li, R.; et al. Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science 2009, 326, 433–436. [Google Scholar] [CrossRef]
- Xiang, H.; Liu, X.; Li, M.; Zhu, Y.; Wang, L.; Cui, Y.; Liu, L.; Fang, G.; Qian, H.; Xu, A.; et al. The evolutionary road from wild moth to domestic silkworm. Nat. Ecol. Evol. 2018, 2, 1268–1279. [Google Scholar] [CrossRef]
- Tong, X.L.; Han, M.J.; Lu, K.P.; Tai, S.S.; Liang, S.B.; Liu, Y.C.; Hu, H.; Shen, J.H.; Long, A.X.; Zhan, C.Y.; et al. High-resolution silkworm pan-genome provides genetic insights into artificial selection and ecological adaptation. Nat. Commun. 2022, 13, 5619. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.P.; Liang, S.B.; Han, M.J.; Wu, C.M.; Song, J.B.; Li, C.L.; Wu, S.Y.; He, S.Z.; Ren, J.Y.; Hu, H.; et al. Flight muscle and wing mechanical properties are involved in flightlessness of the domestic silkmoth, Bombyx mori. Insects 2020, 11, 220. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Lin, Y.; Fu, Z.; Wu, X.; Meng, J.; Cheng, Y.; Gao, Y.; Xue, H.; Du, E.; Chen, J.; et al. Insufficient wing development possibly contributes to flightlessness of the silkworm Bombyx mori during domestication. Proc. Biol. Sci. 2025, 292, 20250281. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Lu, Y.; He, S.; Dai, F. Progress in the molecular research of silkworm mutants. Newsl. Sericultural Sci. 2024, 44, 31–47. [Google Scholar]
- Li, C.; Tong, X.; Zuo, W.; Hu, H.; Xiong, G.; Han, M.; Gao, R.; Luan, Y.; Lu, K.; Gai, T.; et al. The beta-1, 4-N-acetylglucosaminidase 1 gene, selected by domestication and breeding, is involved in cocoon construction of Bombyx mori. PLoS Genet. 2020, 16, e1008907. [Google Scholar] [CrossRef]
- Ma, L.; Xu, H.; Zhu, J.; Ma, S.; Liu, Y.; Jiang, R.J.; Xia, Q.; Li, S. Ras1(CA) overexpression in the posterior silk gland improves silk yield. Cell Res. 2011, 21, 934–943. [Google Scholar] [CrossRef]
- Hu, Z.; Zhu, F.; Chen, K. The mechanisms of silkworm resistance to the baculovirus and antiviral breeding. Annu. Rev. Entomol. 2023, 68, 381–399. [Google Scholar] [CrossRef]
- Wang, C.; Yu, B.; Meng, X.; Xia, D.; Pei, B.; Tang, X.; Zhang, G.; Wei, J.; Long, M.; Chen, J.; et al. Microsporidian Nosema bombycis hijacks host vitellogenin and restructures ovariole cells for transovarial transmission. PLoS Pathog. 2023, 19, e1011859. [Google Scholar] [CrossRef]
- Kiuchi, T.; Koga, H.; Kawamoto, M.; Shoji, K.; Sakai, H.; Arai, Y.; Ishihara, G.; Kawaoka, S.; Sugano, S.; Shimada, T.; et al. A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature 2014, 509, 633–636. [Google Scholar] [CrossRef]
- Daimon, T.; Koyama, T.; Yamamoto, G.; Sezutsu, H.; Mirth, C.K.; Shinoda, T. The number of larval molts is controlled by hox in caterpillars. Curr. Biol. 2021, 31, 884–891.e3. [Google Scholar] [CrossRef]
- Marcais, G.; Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 2011, 27, 764–770. [Google Scholar] [CrossRef] [PubMed]
- Vurture, G.W.; Sedlazeck, F.J.; Nattestad, M.; Underwood, C.J.; Fang, H.; Gurtowski, J.; Schatz, M.C. GenomeScope: Fast reference-free genome profiling from short reads. Bioinformatics 2017, 33, 2202–2204. [Google Scholar] [CrossRef]
- Koren, S.; Walenz, B.P.; Berlin, K.; Miller, J.R.; Bergman, N.H.; Phillippy, A.M. Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017, 27, 722–736. [Google Scholar] [CrossRef]
- Hailin Liu, S.W.; Li, A.; Ruan, J. SMARTdenovo: A de novo assembler using long noisy reads. Gigabyte 2021, 1, 2021. [Google Scholar]
- Vaser, R.; Sovic, I.; Nagarajan, N.; Sikic, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017, 27, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Dudchenko, O.; Batra, S.S.; Omer, A.D.; Nyquist, S.K.; Hoeger, M.; Durand, N.C.; Shamim, M.S.; Machol, I.; Lander, E.S.; Aiden, A.P.; et al. De. novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 2017, 356, 92–95. [Google Scholar] [CrossRef]
- Okazaki, S.; Tsuchida, K.; Maekawa, H.; Ishikawa, H.; Fujiwara, H. Identification of a pentanucleotide telomeric sequence, (TTAGG)n, in the silkworm Bombyx mori and in other insects. Mol. Cell Biol. 1993, 13, 1424–1432. [Google Scholar]
- Brown, M.R.; de la Rosa, P.M.G.; Blaxter, M. tidk: A toolkit to rapidly identify telomeric repeats from genomic datasets. Bioinformatics 2025, 41, btaf049. [Google Scholar] [CrossRef]
- Simao, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef]
- Lu, K.; Pan, Y.; Shen, J.; Yang, L.; Zhan, C.; Liang, S.; Tai, S.; Wan, L.; Li, T.; Cheng, T.; et al. SilkMeta: A comprehensive platform for sharing and exploiting pan-genomic and multi-omic silkworm data. Nucleic Acids Res. 2024, 52, D1024–D1032. [Google Scholar] [CrossRef]
- Gabriel, L.; Bruna, T.; Hoff, K.J.; Ebel, M.; Lomsadze, A.; Borodovsky, M.; Stanke, M. BRAKER3: Fully automated genome annotation using RNA-seq and protein evidence with GeneMark-ETP, AUGUSTUS, and TSEBRA. Genome Res. 2024, 34, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Buchfink, B.; Reuter, K.; Drost, H.G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 2021, 18, 366–368. [Google Scholar] [CrossRef]
- Jones, P.; Binns, D.; Chang, H.Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.P.; Lowe, T.M. tRNAscan-SE: Searching for tRNA genes in genomic sequences. Methods Mol. Biol. 2019, 1962, 1–14. [Google Scholar] [PubMed]
- Lagesen, K.; Hallin, P.; Rodland, E.A.; Staerfeldt, H.H.; Rognes, T.; Ussery, D.W. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007, 35, 3100–3108. [Google Scholar] [CrossRef]
- Nawrocki, E.P.; Eddy, S.R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 2013, 29, 2933–2935. [Google Scholar] [CrossRef]
- Tang, H.; Krishnakumar, V.; Zeng, X.; Xu, Z.; Taranto, A.; Lomas, J.S.; Zhang, Y.; Huang, Y.; Wang, Y.; Yim, W.C.; et al. JCVI: A versatile toolkit for comparative genomics analysis. Imeta 2024, 3, e211. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; Genome Project Data Processing, S. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Sedlazeck, F.J.; Rescheneder, P.; Smolka, M.; Fang, H.; Nattestad, M.; von Haeseler, A.; Schatz, M.C. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 2018, 15, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Smolka, M.; Paulin, L.F.; Grochowski, C.M.; Horner, D.W.; Mahmoud, M.; Behera, S.; Kalef-Ezra, E.; Gandhi, M.; Hong, K.; Pehlivan, D.; et al. Detection of mosaic and population-level structural variants with Sniffles2. Nat. Biotechnol. 2024, 42, 1571–1580. [Google Scholar] [CrossRef]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef]
- Yoshido, A.; Yasukochi, Y.; Sahara, K. Samia cynthia versus Bombyx mori: Comparative gene mapping between a species with a low-number karyotype and the model species of Lepidoptera. Insect Biochem. Molec. 2011, 41, 370–377. [Google Scholar] [CrossRef]
- Dubey, H.; Pradeep, A.R.; Neog, K.; Debnath, R.; Aneesha, P.J.; Shah, S.K.; Kamatchi, I.; Ponnuvel, K.M.; Ramesha, A.; Vijayan, K.; et al. Genome sequencing and assembly of Indian golden silkmoth, Antheraea assamensis Helfer (Saturniidae, Lepidoptera). Genomics 2024, 116, 110841. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Li, Y.; Du, J.; Duan, E.; Lei, Y.; Liang, S.; Zhang, X.; Zhao, X.; Kan, Y.; Yao, L.; et al. A chromosome-scale genome assembly of Antheraea pernyi (Saturniidae, Lepidoptera). Mol. Ecol. Resour. 2020, 20, 1372–1383. [Google Scholar] [CrossRef]
- Kim, S.R.; Kwak, W.; Kim, H.; Caetano-Anolles, K.; Kim, K.Y.; Kim, S.B.; Choi, K.H.; Kim, S.W.; Hwang, J.S.; Kim, M.; et al. Genome sequence of the Japanese oak silk moth, Antheraea yamamai: The first draft genome in the family Saturniidae. Gigascience 2018, 7, 1–11. [Google Scholar] [CrossRef]
- Lee, J.; Fujimoto, T.; Yamaguchi, K.; Shigenobu, S.; Sahara, K.; Toyoda, A.; Shimada, T. W chromosome sequences of two bombycid moths provide an insight into the origin of Fem. Mol. Ecol. 2024, 33, e17434. [Google Scholar] [CrossRef]
- Lee, J.; Fujimoto, T.; Yamaguchi, K.; Shigenobu, S.; Sahara, K.; Shimada, T. Comprehensive genome annotation of Trilocha varians, a new model species of Lepidopteran insects. Sci. Data 2025, 12, 124. [Google Scholar] [CrossRef]
- Lee, J.; Kiuchi, T.; Yamaguchi, K.; Shigenobu, S.; Toyoda, A.; Shimada, T. A chromosome-level genome assembly of wild silkmoth, Bombyx mandarina. Sci. Data 2025, 12, 27. [Google Scholar] [CrossRef] [PubMed]
- Pradeep, A.R.; Awasthi, A.K.; Singh, C.K.; Anuradha, H.J.; Rao, C.G.; Vijayaprakash, N.B. Genetic evaluation of eri silkworm Samia cynthia ricini: ISSR loci specific to high and low altitude regimes and quantitative attributes. J. Appl. Genet. 2011, 52, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Q.; Qin, L.; Li, Y.P.; Wang, H.; Xia, R.X.; Qi, Y.H.; Li, X.S.; Lu, C.; Xiang, Z.H. Comparative genetic diversity and genetic structure of three Chinese silkworm species Bombyx mori L. (Lepidoptera: Bombycidae), Antheraea pernyi Guerin-Meneville and Samia cynthia ricini Donovan (Lepidoptera: Saturniidae). Neotrop. Entomol. 2010, 39, 967–976. [Google Scholar] [CrossRef] [PubMed]
- Vijayan, K.; Anuradha, H.J.; Nair, C.V.; Pradeep, A.R.; Awasthi, A.K.; Saratchandra, B.; Rahman, S.A.; Singh, K.C.; Chakraborti, R.; Urs, S.R. Genetic diversity and differentiation among populations of the Indian eri silkworm, Samia cynthia ricini, revealed by ISSR markers. J. Insect Sci. 2006, 6, 1–11. [Google Scholar] [CrossRef]
Sample | Sequencing Platform (Technology) | Clean Reads | Clean Bases (Gb) | Genome Coverage (×) | Reads N50 Length (bp) |
---|---|---|---|---|---|
GX-M | DNBSEQ | 216,133,152 | 31.88 | 70 | - |
ONT | 4,028,575 | 65.27 | 145 | 18,508 | |
Hi-C | 319,016,548 | 47.80 | - | - | |
GX-F | DNBSEQ | 283,461,080 | 41.97 | 93 | - |
ONT | 3,476,160 | 63.16 | 140 | 21,955 |
Sample | Initial Assembly | Hi-C Assembly | |||
---|---|---|---|---|---|
Contigs | Contig N50 Length (bp) | Total Length (bp) | Contigs | Total Length (bp) | |
GX-M | 73 | 18,557,025 | 457,852,231 | 59 | 456,164,652 |
GX-F | 63 | 25,316,322 | 455,453,376 | - | - |
Chromosome ID | Length (bp) | Telomere |
---|---|---|
Chr01 | 21,357,909 | 0 |
Chr02 | 30,424,992 | 1 |
Chr03 | 34,141,321 | 1 |
Chr04 | 33,297,754 | 1 |
Chr05 | 35,620,675 | 0 |
Chr06 | 35,677,325 | 0 |
Chr07 | 31,408,718 | 0 |
Chr08 | 31,248,863 | 1 |
Chr09 | 38,345,835 | 2 |
Chr10 | 33,366,736 | 0 |
Chr11 | 41,493,536 | 2 |
Chr12 | 31,340,067 | 0 |
Chr13 | 42,746,998 | 2 |
Chr14 | 15,693,923 | 1 |
Total | 456,164,652 | 11 |
Type of Repetitiveness | Length (bp) | Percentage in Genome (%) | |
---|---|---|---|
TEs | SINEs | 2,915,523 | 0.64 |
LINES | 86,866,339 | 18.97 | |
LTR | 11,617,914 | 2.54 | |
Penelope | 1,244,859 | 0.27 | |
DNA transposons | 12,499,705 | 2.73 | |
Helitrons (rolling-circles) | 40,349,215 | 8.81 | |
Unclassified | 61,962,172 | 13.53 | |
Small RNA | 263,243 | 0.06 | |
Simple repeats | 4,853,247 | 1.06 | |
Low complexity | 819,131 | 0.18 | |
Total | 222,094,622 | 48.51 |
Variation Type | Variation Counts | Relative Positions to Protein-Coding Genes | ||||||
---|---|---|---|---|---|---|---|---|
Before Filtering | After Filtering | Intergenic | Intron | Down-Stream | Up-Stream | Exon (Synonymous) | Exon (Non-Synonymous) | |
SNP | 4,509,966 | 4,270,848 | 1,953,178 (45.63%) | 1,197,685 (27.98%) | 429,159 (10.03%) | 596,161 (13.93%) | 62,880 (1.47%) | 41,751 (0.98%) |
InDel | 1,066,653 | 1,021,705 | 445,118 (43.46%) | 316,562 (30.91%) | 142,907 (13.95%) | 114,744 (11.20%) | 4933 (0.48%) | |
SV | - | 53,367 | 22,687 (41.19%) | 15,960 (28.98%) | 5249 (9.53%) | 7434 (13.50%) | 3746 (6.80%) |
Whole Genome | Exon | Intron | Intergenic | |
---|---|---|---|---|
DNA length (bp) | 457,689,390 | 34,975,315 | 214,843,885 | 207,870,190 |
SNP count | 4,270,848 | 94,665 | 1,197,685 | 2,978,498 |
SNP density (bp/SNP) | 107 | 369 | 179 | 70 |
Family | Species | Genome Size (Mb) | Chr. Anchoring Strategy | Chr. Numbers | Contig N50 (Mb) | BUSCO (Assembly) | BUSCO (Gene Model) | Repetitive Elements (%, bp) | Publish Year |
---|---|---|---|---|---|---|---|---|---|
Saturnii-dae | Samia ricini (China, GX-M) | 456.16 | Hi-C | N = 14 | 18.56 | 98.5% | 98.2% | 48.5 | This study |
Samia ricini (China, GX-F) | 455.45 | none | N = 14 | 25.32 | 98.5% | - | - | This study | |
Samia ricini (Japan, UT) | 450.48 | Linkage analysis | N = 14 | 21.37 | 97.9% | 91.9% | 43.5 | 2021 [5] | |
Antheraea assamensis | 501.18 | none | N = 15 | 0.68 | 98.0% | 96.0% | 49.0 | 2024 [47] | |
Antheraea pernyi | 726.37 | Hi-C | N = 49 | 13.77 | - | 95.6% | 60.7 | 2020 [48] | |
Antheraea yamamai | 656.00 | none | N = 31 | 0.74 | 96.7% | - | 37.3 | 2018 [49] | |
Bombyci-dae | Trilocha varians | 353.84 | Optical mapping | N = 26 | 13.28 | 98.7% | 98.6% | - | 2024 [50] 2025 [51] |
Bombyx mandarina (Japan) | 419.60 | Hi-C | N = 27 | 16.43 | 95.1% | 94.5% | - | 2025 [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, K.; Shen, J.; Huang, W.; Zhan, C.; Li, Z.; Liang, S.; Lai, K.; Luo, Q.; Han, M.; Tong, X.; et al. Chromosome-Level Genome and Variation Map of Eri Silkworm Samia cynthia ricini. Biology 2025, 14, 698. https://doi.org/10.3390/biology14060698
Lu K, Shen J, Huang W, Zhan C, Li Z, Liang S, Lai K, Luo Q, Han M, Tong X, et al. Chromosome-Level Genome and Variation Map of Eri Silkworm Samia cynthia ricini. Biology. 2025; 14(6):698. https://doi.org/10.3390/biology14060698
Chicago/Turabian StyleLu, Kunpeng, Jianghong Shen, Wengong Huang, Chengyu Zhan, Zhengqing Li, Shubo Liang, Kerui Lai, Qun Luo, Minjin Han, Xiaoling Tong, and et al. 2025. "Chromosome-Level Genome and Variation Map of Eri Silkworm Samia cynthia ricini" Biology 14, no. 6: 698. https://doi.org/10.3390/biology14060698
APA StyleLu, K., Shen, J., Huang, W., Zhan, C., Li, Z., Liang, S., Lai, K., Luo, Q., Han, M., Tong, X., & Dai, F. (2025). Chromosome-Level Genome and Variation Map of Eri Silkworm Samia cynthia ricini. Biology, 14(6), 698. https://doi.org/10.3390/biology14060698