Insect Odorant-Binding Proteins (OBPs) and Chemosensory Proteins (CSPs): Mechanisms and Research Perspectives in Mediating Insecticide Resistance
Abstract
Simple Summary
Abstract
1. Introduction
2. Structural and Functional Diversity of OBPs and CSPs
2.1. Molecular Characteristics
2.2. Functional Diversity
3. Mechanisms Linking OBPs/CSPs to Insecticide Resistance
3.1. Enhanced Detoxification and Metabolic Resistance
3.2. Behavioral Avoidance
4. Methodological Advances in Studying the Roles of OBPs and CSPs in Insecticide Resistance
4.1. Omics Technologies
4.2. Functional Validation
4.3. Implications for Pest Management
4.4. New Targets for Insecticide Design
4.5. Resistance Monitoring
4.6. Synergistic Strategies
5. Challenges and Future Directions
5.1. Functional Redundancy
5.2. Cross-Species Variability
5.3. Field Applicability
Species | Order | CSPs/OBPs | Developmental Stage | Insecticide | Experimental Evidence | Reference |
---|---|---|---|---|---|---|
Tribolium castaneum | Coleoptera | CSP10 and OBPC01 | Larvae | Dichlorvos | Upregulated; increased susceptibility after RNAi | [34] |
Rhaphuma horsfieldi | Coleoptera | OBP1 | Adult | Chlorpyrifos | High binding affinity | [35] |
Dastarcus helophoroides | Coleoptera | OBP4 and OBP21 | Adult | Cyetpyrafen, chlorfenapyr, spirodiclofen | High binding affinity; disappearance of avoidance behavior after RNAi | [43] |
Ceutorhynchus asper | Coleoptera | OBP12 | Female | λ-Cyhalothrin | High binding affinity | [81] |
Anopheles gambiae | Diptera | SAP2 | Adult | Pyrethroid | Upregulated; high binding affinity; increased susceptibility after RNAi | [11] |
Bactrocera dorsalis | Diptera | OBP28a-2 | Adult | Malathion | Upregulated; high binding affinity; increased susceptibility after CRISPR/Cas9 mutagenesis | [58] |
Aphis gossypii | Hemiptera | CSP1, CSP4 and CSP5 | Adult | Cyantraniliprole | Upregulated; ctopic expression confers retained insecticide resistance; increased susceptibility after RNAi | [6] |
Rhopalosiphum padi | Hemiptera | CSP4 and CSP5 | Adult | Thiamethoxam | Upregulated; high binding affinity; increased susceptibility after RNAi | [7] |
A. gossypii | Hemiptera | CSP1 and CSP4 | Adult | Thiamethoxam | Upregulated; high binding affinity; ctopic expression confers retained insecticide resistance; increased susceptibility after RNAi | [8] |
Nilaparvata lugens | Hemiptera | CSP2, CSP4, CSP5, CSP7, CSP12 and CSP15 | Adult | Imidacloprid | Upregulated; increased susceptibility after RNAi | [12] |
N. lugens | Hemiptera | OBP5 | Adult | Chlorpyrifos | Upregulated; high binding affinity; increased susceptibility after RNAi | [36] |
N. lugens | Hemiptera | OBP3 | Larvae | Nitenpyram, sulfoxaflor | Upregulated; increased susceptibility after RNAi | [82] |
Bemisia tabaci | Hemiptera | CSP1 | Adult | Thiamethoxam | Upregulated | [48] |
R. padi | Hemiptera | CSP4, CSP5, CSP6 and CSP10 | Adult | Imidacloprid | High binding affinity; increased susceptibility after RNAi | [57] |
R. padi | Hemiptera | CSP4 and CSP6 | Adult | Beta-cypermethrin | High binding affinity; increased susceptibility after RNAi | [57] |
R. padi | Hemiptera | CSP6 | Larvae and adult | Deltamethrin | Upregulated; increased susceptibility after RNAi | [65] |
Apis cerana | Hemiptera | OBP17 | Adult | Imidacloprid | Upregulated; high binding affinity; Enhanced the electrophysiological response after RNAi | [77] |
Meteorus pulchricornis | Hymenoptera | OBP6 | Adult | Phoxim, chlorpyrifos, chlorfenapyr | High binding affinity | [38] |
Plutella xylostella | Lepidoptera | CSP2 | Adult | Rhodojaponin III | Upregulated; reduced oviposition after RNAi | [51] |
Spodoptera frugiperda | Lepidoptera | OBP18 | Larvae | Spinetoram, chlorfenapyr, chlorpyrifos, indoxarweb | Upregulated; increased susceptibility after RNAi | [83] |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weiss, R.; Vankosky, M.; Olfert, O. Insect pest complexes associated with wheat and canola crops in the Canadian Prairies Ecozone: Pest risk in response to variable climates using bioclimatic models. Can. Entomol. 2022, 154, e32. [Google Scholar] [CrossRef]
- Bal, M.; Marakli, S. In silicoanalyses of miRNAs that target odorant binding and chemosensory proteins in Bemisia tabaci. Turk. J. Agric. Food Sci. Technol. 2025, 13, 750–759. [Google Scholar]
- Lu, K.; Song, Y.; Zeng, R. The role of cytochrome P450-mediated detoxification in insect adaptation to xenobiotics. Curr. Opin. Insect Sci. 2021, 43, 103–107. [Google Scholar] [CrossRef]
- Balabanidou, V.; Kampouraki, A.; MacLean, M.; Blomquist, G.J.; Tittiger, C.; Juárez, M.P.; Mijailovsky, S.J.; Chalepakis, G.; Vontas, J.; Lycett, G.J.; et al. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proc. Natl. Acad. Sci. USA 2016, 113, 9268–9273. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, B.; Li, J.; Li, J.; Liu, M.; Liu, Z. Point mutations in acetylcholinesterase 1 associated with chlorpyrifos resistance in the brown planthopper, Nilaparvata lugens Stål. Insect Mol. Biol. 2017, 26, 453–460. [Google Scholar]
- Xu, H.; Pan, Y.; Li, J.; Yang, F.; Chen, X.; Gao, X.; Wen, S.; Shang, Q. Chemosensory proteins confer adaptation to the ryanoid anthranilic diamide insecticide cyantraniliprole in Aphis gossypii glover. Pestic. Biochem. Physiol. 2022, 184, 105076. [Google Scholar] [CrossRef]
- Gao, P.; Zhang, S.; Tan, J.; Li, X.; Chen, M. Chemosensory proteins are associated with thiamethoxam tolerance in bird cherry-oat aphid Rhopalosiphum padi. Pestic. Biochem. Physiol. 2023, 192, 105393. [Google Scholar] [CrossRef]
- Xu, H.; Yan, K.; Ding, Y.; Lv, Y.; Li, J.; Yang, F.; Chen, X.; Gao, X.; Pan, Y.; Shang, Q. Chemosensory proteins are associated with thiamethoxam and spirotetramat tolerance in Aphis gossypii Glover. Int. J. Mol. Sci. 2022, 23, 2356. [Google Scholar] [CrossRef]
- Kannan, K.; Galizia, C.G.; Nouvian, M. Olfactory strategies in the defensive behaviour of insects. Insects 2022, 13, 470. [Google Scholar] [CrossRef]
- Pelosi, P.; Iovinella, I.; Zhu, J.; Wang, G.; Dani, F.R. Beyond chemoreception: Diverse tasks of soluble olfactory proteins in insects. Biol. Rev. 2018, 93, 184–200. [Google Scholar] [CrossRef]
- Ingham, V.A.; Anthousi, A.; Douris, V.; Harding, N.J.; Lycett, G.; Morris, M.; Vontals, J.; Ranson, H. A sensory appendage protein protects malaria vectors from pyrethroids. Nature 2020, 577, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.; Xu, X.; Xiao, T.; Huang, X.; Wang, W.; Zhao, X.; Li, J.; Jiang, Y.; Pan, B.; He, Z.; et al. Chemosensory Proteins Protect Nilaparvata lugens from Imidacloprid by Sequestering the Insecticide and Facilitating Metabolic Detoxification. J. Agric. Food Chem. 2025, 73, 3951–3966. [Google Scholar] [CrossRef] [PubMed]
- Leal, W.S. Pheromone reception. Chem. Pheromones Other Semiochem. II Top. Curr. Chem. 2005, 240, 1–36. [Google Scholar]
- Vieira, F.G.; Rozas, J. Comparative genomics of the odorant-binding and chemosensory protein gene families across the Arthropoda: Origin and evolutionary history of the chemosensory system. Genome Biol. Evol. 2011, 3, 476–490. [Google Scholar] [CrossRef]
- Han, W.; Tang, F.; Yan, Y.; Wang, Y.; Zhang, Y.; Yu, N.; Wang, K.; Liu, Z. An OBP gene highly expressed in non-chemosensory tissues affects the phototaxis and reproduction of Spodoptera frugiperda. Insect Mol. Biol. 2024, 33, 81–90. [Google Scholar] [CrossRef]
- Brito, N.; Moreira, M.; Melo, A.C. A look inside odorant-binding proteins in insect chemoreception. Insect Physiol. 2016, 95, 51–65. [Google Scholar] [CrossRef]
- Pelosi, P. Odorant-binding proteins: Structural aspects. Ann. New York Acad. Sci. 2021, 855, 281–293. [Google Scholar] [CrossRef]
- Li, Z.; Liu, L.; Zong, S.; Tao, J. Molecular Characterization and Expression Profiling of Chemosensory Proteins in Male Eogystia hippophaecolus (Lepidoptera:Cossidae). J. Entomol. Sci. 2021, 56, 217–234. [Google Scholar]
- McKenna, M.P.; Hekmat-Scafe, D.S.; Gaines, P.; Carlson, J.R. Putative Drosophila pheromone-binding proteins expressed in a subregion of the olfactory system. J. Biol. Chem. 1994, 269, 16340–16347. [Google Scholar] [CrossRef]
- Pelosi, P.; Zhou, J.J.; Ban, L.P.; Calveiil, M. Soluble proteins in insect chemical communication. Cell. Mol. Life Sci. 2006, 63, 1658–1676. [Google Scholar] [CrossRef]
- Li, F.; Venthur, H.; Lin, K.; Zhang, C.; Chen, Z.; Zhou, J. Insect chemosensory proteins as targets in insecticide resistance and development. New Plant Prot. 2025, 2, e70008. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, C.; Xia, D.; Wang, J.; Tang, Q. Characterization of the expression and functions of two odorant—Binding proteins of Sitophilus zeamais Motschulsky (Coleoptera: Curculionoidea). Insects 2019, 10, 409. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Merchant, A.; Zhao, Z.; Zhang, Y.; Zhang, J.; Zhang, Q.; Wang, Q.; Zhou, X.; Li, X. Characterization of MaltOBP1, a minus—C odorant -binding protein, from the Japanese pine sawyer beetle, Monochamus alternatus hope (Coleoptera: Cerambycidae). Front. Physiol. 2020, 11, 212. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Merchant, A.; Wu, Q.; Wang, S.; Kong, L.; Zhou, X.; Xie, W.; Zhang, Y. A chemosensory protein BtabCSP11 mediates reproduction in Bemisia tabaci. Front. Physiol. 2020, 11, 709. [Google Scholar] [CrossRef]
- Vogt, R.; Riddiford, L. Pheromone binding andinactivation by moth antennae. Nature 1981, 293, 161–163. [Google Scholar] [CrossRef]
- Yi, T.; Wei, J.Q.; Wang, M.W.; Liu, M.J.; Li, L.; Liu, R.; Zeng, L.D.; Xu, H.H. Functional characterization of two odorant-binding proteins to sex pheromones in Spodoptera frugiperda. Physiol. Entomol. 2024, 49, 358–365. [Google Scholar] [CrossRef]
- Han, K.R.; Wang, W.W.; Li, X.; Liu, T.X.; Zhang, S.Z. Involvement of Chemosensory Protein CrufCSP3 in Perception of the Host Location in a Parasitic Wasp Cotesia ruficrus. J. Agric. Food Chem. 2024, 72, 10828–10841. [Google Scholar] [CrossRef]
- Li, H.; Wang, P.; Zhang, L.; Xu, X.; Cao, Z.; Zhang, L. Expressions of olfactory proteins in locust olfactory organs and a palp odorant receptor involved in plant aldehydes detection. Front. Physiol. 2018, 9, 663. [Google Scholar] [CrossRef]
- Jiang, G. Research advances in olfactory-related proteins of locusts and their functions. J. Guangxi Acad. Sci. 2020, 36, 252–259. [Google Scholar]
- Jeong, Y.T.; Shim, J.; Oh, S.R.; Yoon, H.Y.; Kin, C.H.; Moon, S.J.; Montell, C. An odorant-binding protein required for suppression of sweet taste by bitter chemicals. Neuron 2013, 79, 725–737. [Google Scholar] [CrossRef]
- Gravino, M.; Mugford, S.T.; Kreuter, N.; Joyce, J.; Wilson, C.; Kliot, A.; Canham, J.; Mathers, T.C.; Drurey, C.; Maqbool, A.; et al. The conserved aphid saliva chemosensory protein effector Mp10 targets plant AMSH deubiquitinases at cellular membranes to suppress pattern-triggered immunity. bioRxiv 2024, 11, 15.622802. [Google Scholar] [CrossRef]
- Qiao, X.; Zhang, X.; Peng, X.; Chen, M. Research progress on the new mechanism of CSP-mediated pesticide resistance in pests. J. Environ. Entomol. 2023, 45, 360–366. [Google Scholar]
- Lin, X.; Jiang, Y.; Zhang, L.; Cai, Y. Effects of insecticides chlorpyrifos, emamectin benzoate and fipronil on Spodoptera litura might be mediated by OBPs and CSPs. Bull. Entomol. Res. 2018, 108, 658–666. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Gao, S.; Lu, Y.; Wei, L.; Mao, J.; Xie, J.; Cao, Q.; Liu, J.; Bi, J.; Song, X.; et al. Latrophilin participates in insecticide susceptibility through positively regulating CSP10 and partially compensated by OBPC01 in Tribolium castaneum. Pestic. Biochem. Physiol. 2019, 159, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.L.; Li, S.S.; Yin, N.N.; Li, S.L.; Lu, Y.Y.; Liu, N.Y. Functional characterization of four antenna-enriched odorant binding proteins in Rhaphuma horsfieldi reveals the importance of RhorOBP1 in odorant recognition and insecticide resistance. Pestic. Biochem. Physiol. 2024, 206, 106210. [Google Scholar] [CrossRef]
- Deng, M.; Xu, X.; Huang, X.; Xiao, T.; Wang, W.; Li, J.; Zhao, X.; Bo, P.; Jiang, Y.; He, Z.; et al. Mechanistic exploration of odorant binding protein-mediated chlorpyrifos resistance in Nilaparvata lugens: Insights from insecticide sequestration and transcriptional regulation. Int. J. Biol. Macromol. 2025, 284, 138108. [Google Scholar] [CrossRef]
- Xuan, N.; Guo, X.; Xie, H.Y.; Lou, Q.N.; Lu, X.B.; Liu, G.X.; Picimbon, J.F. Increased expression of CSP and CYP genes in adult silkworm females exposed to avermectins. Insect Sci. 2015, 22, 203–219. [Google Scholar] [CrossRef]
- Li, Y.J.; Hong, T.L.; Chen, H.C.; Gu, F.M.; Liu, Z.X.; You, S.; Wu, F.A.; Sheng, S.; Wang, J. Odorant-Binding Protein 6 Contributes High Binding Affinity to Insecticides in a Parasitic Wasp Meteorus pulchricornis (Hymenoptera: Braconidae). J. Agric. Food Chem. 2023, 71, 4498–4509. [Google Scholar] [CrossRef]
- Huang, M.; Fu, B.; Yin, C.; Gong, P.; Liu, S.; Yang, G.; Wei, X.; Liang, J.; Xue, H.; He, C.; et al. Cytochrome P450 CYP6EM1 Underpins Dinotefuran Resistance in the Whitefly Bemisia tabaci. J. Agric. Food Chem. 2024, 72, 5153–5164. [Google Scholar] [CrossRef]
- Bautista, M.A.M.; Bhandary, B.; Wijeratne, A.J.; Michel, A.P.; Hoy, C.W.; Mittapalli, O. Evidence for trade-offs in detoxification and chemosensation gene signatures in Plutella xylostella. Pest Manag. Sci. 2015, 71, 423–432. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, S.; Zhang, P.; Sun, H.; Lu, R.; Yu, R.; Li, Y.; Zhang, K.; Li, B. Response of xenobiotic biodegradation and metabolic genes in Tribolium castaneum following eugenol exposure. Mol. Genet. Genom. 2022, 297, 801–815. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.H.; Xiong, W.F.; Li, C.J.; Gao, S.S.; Song, X.W.; Wu, W.; Li, B. Comparative RNA-sequencing profiling reveals novel Delta-class glutathione S-transferases relative genes expression patterns in Tribolium castaneum. Gene 2016, 593, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Mao, Z.; Zhao, W.; Chen, D.; Jiang, Z.; Liu, Q.; Li, J.; Wu, Y.; Lv, N.; Fan, J. Cyetpyrafen, chlorfenapyr and spirodiclofen affect the olfactory recognition of Dastarcus helophoroides by acting on DhelOBP4 and DhelOBP21. Pestic. Biochem. Physiol. 2025, 214, 106568. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Jiang, Z.; Ding, M.; Wang, X.; Huang, A.; Qiu, L.; Qi, S. Novel neonicotinoid insecticide cycloxaprid exhibits sublethal toxicity to honeybee (Apis mellifera L.) workers by disturbing olfactory sensitivity and energy metabolism. J. Hazard. Mater. 2025, 485, 136923. [Google Scholar] [CrossRef]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef]
- Vera, J.C.; Wheat, C.W.; Fescemyer, H.W.; Frilander, M.J.; Crawford, D.L.; Hanski, I.; Marden, J.H. Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Molecular. Ecol. 2008, 17, 1636–1647. [Google Scholar] [CrossRef]
- Marutani-Hert, M.; Hunter, W.; Hall, D. Gene response to stress in the Asian citrus psyllid (Hemiptera: Psyllidae). Fla. Entomol. 2010, 93, 519–525. [Google Scholar] [CrossRef]
- Liu, G.; Ma, H.; Xie, H.; Xuan, N.; Guo, X.; Fan, Z.; Rajashekar, B.; Arnaud, P.; Offmann, B.; Picimbon, J.F. Biotype characterization, developmental profiling, insecticide response and binding property of Bemisia tabaci chemosensory proteins: Role of CSP in insect defense. PLoS ONE 2016, 11, e0154706. [Google Scholar] [CrossRef]
- Colinet, H.; Renault, D.; Charoy-Guével, B.C.; Com, E. Metabolic and proteomic profiling of diapause in the aphid parasitoid Praon volucre. PLoS ONE 2012, 7, e32606. [Google Scholar] [CrossRef]
- Hassan, M.; Yusoff, N.; Aizat, W.M.; Othman, N.W. Optimization method for proteomic analysis of the larva and adult tissues of Plutella xylostella (L.) (Lepidoptera: Plutellidae). Sains Malays. 2018, 47, 2975–2983. [Google Scholar] [CrossRef]
- Dong, X.; Zhai, Y.; Hu, M.; Zhong, G.; Huang, W.; Zheng, Z.; Han, P. Proteomic and properties analysis of botanical insecticide rhodojaponin III-induced response of the diamondback moth, Plutella xyllostella (L.). PLoS ONE 2013, 8, e67723. [Google Scholar] [CrossRef]
- Bargmann, C.I. High-throughput reverse genetics: RNAi screens in Caenorhabditis elegans. Genome Biol. 2001, 2, reviews1005.1–reviews1005.3. [Google Scholar] [CrossRef] [PubMed]
- Koo, J.; Palli, S.R. Recent advances in understanding of the mechanisms of RNA interference in insects. Insect Mol. Biol. 2025, 34, 491–504. [Google Scholar] [CrossRef] [PubMed]
- Nandety, R.S.; Kuo, Y.W.; Nouri, S.; Falk, B.W. Emerging strategies for RNA interference (RNAi) applications in insects. Bioengineered 2015, 6, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Komal, J.; Desai, H.R.; Samal, I.; Mastinu, A.; Patel, R.D.; Kumar, P.V.D.; Majhi, P.K.; Mahanta, D.K.; Bhoi, T.K. Unveiling the Genetic Symphony: Harnessing CRISPR-Cas Genome Editing for Effective Insect Pest Management. Plants 2023, 12, 3961. [Google Scholar] [CrossRef] [PubMed]
- Muhammed, M.T.; Aki-Yalcin, E. Molecular docking: Principles, advances, and its applications in drug discovery. Lett. Drug Des. Discov. 2024, 21, 480–495. [Google Scholar] [CrossRef]
- Peng, X.; Qu, M.J.; Wang, S.J.; Huang, Y.X.; Chen, C.; Chen, M.H. Chemosensory proteins participate in insecticide susceptibility in Rhopalosiphum padi, a serious pest on wheat crops. Insect Mol. Biol. 2021, 30, 138–151. [Google Scholar] [CrossRef]
- Chen, X.; Lei, Y.; Liang, C.; Lei, Q.; Wang, J.; Jiang, H. Odorant Binding Protein Expressed in Legs Enhances Malathion Tolerance in Bactrocera dorsalis (Hendel). Agric. Food Chem. 2024, 72, 4376–4383. [Google Scholar] [CrossRef]
- Liu, X.L.; Wu, Z.R.; Liao, W.; Zhang, X.Q.; Pei, Y.W.; Lu, M. The binding affinity of two general odorant binding proteins in Spodoptera frugiperda to general volatiles and insecticides. Int. J. Biol. Macromol. 2023, 252, 126338. [Google Scholar] [CrossRef]
- Satyanarayana, P.; Guhan, T.; Ganesan, T.; Bhagyalakshmi, A.; Pallavi, L.; Koshariya, A.K.; Sabarimuthu, M.; Rajaram, A. Exploring the impact of pesticide resistance in agricultural pest management. Glob. Nest J. 2024, 26, 05931. [Google Scholar]
- Zhou, J.J. Odorant-binding proteins in insects. Vitam. Horm. 2010, 83, 241–272. [Google Scholar] [PubMed]
- Zhao, Z.; Liu, B.; Rong, E.; Zhang, L.; Guo, Y.; Li, J.; Kong, W.; Ma, R. Bioinformatic analysis of gene encoding odorant binding protein (OBP) 1, OBP2, and chemosensory proteins in Grapholita molesta. Biochem. Syst. Ecol. 2017, 70, 60–68. [Google Scholar] [CrossRef]
- Volonté, M.; Traverso, L.; Sierra, I.; Aptekmann, A.A.; Nadra, A.D.; Ons, S. Characterization of odorant binding and chemosensory protein families in the kissing bug Triatoma infestans: Comparative analysis among Heteroptera species. BMC Genom. 2025, 26, 794. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Yang, M.; Dong, K.; Zhang, J.; Wang, H.; Xie, M.; Wu, W.; Zhang, Y.J.; Chen, Z. Structural Insights into the Ligand-Binding and -Releasing Mechanism of Helicoverpa armigera Pheromone-Binding Protein PBP1. Int. J. Mol. Sci. 2022, 23, 1190. [Google Scholar] [CrossRef]
- Gao, P.; Tan, J.; Peng, X.; Song, Y.; Qu, M.; Chen, M. Expression pattern of RpCSP6 from Rhopalosiphum padi and its binding mechanism with Deltamethrin: Insights into chemosensory protein-mediated insecticide resistance. J. Agric. Food Chem. 2024, 72, 17847–17857. [Google Scholar] [CrossRef]
- Cui, L.; Lyu, B.; Rui, C.; Yuan, H. Monitoring of the susceptibility of Aphis gossypii to five insecticides in North China. Pestic. Sci. Manag. 2022, 43, 29–35. [Google Scholar]
- Li, F.; Venthur, H.; Wang, S.; Homem, R.A.; Zhou, J.J. Evidence for the involvement of the chemosensory protein AgosCSP5 in resistance to insecticides in the cotton aphid, Aphis gossypii. Insects 2021, 12, 335. [Google Scholar] [CrossRef]
- Tan, X.; Zheng, H.; Ji, Y.; Xie, W.; Zhang, Y. Resistance monitoring of field Bemisia tabaci populations to five insecticides. China Veg. 2021, 5, 64–69. [Google Scholar]
- Li, Q.; Li, X.; Zhu, S.; Tian, X.; Wang, C. Monitoring of insecticide resistance in Rhopalosiphum padi in 2021. In Proceedings of the 2021 Annual Conference of the Chinese Society of Plant Protection on Pest Control and Biosecurity, Harbin, China, 4–7 August 2021; p. 73. [Google Scholar]
- Shi, X.; Zhang, Y.; Zhu, K.Y.; Ma, E.; Zhang, J. Comparative efficiency of different RNAi strategies for silencing antennal highly expressed genes in Locusta migratoria. Chin. J. Appl. Entomol. 2017, 54, 780–790. [Google Scholar]
- Baum, J.A.; Bogaert, T.; Clinton, W.; Heck, G.R.; Feldmann, P.; Ilagan, O.; Johnson, J.; Munyikwa, T.; Pleau, M. Control of coleopteran insect pests through RNA interference. Nat. Biotechnol. 2007, 25, 1322–1326. [Google Scholar] [CrossRef]
- Song, H.; Fan, Y.; Zhang, J.; Cooper, A.M.; Silver, K.; Li, D.; Li, T.; Ma, E.; Zhu, K.Y.; Zhang, J. Contributions of dsRNases to differential RNAi efficiencies between the injection and oral delivery of dsRNA in Locusta migratoria. Pest Manag. Sci. 2019, 75, 1707–1717. [Google Scholar] [CrossRef] [PubMed]
- Taning, C.N.T.; Christiaens, O.; Berkvens, N.; Casteels, H.; Maes, M.; Smagghe, G. Oral RNAi to control Drosophila suzukii: Laboratory testing against larval and adult stages. J. Pest Sci. 2016, 89, 803–814. [Google Scholar] [CrossRef]
- Zhang, X.; Mysore, K.; Flannery, E.; Michel, K.; Severson, D.W.; Zhu, K.Y.; Duman-Scheel, M. Chitosan/interfering RNA nanoparticle mediated gene silencing in disease vector mosquito larvae. J. Vis. Exp. JoVE 2015, 97, 52523. [Google Scholar]
- Zhou, Y.N.; Xie, S.; Chen, J.N.; Wang, Z.H.; Yang, P.; Zhou, S.C.; Pang, L.; Li, F.; Shi, M.; Huang, J.H. Expression and functional characterization of odorant-binding protein genes in the endoparasitic wasp Cotesia vestalis. Insect Sci. 2021, 28, 1354–1368. [Google Scholar] [CrossRef]
- Guo, D.; Hao, C.; Cui, X.; Wang, Y.; Liu, Z.; Xu, B.; Guo, X. Molecular and functional characaterization of the novel odorant-binding protein gene AccOBP10 from Apis cerana. J. Biochem. 2021, 169, 215–225. [Google Scholar] [CrossRef]
- Qiu, Y.L.; Wu, F.; Zhang, L.; Jiang, H.Q. A sublethal dose of neonicotinoid imidacloprid precisely sensed and detoxified by a C-minus odorant-binding protein 17 highly expressed in the legs of Apis cerana. Sci. Total Environ. 2023, 885, 163762. [Google Scholar] [CrossRef]
- D’Onofrio, C.; Zaremska, V.; Zhu, J.; Knoll, W.; Pelosi, P. Ligand-binding assays with OBPs and CSPs. Methods Enzymol. 2020, 642, 229–258. [Google Scholar]
- Huerta-García, A.; Álvarez-Cervantes, J. The gut microbiota of insects: A potential source of bacteria and metabolites. Int. J. Trop. Insect Sci. 2024, 44, 13–30. [Google Scholar] [CrossRef]
- Han, S.; Akhtar, M.R.; Xia, X. Functions and regulations of insect gut bacteria. Pest Manag. Sci. 2024, 80, 4828–4840. [Google Scholar] [CrossRef]
- Li, X.; Hu, F.; Li, R.; Peng, D.; Gao, P.; Rao, F.; Li, Y.; Liu, D. The pleiotropic odorant binding protein CaspOBP12 involved in perception of Ceutorhynchus asper for plant volatiles and pesticides. Pestic. Biochem. Physiol. 2025, 214, 106578. [Google Scholar] [CrossRef]
- Zhang, J.; Mao, K.; Ren, Z.; Jin, R.; Zhang, Y.; Cai, T.; He, S.; Li, J.; Wan, H. Odorant binding protein 3 is associated with nitenpyram and sulfoxaflor resistance in Nilaparvata lugens. Int. J. Biol. Macromol. 2022, 209 Pt A, 1352–1358. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, H.H.; Wang, Z.; Xiao, X.; Yin, X.H.; Hu, S.Y.; Miao, H.N.; Zhang, Y.J.; Liang, P.; Gu, S.H. Omics Analysis of Odorant-Binding Proteins and Cuticle-Enriched SfruOBP18 Confers Multi-Insecticide Tolerance in Spodoptera frugiperda. J. Agric. Food Chem. 2024, 72, 22962–22975. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Shentu, X.; Yu, X.; Liu, Y. Insect Odorant-Binding Proteins (OBPs) and Chemosensory Proteins (CSPs): Mechanisms and Research Perspectives in Mediating Insecticide Resistance. Biology 2025, 14, 1452. https://doi.org/10.3390/biology14101452
Wang Q, Shentu X, Yu X, Liu Y. Insect Odorant-Binding Proteins (OBPs) and Chemosensory Proteins (CSPs): Mechanisms and Research Perspectives in Mediating Insecticide Resistance. Biology. 2025; 14(10):1452. https://doi.org/10.3390/biology14101452
Chicago/Turabian StyleWang, Qian, Xuping Shentu, Xiaoping Yu, and Yipeng Liu. 2025. "Insect Odorant-Binding Proteins (OBPs) and Chemosensory Proteins (CSPs): Mechanisms and Research Perspectives in Mediating Insecticide Resistance" Biology 14, no. 10: 1452. https://doi.org/10.3390/biology14101452
APA StyleWang, Q., Shentu, X., Yu, X., & Liu, Y. (2025). Insect Odorant-Binding Proteins (OBPs) and Chemosensory Proteins (CSPs): Mechanisms and Research Perspectives in Mediating Insecticide Resistance. Biology, 14(10), 1452. https://doi.org/10.3390/biology14101452