Genetic Structure and Optimal Population Size of Wild and Mass-Selected Silver Pomfret (Pampus argenteus) in China: The Implications for Conservation and Selection Breeding Programs
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and DNA Extraction
2.2. Development of Microsatellite Markers and Screening
2.3. Design of mtCOI and mtD-Loop Primers
- COI:
- F: 5′–GCATGAGCTGGTATAGTAGG–3′
- R: 5′–GCTCAGACCATGCCCATATATC–3′
- D-loop:
- F: 5′–ACCATCCAGCTCATATCTTAATG–3′
- R: 5′–GAATGATAGCTATGTCACGAG–3′
2.4. PCR Amplification
2.5. Genetic Diversity Analysis
2.6. Genetic Structure Analysis
3. Results
3.1. Genetic Diversity
3.2. Effective Population Size
3.3. Population Structure Analysis
4. Discussion
4.1. Genetic Diversity Among Populations
4.2. Effective Population Size
4.3. Genetic Structure Among Populations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghazy, A.; El-Enin, A.; Badr, A.; El-Awady, H.; El-Naser, I. Genetic assessment of productive and reproductive traits in Friesian, native, and crossbred cattle in Egypt. Trop. Anim. Health Prod. 2024, 56, 344. [Google Scholar] [CrossRef] [PubMed]
- Meddah, B.; Belabdi, I.; de Almeida, A.M.; Lafri, M. Comparative study of the reproductive and growth performance of the Hamra and Rumbi ovine breeds. Trop. Anim. Health Prod. 2024, 56, 256. [Google Scholar] [CrossRef] [PubMed]
- Gjedrem, T. Genetic improvement for the development of efficient global aquaculture: A personal opinion review. Aquaculture 2012, 344, 12–22. [Google Scholar] [CrossRef]
- Saura, M.; Caballero, A.; Santiago, E.; Fernandez, A.; Morales-Gonzalez, E.; Fernandez, J.; Cabaleiro, S.; Millan, A.; Martinez, P.; Palaiokostas, C.; et al. Estimates of recent and historical effective population size in turbot, seabream, seabass and carp selective breeding programmes. Genet. Sel. Evol. 2021, 53, 85. [Google Scholar] [CrossRef]
- D’Ambrosio, J.; Phocas, F.; Haffray, P.; Bestin, A.; Brard-Fudulea, S.; Poncet, C.; Quillet, E.; Dechamp, N.; Fraslin, C.; Charles, M.; et al. Genome-wide estimates of genetic diversity, inbreeding and effective size of experimental and commercial rainbow trout lines undergoing selective breeding. Genet. Sel. Evol. 2019, 51, 26. [Google Scholar] [CrossRef]
- Xu, L.; Li, Q.; Xu, C.; Yu, H.; Kong, L. Genetic diversity and effective population size in successive mass selected generations of black shell strain Pacific oyster (Crassostrea gigas) based on microsatellites and mtDNA data. Aquaculture 2019, 500, 338–346. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, C.; Li, Q. Genetic diversity in a genetically improved line of the Pacific oyster Crassostrea gigas with orange shell based on microsatellites and mtDNA data. Aquaculture 2022, 549, 148–159. [Google Scholar] [CrossRef]
- Mackintosh, A.; Laetsch, D.R.; Hayward, A.; Charlesworth, B.; Waterfall, M.; Vila, R.; Lohse, K. The determinants of genetic diversity in butterflies. Nat. Commun. 2019, 10, 3466. [Google Scholar] [CrossRef]
- Andreychev, A.; Zhalilov, A.; Kuznetsov, V. The state of local steepe woodchuck (Marmota bobak) populations in the Republic of Mordovia. Zool. Zhurnal 2015, 94, 723–730. [Google Scholar] [CrossRef]
- Hernández, F.; Brown, J.; Kaminski, M.; Harvey, M.; Lavretsky, P. Genomic evidence for rare hybridization and large demographic changes in the evolutionary histories of four North American dove species. Animals 2021, 11, 2677. [Google Scholar] [CrossRef]
- Bentsen, H.B.; Olesen, I. Designing aquaculture mass selection programs to avoid high inbreeding rates. Aquaculture 2002, 204, 349–359. [Google Scholar] [CrossRef]
- Ma, H.T.; Qin, Y.P.; Zhang, Y.J.; Wan, W.T.; Huang, J.Y.; Mi, N.; Zhao, Z.; Wang, Z.Y.; Li, J.W.; Li, J.; et al. Genetic diversity and genetic structure in successive mass selected generations of tetraploid Pacific oysters (Crassostrea gigas), diploid Portuguese oysters (C. angulata) and their allotriploid oysters. Aquaculture 2025, 596, 741876. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, C.; Lin, K.; You, W.; Yang, Z. Genetic diversity and genetic structure among four selected strains of whiteleg shrimp (Litopenaeus vannamei) using SSR markers. Fishes 2023, 8, 544. [Google Scholar] [CrossRef]
- Nayfa, M.G.; Jones, D.B.; Benzie, J.A.H.; Jerry, D.R.; Zenger, K.R. Comparing genomic signatures of selection between the abbassa strain and eight wild populations of nile tilapia (Oreochromis niloticus) in Egypt. Front. Genet. 2020, 11, 567969. [Google Scholar] [CrossRef]
- Hillen, J.E.J.; Coscia, I.; Vandeputte, M.; Herten, K.; Hellemans, B.; Maroso, F.; Vergnet, A.; Allal, F.; Maes, G.E.; Volckaert, F.A.M. Estimates of genetic variability and inbreeding in experimentally selected populations of European sea bass. Aquaculture 2017, 479, 742–749. [Google Scholar] [CrossRef]
- Mickett, K.; Morton, C.; Feng, J.; Li, P.; Simmons, M.; Cao, D.; Dunham, R.A.; Liu, Z. Assessing genetic diversity of domestic populations of channel catfish (Ictalurus punctatus) in Alabama using AFLP markers. Aquaculture 2003, 228, 91–105. [Google Scholar] [CrossRef]
- Davis, P.; Wheeler, A. The occurrence of Pampus argenteus (Euphrasen, 1788), (Osteichthyes, Perciformes, Stromateoidei, Stromateidae) in the North Sea. J. Fish Biol. 1985, 26, 105–109. [Google Scholar] [CrossRef]
- Mohitha, C.; Joy, L.; Divya, P.R.; Gopalakrishnan, A.; Basheer, V.S.; Koya, M.; Jena, J.K. Characterization of microsatellite markers in silver pomfret, Pampus argenteus (Perciformes: Stromateidae) through cross-species amplification and population genetic applications. J. Genet. 2015, 94, 89–93. [Google Scholar] [CrossRef]
- Zhao, F.; Dong, Y.H.; Zhuang, P.; Zhang, T.; Zhang, L.Z.; Shi, Z.H. Genetic diversity of silver pomfret (Pampus argenteus) in the Southern Yellow and East China Seas. Biochem. Syst. Ecol. 2011, 39, 145–150. [Google Scholar] [CrossRef]
- Xu, S.L.; Wang, D.L.; Xu, J.L.; Yan, X.J.; Hu, X.Y. Comparative study on fatty acid composition of different tissue in three kinds of wild pomfret. J. Biol. 2012, 29, 53–58. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, C.; Hu, J.; Tao, S.; Tang, J.; Huang, L.; Zheng, C.; Xu, S.; Wang, Y. Analyses of growth performance and realized heritability of the second generation of Indo-Pacific Pampus argenteus. J. Fish Biol. 2023, 102, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Jacques, K.J.; Zhang, S.; Xu, S.; Wang, Y.; Wang, D. Analyses of growth performance and realized heritability of Pampus argenteus in a breeding program in China. Front. Mar. Sci. 2022, 9, 935924. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, H.; Wang, D.; Xu, S. Correlation and path analysis of morphological traits and body weight in silver pomfret (Pampus argenteus). J. Anim. Plant Sci. 2024, 34, 1–13. [Google Scholar] [CrossRef]
- Sambrook, J.; Russell, D. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2001. [Google Scholar]
- Van Oosterhout, C.; Hutchinson, W.F.; Wills, D.P.M.; Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 2004, 4, 535–538. [Google Scholar] [CrossRef]
- Yeh, F.; Yang, R.; Boyle, T. POPGENE Version 1.32 Microsoft Windows-Based Freeware for Populations Genetic Analysis; University of Alberta: Edmonton, AB, Canada, 1999. [Google Scholar]
- Kamvar, Z.N.; Tabima, J.F.; Gruenwald, N.J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2014, 2, e281. [Google Scholar] [CrossRef]
- Goudet, J. HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 2005, 5, 184–186. [Google Scholar] [CrossRef]
- Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 2008, 8, 103–106. [Google Scholar] [CrossRef]
- Do, C.; Waples, R.S.; Peel, D.; Macbeth, G.M.; Tillett, B.J.; Ovenden, J.R. NeEstimator V2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 2014, 14, 209–214. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar] [CrossRef]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [PubMed]
- Excoffier, L.; Laval, G.; Schneider, S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinform. Online 2007, 1, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Bandelt, H.; Forster, P.; Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999, 16, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Excoffier, L.; Lischer, H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Rosenberg, N.A. DISTRUCT: A program for the graphical display of population structure. Mol. Ecol. Notes 2004, 4, 137–138. [Google Scholar] [CrossRef]
- Rohlf, F. NTSYS-pc, version 2.1d; Exeter Software: Setauket, NY, USA, 2000. [Google Scholar]
- In, V.-V.; O’Connor, W.; Dove, M.; Knibb, W. Can genetic diversity be maintained across multiple mass selection lines of Sydney rock oyster, Saccostrea glomerata despite loss within each? Aquaculture 2016, 454, 210–216. [Google Scholar] [CrossRef]
- Swain, S.K.; Sahu, B.P.; Das, S.P.; Sahoo, L.; Das, P.C.; Das, P. Population genetic structure of fringe-lipped carp, Labeo fimbriatus from the peninsular rivers of India. 3 Biotech 2022, 12, 300. [Google Scholar] [CrossRef]
- Samani, N.K.; Esa, Y.; Amin, S.M.N.; Ikhsan, N.F.M. Phylogenetics and population genetics of Plotosus canius (Siluriformes: Plotosidae) from Malaysian coastal waters. PeerJ 2016, 4, e1930. [Google Scholar] [CrossRef]
- Lind, C.E.; Evans, B.S.; Knauer, J.; Taylor, J.J.U.; Jerry, D.R. Decreased genetic diversity and a reduced effective population size in cultured silver-lipped pearl oysters (Pinctada maxima). Aquaculture 2009, 286, 12–19. [Google Scholar] [CrossRef]
- Hu, Y.; Li, Q.; Xu, C.; Liu, S.; Kong, L.; Yu, H. Genetic variability of mass-selected and wild populations of Iwagaki oyster (Crassostrea nippona) revealed by microsatellites and mitochondrial COI sequences. Aquaculture 2022, 561, 738737. [Google Scholar] [CrossRef]
- Huang, X.; Li, T.; Yang, Y.; Guo, Z.; Jiang, J.; Lin, H.; Fan, S. Genome survey of Siganus oramin: Identification and development of genome-wide microsatellite markers. Aquac. Rep. 2024, 39, 102520. [Google Scholar] [CrossRef]
- Liu, S.; Yu, Q.; Chen, R.; Hu, W.; Yan, X.; Han, Q.; Xu, D.; Zhu, Q. Comparison of Genetic Diversity between Hatchery-Reared and Wild Rock Bream (Oplegnathus fasciatus) Based on Microsatellite Markers and Mitochondrial COI Sequences. Aquac. Res. 2024, 2024, 5570764. [Google Scholar] [CrossRef]
- Guo, X.-F.; Liu, M.; Zhou, Y.-L.; Wei, W.-Y.; Li, Z.; Zhou, L.; Wang, Z.-W.; Gui, J.-F. Genetic diversity evaluation and population structure analysis of red swamp crayfish (Procambarus clarkii) from lakes and rice fields by SSR markers. Fishes 2022, 7, 142. [Google Scholar] [CrossRef]
- Neigel, J.E. A comparison of alternative strategies for estimating gene flow from genetic markers. Annu. Rev. Ecol. Syst. 1997, 28, 105–128. [Google Scholar] [CrossRef]
- Lallias, D.; Boudry, P.; Lapegue, S.; King, J.W.; Beaumont, A.R. Strategies for the retention of high genetic variability in European flat oyster (Ostrea edulis) restoration programmes. Conserv. Genet. 2010, 11, 1899–1910. [Google Scholar] [CrossRef]
- Li, Q.; Xu, K.F.; Yu, R.H. Genetic variation in Chinese hatchery populations of the Japanese scallop (Patinopecten yessoensis) inferred from microsatellite data. Aquaculture 2007, 269, 211–219. [Google Scholar] [CrossRef]
- Al-Mamun, M.A.; Al, M.; Mohanta, S.K.; Tazim, M.F.; Parvej, M.R.; Uddin, M.S.; Barua, S.; Qun, L. Estimation of peak spawning season, length at maturity (Lm) and sex ratio of silver pomfret (Pampus argenteus) in the bay of Bengal, Bangladesh. Pak. J. Zool. 2023, 55, 2397–2405. [Google Scholar] [CrossRef]
- Sun, P.; Li, Y.; Yin, F.; Shi, Z.; Peng, S. Gonadal development of cultured Pampus argenteus in their first year of life. Mar. Fish. 2012, 4, 393–399. [Google Scholar] [CrossRef]
- Shikano, T.; Taniguchi, N. Relationships between genetic variation measured by microsatellite DNA marker and fitness-related trait in the guppy (Poecilia reticulata). Aquaculture 2002, 209, 77–90. [Google Scholar] [CrossRef]
- Holsinger, K.E.; Weir, B.S. Genetics in geographically structured populations: Defining, estimating and interpreting FST. Nat. Rev. Genet. 2009, 10, 639–650. [Google Scholar] [CrossRef]
- Diyie, R.L.; Agyarkwa, S.K.; Armah, E.; Amonoo, N.A.; Owusu-Frimpong, I.; Osei-Atweneboana, M.Y. Genetic variations among different generations and cultured populations of Nile Tilapia (Oreochromis niloticus) in Ghana: Application of microsatellite markers. Aquaculture 2021, 544, 737070. [Google Scholar] [CrossRef]
Populations | Na | Ne | I | Ho | He | Np | Ar | FIS | PIC |
---|---|---|---|---|---|---|---|---|---|
HH | 16.895 | 10.847 | 2.419 | 0.663 | 0.882 | 35 | 17.050 | 0.242 | 0.852 |
BH | 13.000 | 8.634 | 2.192 | 0.611 | 0.844 | 23 | 13.260 | 0.266 | 0.817 |
NH | 15.316 | 9.041 | 2.330 | 0.652 | 0.865 | 39 | 15.340 | 0.247 | 0.838 |
ES | 16.790 | 9.323 | 2.315 | 0.674 | 0.854 | 53 | 16.650 | 0.213 | 0.826 |
ES-G1 | 11.158 | 5.919 | 1.877 | 0.665 | 0.777 | 12 | 10.900 | 0.165 | 0.742 |
ES-G2 | 12.947 | 6.506 | 1.994 | 0.626 | 0.796 | 24 | 12.510 | 0.224 | 0.766 |
ES-G3 | 11.947 | 5.592 | 1.899 | 0.639 | 0.790 | 34 | 11.500 | 0.199 | 0.753 |
Populations | The Number of Samples | The Effective Population Sizes (Ne-lin) | 95% C.I. (Lower–Upper) |
---|---|---|---|
HH | 32 | 64.1 | 49.0–859.2 |
BH | 38 | 90.5 | 79.8–353.6 |
NH | 33 | 117 | 86.6–Infinite |
ES | 36 | 105 | 75.9–Infinite |
ES-G1 | 36 | 83.7 | 66.7–234.3 |
ES-G2 | 36 | 66.6 | 41.5–110.6 |
ES-G3 | 36 | 59.6 | 42.3–62.8 |
Markers | Source of Variation | d.f. | Sum of Squares | Variance Components | Percentage of Variation | F-Statistics |
---|---|---|---|---|---|---|
Microsatellite loci | Among wild population | |||||
Among populations | 3 | 110.788 | 36.92936 | 4.45 | 0.04453 ** | |
Among individuals/within population | 135 | 1385.381 | 10.26208 | 23.36 | ||
Within individuals | 139 | 866.000 | 6.23022 | 72.19 | ||
Total | 277 | 2362.169 | 53.42165 | |||
Among selected population | ||||||
Among populations | 2 | 45.056 | 22.52778 | 2.45 | 0.02447 ** | |
Among individuals/within population | 105 | 937.931 | 8.93267 | 18.19 | ||
Within individuals | 108 | 661.500 | 6.12500 | 79.36 | ||
Total | 215 | 1644.486 | 37.58545 | |||
mtCOI | Among wild population | |||||
Among populations | 3 | 25.001 | 0.14773 Va | 3.93 | 0.03929 ** | |
Within populations | 124 | 447.881 | 3.61195 Vb | 96.07 | ||
Total | 127 | 472.883 | 3.75967 | |||
Among selected population | ||||||
Among populations | 2 | 4.241 | 0.02559 Va | 2.09 | 0.02089 * | |
Within populations | 105 | 125.917 | 1.19921 Vb | 97.91 | ||
Total | 107 | 130.157 | 1.22479 | |||
mtD-loop | Among wild population | |||||
Among populations | 3 | 3.044 | 0.01764 Va | 3.87 | 0.03872 * | |
Within populations | 127 | 55.612 | 0.43789 Vb | 96.13 | ||
Total | 130 | 8.656 | 0.45553 | |||
Among selected population | ||||||
Among populations | 2 | 9.315 | 0.10228 Va | 9.49 | 0.09491 ** | |
Within populations | 105 | 102.417 | 0.97540 Vb | 90.51 | ||
Total | 107 | 111.731 | 1.07767 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, M.; Yu, H.; Deng, Y.; Jiang, W.; Zhang, Y.; Gao, M.; Zhang, C.; Hu, J.; Zhang, M.; Xu, S.; et al. Genetic Structure and Optimal Population Size of Wild and Mass-Selected Silver Pomfret (Pampus argenteus) in China: The Implications for Conservation and Selection Breeding Programs. Biology 2025, 14, 534. https://doi.org/10.3390/biology14050534
Xiao M, Yu H, Deng Y, Jiang W, Zhang Y, Gao M, Zhang C, Hu J, Zhang M, Xu S, et al. Genetic Structure and Optimal Population Size of Wild and Mass-Selected Silver Pomfret (Pampus argenteus) in China: The Implications for Conservation and Selection Breeding Programs. Biology. 2025; 14(5):534. https://doi.org/10.3390/biology14050534
Chicago/Turabian StyleXiao, Mengya, Haipeng Yu, Yong Deng, Weixu Jiang, Yuanwen Zhang, Minglu Gao, Cheng Zhang, Jiabao Hu, Man Zhang, Shanliang Xu, and et al. 2025. "Genetic Structure and Optimal Population Size of Wild and Mass-Selected Silver Pomfret (Pampus argenteus) in China: The Implications for Conservation and Selection Breeding Programs" Biology 14, no. 5: 534. https://doi.org/10.3390/biology14050534
APA StyleXiao, M., Yu, H., Deng, Y., Jiang, W., Zhang, Y., Gao, M., Zhang, C., Hu, J., Zhang, M., Xu, S., Wang, D., & Wang, Y. (2025). Genetic Structure and Optimal Population Size of Wild and Mass-Selected Silver Pomfret (Pampus argenteus) in China: The Implications for Conservation and Selection Breeding Programs. Biology, 14(5), 534. https://doi.org/10.3390/biology14050534