Phytoplankton Structure and Ecological Niche Differentiation of Dominant Species in Tahe Bay, China
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Survey Time and Stations
2.2. Sample Collection and Processing
2.3. Measurement of Physical and Chemical Indicators of Water Quality
2.4. Data Analysis and Processing
2.4.1. Degree of Dominance Index
2.4.2. Biodiversity Indicators
2.4.3. Ecological Niche Width Index
2.4.4. Pianka Ecological Niche Overlap Index
2.4.5. Statistics
3. Results and Analyses
3.1. Analysis of the Phytoplankton Structure
3.1.1. Phytoplankton Species Composition and Species Diversity
3.1.2. Analysis of Dominant Species
3.2. Ecological Niche Width (Bi) and Overlap (Qik) of Dominant Species
3.3. Phytoplankton Community Structure About Environmental Factors
3.4. Factors Influencing Ecological Niche Differentiation of Dominant Phytoplankton Species
4. Discussion
4.1. Plankton Species Composition and Seasonal Variation
4.2. Ecological Niche Width Analysis
4.3. Ecological Niche Overlap Analysis
4.4. Analysis of Ecological Niche Differentiation of Dominant Phytoplankton Species About Environmental Factors
4.5. Analysis of the Possible Variability of Phytoplankton Diversity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.; Wang, L.; Shang, H.X. Phytoplankton community structure and its relationship with environmental factors in the offshore aquaculture area of Dalian. Chin. J. Fish. 2023, 36, 60–66. [Google Scholar]
- McCormick, P.V.; Cairns, J. Algae as indicators of environmental change. J. Appl. Phycol. 1994, 6, 509–526. [Google Scholar] [CrossRef]
- Yu, S.T.; Zhao, Q.; Li, J.D. Spatial and temporal variation characteristics of phytoplankton community structure in net mining and its relationship with key environmental factors in the artificial reef area of Xiangyun Bay, Hebei Province. Haiyang Xuebao 2024, 46, 52–63. [Google Scholar]
- Peng, M.; Huang, C.C.; Li, L.J. Ecological characteristics and interspecific connectivity of dominant phytoplankton species in Changhu Lake. Acta Ecol. Sin. 2024, 44, 1549–1563. [Google Scholar]
- Nan, Q.R.; Zhang, Q.; Li, X.H. Niche and interspecific association of the dominant species during the invasion of Alternanthera philoxeroides in the Yangtze River Basin, China. Agriculture 2023, 13, 621. [Google Scholar] [CrossRef]
- Li, X.D.; Chao, X.; Liu, H.Q. Spatio-temporal ecological position of dominant species of phytoplankton community in the middle reaches of the Yarlung Tsangpo River. Acta Ecol. Sin. 2023, 43, 7746–7760. [Google Scholar]
- Zhao, W.; Wei, H.X.; Guo, K. Community structure of phytoplankton and its seasonal changes in the sea area of Dayaowan, Dalian, 2006–2007. J. Dalian Fish. Univ. 2011, 26, 291–298. [Google Scholar]
- Jiang, S.; Chen, Y.Z.; Cao, G.R. Phytoplankton community in the red tide monitoring area of Dalian Swede Island. Trans. Oceanol. Limnol. 2017, 5, 63–68. [Google Scholar]
- Song, X.Y.; Ding, Y.; Zhou, J. Interannual variation of phytoplankton summer community structure in the eastern aquaculture area of Dalian. Aquaculture 2018, 39, 20–23. [Google Scholar]
- Li, G.X.; Yin, Z.Q.; Wang, D. Ecological niches of dominant zooplankton species and their differentiation in the waters of Beranzi. J. Shanghai Ocean Univ. 2024, 33, 1199–1210. [Google Scholar]
- Zhang, Y.R.; Yin, Z.Q.; Wang, Y. Zooplankton Structure and Ecological Niche Differentiation of Dominant Species in Tahe Bay, Lushun, China. Sustainability 2024, 16, 8590. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, L.; Shang, H.X. Zooplankton community structure and its relationship with environmental factors in typical aquaculture waters of Lushunkou, Dalian. J. Aquac. 2022, 43, 1–6. [Google Scholar]
- Wang, D.; Yin, Z.Q.; Zhang, D.W. Evaluation of the Environmental Impact of Artificial Habitat on Seawater Quality in Tahe Bay, Lushun. OAJRC Environ. Sci. 2023, 4, 62–71. [Google Scholar] [CrossRef]
- Neori, A.; Ragg, N.L.; Shpigel, M. The integrated culture of seaweed, abalone, fish, and clams in modular intensive land-based systems: II. Performance and nitrogen partitioning within an abalone (Haliotis tuberculata) and macroalgae culture system. Aqua. Eng. 1998, 17, 215–239. [Google Scholar] [CrossRef]
- Baine, M. Artificial reefs: A review of their design, application, management and performance. Ocean Coast. Manag. 2001, 44, 241–259. [Google Scholar] [CrossRef]
- GB17378.3−2007; The Specification for Marine Monitoring Part 3: Sample Collection, Storage and Transportation. China Standard Press: Beijing, China, 2008.
- GB17378.4−2007; The Specification for Marine Monitoring Part 4: Seawater Analysis. China Standard Press: Beijing, China, 2008.
- Habib, O.A.; Tippett, R.; Murphy, K.J. Seasonal changes in phytoplankton community structure in relation to physico-chemical factors in Loch Lomond, Scotland. Hydrobiologia 1997, 350, 63–79. [Google Scholar] [CrossRef]
- Akin, S.; Winemiller, K.O.; Gelwick, F.P. Seasonal and spatial variations in fish and macrocrustacean assemblage structure in Mad Island Marsh estuary, Texa. Estuar. Coast. Shelf Sci. 2003, 57, 269–282. [Google Scholar] [CrossRef]
- Zhang, L.; Tao, H.H.; Ji, X.L. Characteristics of zooplankton community structure in the neighboring waters of Dongjiakou Harbor, Qingdao in spring and autumn. J. Appl. Oceanogr. 2023, 42, 16–27. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Pielou, E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- Izaguirre, I.; O’farrell, I.; Unrein, F. Algal Assemblages Across a Wetland, from a Shallow Lake to Relictual Oxbow Lakes (Lower Paraná River, South America). Hydrobiologia 2004, 511, 25–36. [Google Scholar] [CrossRef]
- Haiyuan, C.; Kui, W.; Sijun, H. Distinct patterns of picocyanobacterial communities in winter and summer in the Chesapeake Bay. Appl. Environ. Microbiol. 2010, 76, 2955–2960. [Google Scholar]
- Resende, P.; Azeiteiro, M.U.; Gonçalves, F. Distribution and ecological preferences of diatoms and dinoflagellates in the west Iberian Coastal zone (North Portugal). Acta Oecol. 2007, 32, 224–235. [Google Scholar] [CrossRef]
- Bolnick, D.I.; Ingram, T.; Stutz, W.E. Ecological release from interspecific competition leads to decoupled changes in population and individual niche width. Proc. R. Soc. B 2010, 277, 1789–1797. [Google Scholar] [CrossRef]
- Tian, Y.X.; Han, J.X.; Chen, B.C. Species diversity and interspecific ecological niche characteristics of Acacia spp. in Northwest Guangxi. Guangxi For. Sci. 2022, 51, 466–474. [Google Scholar]
- Hou, Z.W.; Sun, X.Y.; Liu, Y.L.; Zhang, C.; Zhang, W.J. Spatial ecological position of dominant zooplankton species off Yantai. Acta Ecol. Sin. 2020, 40, 5822–5833. [Google Scholar]
- Friedland, K.D.; Langan, J.A.; Large, S.I. Changes in higher trophic level productivity, diversity and niche space in a rapidly warming continental shelf ecosystem. Sci. Total Environ. 2020, 704, 135270. [Google Scholar] [CrossRef]
- Pianka, E.R. The structure of lizard communities. Annu. Rev. Ecol. Syst. 1973, 4, 53–74. [Google Scholar] [CrossRef]
- Fang, S.Y.; Wang, Y.B.; Hu, X.K. Seasonal changes of phytoplankton community structure in the Bohai Sea and its environmental impact factors. Mar. Environ. Sci. 2023, 42, 864–875. [Google Scholar]
- Huang, H.Y.; Yang, Y.; Yang, L. Study on phytoplankton changes in net mining in the ecological monitoring area of Bohai Bay during the summer of 2004–2015. J. Oceanogr. 2018, 40, 115–128. [Google Scholar]
- Chang, Q.G. Spatial and Temporal Variation of Phytoplankton in the Nearshore Waters of WEIHAI and Its Relationship with Environmental Factors in 2022. Bachelor’s Thesis, Shandong University, Jinan, China, 2023. [Google Scholar]
- Richardson, K.; Bendtsen, J. Vertical distribution of phytoplankton and primary production in relation to nutricline depth in the open ocean. Mar. Ecol. Prog. Ser. 2019, 620, 33–46. [Google Scholar] [CrossRef]
- Li, Z.L.; Zhang, H.Y.; Zhao, L. Spatial and temporal distribution of phytoplankton community structure in the Bohai Sea and its influencing factors. Mar. Sci. 2021, 45, 10–20. [Google Scholar]
- Lin, J.; Lin, H.Y.; Luo, X. Seasonal change characteristics of phytoplankton community structure and environmental influences in the sea area of Weizhou Island, Guangxi. Guangxi Sci. 2024, 31, 224–236. [Google Scholar]
- Xiao, W.P.; Liu, X.; Huang, B.Q. Community structure of nearshore phytoplankton in the East China Sea and its relationship with environmental factors in spring. J. Mar. Sci. 2013, 31, 76–82. [Google Scholar]
- Wang, X.Z.; Wu, X.; Sun, J. Seasonal dynamics and key drivers of phytoplankton community structure in the Eastern Indian Ocean. Mar. Pollut. Bull. 2025, 212, 117548. [Google Scholar] [CrossRef]
- MacIsaac, H.J.; Sprules, G.; Johannson, O.E. Filtering impacts of larval and sessile zebra mussels (Dreissena polymorpha) in western Lake Erie. Oecologia 1992, 92, 30–39. [Google Scholar] [CrossRef]
- Wei, M.X.; He, B.M. Trends of water environment indicators in Qinzhou Bay over the past 20a V. Distribution of phytoplankton biomass and its influencing factors. Mar. Environ. Sci. 2008, 3, 253–257. [Google Scholar]
- Feng, Y.C.; Zheng, X.Y.; Wang, Z.N. Characteristics of the ecological niche of understorey herbaceous layer populations in pure and mixed fir forests. J. Ecol. Rural Environ. 2019, 35, 217–224. [Google Scholar]
- He, R.; Li, Q.F.; Peng, S.Y. Ecological niches of dominant phytoplankton species and their interspecific connectivity during winter in eight estuaries of the Pearl River. Pearl River 2024, 45, 46–54. [Google Scholar]
- Wei, Z.B.; Chai, Y.; Luo, J.B. Seasonal succession and ecological position analysis of dominant phytoplankton species in Changhu Lake. J. Aquat. Biol. 2020, 44, 612–621. [Google Scholar]
- Wang, D.; Liang, H.R.; Zhang, J.X. Spatial ecological position of dominant phytoplankton species in Zhanjiang Bay. J. Guangdong Ocean Univ. 2024, 44, 40–49. [Google Scholar]
- Wathne, J.A.; Haug, T.; Lydersen, C. Prey preference and niche overlap of ringed seals Phoca hispida and harp seals P. groenlandica in the Barents Sea. Mar. Ecol. Prog. Ser. 2000, 194, 233–239. [Google Scholar] [CrossRef]
- Jiao, H.F.; Shi, H.X.; You, Z.J. Ecological niche of dominant macrobenthic species in the intertidal zone of the rocky reef substrate of Yushan Island. Acta Ecol. Sin. 2011, 31, 3928–3936. [Google Scholar]
- Zhu, S.N.; Dong, Z.C.; Fu, G.B. Distribution and dynamics of niche and interspecific association of dominant phytoplankton species in the Feiyun River basin, Zhejiang, China. J. Oceanol. Limnol. 2024, 42, 1157–1172. [Google Scholar] [CrossRef]
- Gong, J.X.; Zhang, J.L.; Li, Z. Phytoplankton community structure and ecological position of dominant species in Dongping Lake. J. Aquat. Sci. 2024, 37, 70–76. [Google Scholar]
- Liu, K.; Yu, C.G.; Xu, Y.J. Spatial ecological niche analysis of major crustacean species in spring and autumn in the eastern waters of Zhoushan Islands. J. Zhejiang Univ. (Sci. Ed.) 2021, 48, 450–460+480. [Google Scholar]
- Wu, X.M.; Hao, R.J.; Pan, H.B. Zooplankton community structure and its relationship with environmental factors in Huangpu River. J. Ecol. Environ. 2018, 27, 1128–1137. [Google Scholar]
- Egge, J.K. Are diatoms poor competitors at low phosphate concentrations? J. Mar. Syst. 1998, 16, 191–198. [Google Scholar] [CrossRef]
- Zou, S.Y. Analysis of phytoplankton characteristics and their correlation with environmental factors in spring and summer in Pingtan inshore waters. J. Fish. Res. 2022, 44, 266–274. [Google Scholar]
- Liu, L.; Jiang, M.J.; Li, Y. Seasonal changes of phytoplankton community structure in net mining in Qinzhou Bay waters. Adv. Mar. Sci. 2017, 35, 83–95. [Google Scholar]
- Wang, D.; Chen, P.M.; Lu, J.J. Annual ecological characteristics of phytoplankton in Qinzhou Bay. J. Appl. Ecol. 2013, 24, 1686–1692. [Google Scholar]
- Yang, G.; Wu, Z.; Song, L. Seasonal Variation of Environmental Variables and Phytoplankton Community Structure and Their Relationship in Liaodong Bay of Bohai Sea, China. J. Ocean Univ. China 2018, 17, 864–878. [Google Scholar] [CrossRef]
- Rhee, G.Y.; Gotham, I.J. The effect of environmental factors on phytoplankton growth: Temperature and the interactions of temperature with nutrient limitation. Limnol. Oceanogr. 1981, 26, 635–648. [Google Scholar] [CrossRef]
- Lehman, P.W. The Influence of Climate on Phytoplankton Community Biomass in San Francisco Bay Estuary. Limnol. Oceanogr. 2000, 45, 580–590. [Google Scholar] [CrossRef]
- Zhu, C.; Sun, X.; Yang, X.R. Seasonal dynamics of phytoplankton community in Chaohu Lake and its influencing factors. Environ. Monit. China 2024, 40, 129–142. [Google Scholar]
- Tao, M.; Xiong, Y.; Li, B. Spatial and temporal distribution of phytoplankton communities in the Sichuan section of the Jialing River and their environmental impact factors. Resour. Environ. Yangtze Basin 2021, 30, 1680–1694. [Google Scholar]
- Li, X.J.; Cui, Z.G.; Sun, X.M. Comparative study of phytoplankton community structure in different ecosystems in Qingdao coastal waters. Trans. Oceanol. Limnol. 2024, 46, 149–157. [Google Scholar]
- Boris, S.; Le, G.G.; Pedro, C. Phytoplankton adaptive resilience to climate change collapses in case of extreme events—A modeling study. Ecol. Modell. 2023, 483, 110437. [Google Scholar]
- Henson, S.A.; Cael, B.B.; Allen, S.R. Future phytoplankton diversity in a changing climate. Nat. Commun. 2021, 12, 5372. [Google Scholar] [CrossRef]
- Gittings, J.A.; Raitsos, D.E.; Krokos, G. Impacts of warming on phytoplankton abundance and phenology in a typical tropical marine ecosystem. Sci. Rep. 2018, 8, 2240. [Google Scholar] [CrossRef]
Taxa | September 2021 (End of Summer) | March 2022 (End of Winter) | April 2022 (Spring) | November 2022 (Autumn) |
---|---|---|---|---|
Bacillariophyta | 8 | 36 | 27 | 41 |
Cyanophyta | 1 | 0 | 0 | 7 |
Pyrrophyta | 0 | 0 | 0 | 3 |
Chlorophyta | 0 | 0 | 0 | 1 |
Chrysophyta | 0 | 0 | 0 | 4 |
Rhodophyta | 0 | 0 | 0 | 2 |
Sampling Time | Phytoplankton | |||
---|---|---|---|---|
Number of Species (S) | Shannon–Wiener’s Diversity Index (H’) | Margalef’s Index (D) | Pielou Index (J) | |
September 2021 | 9 | 2.03 | 0.83 | 0.84 |
March 2022 | 36 | 2.42 | 2.44 | 0.31 |
April 2022 | 27 | 2.22 | 1.81 | 0.34 |
November 2022 | 58 | 2.80 | 4.99 | 0.28 |
Mean | 32.5 ± 20.4 | 2.37 ± 0.33 | 2.52 ± 1.78 | 0.45 ± 0.26 |
Median | 31.5 | 2.32 | 2.13 | 0.33 |
Serial Number | Species Name | Dominance Index | |||
---|---|---|---|---|---|
September 2021 (End of Summer) | March 2022 (End of Winter) | April 2022 (Spring) | November 2022 (Autumn) | ||
A01 | Leptocylindrus danicus | 0.116 | 0.147 | ||
A02 | Thalassiothrix longissima | 0.111 | |||
A03 | Noctiluca scintillans | 0.044 | |||
A04 | Trieres chinensis | 0.042 | |||
A05 | Coscinodiscopsis jonesiana | 0.042 | |||
A06 | Paralia sulcata | 0.364 | 0.391 | 0.165 | |
A07 | Thalassiosira nordenskioeldii | 0.045 | 0.047 | ||
A08 | Stephanopyxis turris | 0.041 | 0.026 | ||
A09 | Chaetoceros densus | 0.061 | 0.070 | ||
A010 | Chaetoceros peruvianus | 0.102 | 0.106 | ||
A011 | Thalassionema nitzschioides | 0.111 | 0.115 | ||
A012 | Navicula cancellata | 0.063 | 0.065 | ||
A013 | Skeletonema costatum | 0.020 | |||
A014 | Bacillaria paradoxa Gmelin | 0.062 | |||
A015 | Coscinodiscus asteromphalus | 0.021 | |||
A016 | Coscinodiscus granii | 0.027 | |||
A017 | Licmophora abbreviata | 0.047 | |||
A018 | Melosira granulata var. angustissima | 0.148 | |||
A019 | Synedra acus | 0.029 | |||
A020 | Tripos muelleri | 0.038 |
Code | Bi | Qik | ||||
---|---|---|---|---|---|---|
A01 | A02 | A03 | A04 | A05 | ||
A01 | 0.93 | 1 | ||||
A02 | 0.79 | 0.18 | 1 | |||
A03 | 0.95 | 0.88 | 0.26 | 1 | ||
A04 | 1.00 | 0.00 | 0.95 | 0.00 | 1 | |
A05 | 1.00 | 0.00 | 0.95 | 0.00 | 1.00 | 1 |
Code | Bi | Qik | ||||||
---|---|---|---|---|---|---|---|---|
A06 | A07 | A08 | A09 | A010 | A011 | A012 | ||
A06 | 0.87 | 1.00 | ||||||
A07 | 0.77 | 0.74 | 1.00 | |||||
A08 | 0.77 | 0.92 | 0.86 | 1.00 | ||||
A09 | 0.69 | 0.70 | 1.00 | 0.85 | 1.00 | |||
A010 | 0.86 | 0.88 | 0.96 | 0.96 | 0.95 | 1.00 | ||
A011 | 1.00 | 0.95 | 0.85 | 0.87 | 0.81 | 0.91 | 1.00 | |
A012 | 0.97 | 0.87 | 0.84 | 0.78 | 0.79 | 0.86 | 0.98 | 1.00 |
Code | Bi | Qik | |||||||
---|---|---|---|---|---|---|---|---|---|
A06 | A07 | A013 | A08 | A09 | A010 | A011 | A012 | ||
A06 | 0.85 | 1.00 | |||||||
A07 | 0.77 | 0.71 | 1.00 | ||||||
A013 | 0.93 | 0.95 | 0.45 | 1.00 | |||||
A08 | 0.98 | 0.86 | 0.84 | 0.70 | 1.00 | ||||
A09 | 0.74 | 0.73 | 0.99 | 0.48 | 0.89 | 1.00 | |||
A010 | 0.86 | 0.86 | 0.96 | 0.65 | 0.94 | 0.98 | 1.00 | ||
A011 | 1.00 | 0.94 | 0.85 | 0.82 | 0.80 | 0.84 | 0.91 | 1.00 | |
A012 | 0.97 | 0.86 | 0.84 | 0.73 | 0.69 | 0.80 | 0.86 | 0.98 | 1.00 |
Code | Bi | Qik | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
A014 | A015 | A016 | A01 | A017 | A018 | A019 | A020 | A06 | ||
A014 | 0.79 | 1.00 | ||||||||
A015 | 0.65 | 0.41 | 1.00 | |||||||
A016 | 0.44 | 0.17 | 0.89 | 1.00 | ||||||
A01 | 0.70 | 0.84 | 0.68 | 0.32 | 1.00 | |||||
A017 | 0.52 | 0.64 | 0.65 | 0.26 | 0.95 | 1.00 | ||||
A018 | 0.89 | 0.74 | 0.61 | 0.45 | 0.81 | 0.72 | 1.00 | |||
A019 | 0.67 | 0.78 | 0.68 | 0.31 | 1.00 | 0.98 | 0.80 | 1.00 | ||
A020 | 0.59 | 0.38 | 0.89 | 0.97 | 0.44 | 0.31 | 0.55 | 0.41 | 1.00 | |
A06 | 0.61 | 0.55 | 0.79 | 0.43 | 0.90 | 0.94 | 0.57 | 0.92 | 0.46 | 1.00 |
Phytoplankton Community Indicator | Water Temperature (°C) | Salinity | pH | Dissolved Oxygen Concentration (mg/L) | Chemical Oxygen Demand (mg/L) | Ammonia–Nitrogen Content (μg/L) | Nitrate–Nitrogen Content (μg/L) | Nitrite–Nitrogen Content (μg/L) | Inorganic Phosphorus Content (μg/L) |
---|---|---|---|---|---|---|---|---|---|
H′ | −0.852 ** | 0.795 ** | −0.39 | 0.528 | 0.058 | −0.888 ** | −0.797 ** | −0.792 ** | −0.083 |
J | 0.939 ** | −0.884 ** | 0.321 | −0.633 * | −0.288 | 0.938 ** | 0.770 ** | 0.872 ** | −0.054 |
D | −0.901 ** | 0.929 ** | −0.756 ** | 0.247 | 0.16 | −0.809 ** | −0.928 ** | −0.788 ** | −0.443 |
Abundance of Bacillariophyta | −0.354 | 0.131 | 0.593 * | 0.960 ** | 0.419 | −0.404 | 0.043 | −0.357 | 0.765 ** |
Abundance of Pyrrophyta | −0.331 | 0.518 | −0.829 ** | −0.418 | −0.095 | −0.287 | −0.550 * | −0.348 | −0.699 ** |
Abundance of Rhodophyta | −0.271 | 0.401 | −0.478 | −0.068 | −0.206 | −0.227 | −0.401 | −0.232 | −0.385 |
Abundance of Chlorophyta | −0.316 | 0.32 | −0.513 | −0.15 | 0.296 | −0.236 | −0.416 | −0.241 | −0.399 |
Abundance of Chrysophyta | −0.463 | 0.581 * | −0.800 ** | −0.19 | −0.042 | −0.375 | −0.661 ** | −0.383 | −0.634 * |
Abundance of Cyanophyta | −0.407 | 0.535 * | −0.715 ** | −0.161 | −0.141 | −0.336 | −0.593 * | −0.343 | −0.569 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Yin, Z.; Du, Y.; Wei, X.; Lan, Y.; Yu, Q.; Wang, Y.; Tian, T.; Chen, L.; Yang, J. Phytoplankton Structure and Ecological Niche Differentiation of Dominant Species in Tahe Bay, China. Biology 2025, 14, 578. https://doi.org/10.3390/biology14050578
Zhang Y, Yin Z, Du Y, Wei X, Lan Y, Yu Q, Wang Y, Tian T, Chen L, Yang J. Phytoplankton Structure and Ecological Niche Differentiation of Dominant Species in Tahe Bay, China. Biology. 2025; 14(5):578. https://doi.org/10.3390/biology14050578
Chicago/Turabian StyleZhang, Yanrong, Zengqiang Yin, Yinghai Du, Xiangxu Wei, Yikai Lan, Quan Yu, Yan Wang, Tao Tian, Lei Chen, and Jun Yang. 2025. "Phytoplankton Structure and Ecological Niche Differentiation of Dominant Species in Tahe Bay, China" Biology 14, no. 5: 578. https://doi.org/10.3390/biology14050578
APA StyleZhang, Y., Yin, Z., Du, Y., Wei, X., Lan, Y., Yu, Q., Wang, Y., Tian, T., Chen, L., & Yang, J. (2025). Phytoplankton Structure and Ecological Niche Differentiation of Dominant Species in Tahe Bay, China. Biology, 14(5), 578. https://doi.org/10.3390/biology14050578