The Brown Bear and Hibernating Mammals as a Translational Model for Human Resilience: Insights for Space Medicine, Critical Care, and Austere Environments
Abstract
Simple Summary
Abstract
1. Introduction
2. Bear Hibernation: A Physiologic Blueprint for Disuse Resilience
2.1. The Problem: Multi-System Decline in Disuse States
2.2. The Bear’s Strategy: Coordinated Multi-System Preservation
2.3. Translational Opportunities
3. Ophthalmology: Insights into Vision, Optic Nerve, and Retinal Resilience
3.1. The Problem: Microgravity-Associated Neuro-Ocular Syndrome (SANS)
3.2. Hibernator Strategy: Retinal Plasticity and RBM3-Mediated Neuroprotection
3.3. Translational Opportunities: RBM3 Induction, Ocular Preconditioning, and Fluid-Shift Countermeasures
4. Neurological and Neuro-Ophthalmic Preservation
4.1. The Problem: Neurovascular Stress in Microgravity and Critical Care
4.2. Hibernator Strategy: RBM3-Driven Neuronal Stability and Glial Quiescence
4.3. Translational Opportunities: RBM3 Induction, Astrocyte Modulation, and Glymphatic Support
5. Cardiovascular Resilience for Extreme Conditions
5.1. The Problem: Microgravity and Immobilization-Induced Cardiac Atrophy and Orthostatic Intolerance
5.2. The Bear’s Strategy: Myocardial Titin Isoform Shift and RBM3-Linked Cytoprotection
5.3. Translational Opportunities: RBM20 Modulation, RBM3 Induction, and Workload Management
5.4. Limitations of Current Countermeasures and a Roadmap Forward
6. Musculoskeletal: Preventing Osteoporosis and Sarcopenia
6.1. The Problem: Bone and Muscle Loss in Disuse and Aging
6.2. The Bear’s Strategy: Structural Preservation Without Load
6.3. Translational Opportunities: Modulating Remodeling and Conserving Muscle Mass
7. Renal and Metabolic: Efficient Fluid and Nitrogen Homeostasis
7.1. The Problem: Fluid Redistribution and Catabolic Nitrogen Loss
7.2. The Bear’s Strategy: Renal Suppression Without Toxicity
7.3. Translational Opportunities: Microbial Urease Probiotics, Redox Modulation, and SOCS-Based Immunoprotection
8. Limitations of the Bear Model
8.1. Species Differences
8.2. Lack of Ocular and Molecular Detail
8.3. Logistical and Ethical Constraints
9. Conclusions
9.1. Summary of Translational Value
9.2. Promise for Future Human Health Applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ATP | Adenosine Triphosphate |
BAT | Baroreflex Activation Therapy |
CNS | Central Nervous System |
CRISPRa | CRISPR activation |
CSF | Cerebrospinal Fluid |
ECM | Extracellular Matrix |
FOXO | Forkhead Box O |
GFAP | Glial Fibrillary Acidic Protein |
GPx | Glutathione Peroxidase |
GABA | Gamma-Aminobutyric Acid |
ICP | Intracranial Pressure |
ICU | Intensive Care Unit |
IGF | Insulin-like Growth Factor |
IOP | Intraocular Pressure |
iPSC | Induced Pluripotent Stem Cell |
LBNP | Lower Body Negative Pressure |
mTOR | Mammalian Target of Rapamycin |
mTORC1 | Mammalian Target of Rapamycin Complex 1 |
MuRF1 | Muscle Ring Finger Protein 1 |
NASA | National Aeronautics and Space Administration |
PGC-1α | Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha |
PPAR | Peroxisome Proliferator-Activated Receptor |
RBM3 | RNA Binding Motif Protein 3 |
RBM20 | RNA Binding Motif Protein 20 |
Rho | Ras Homolog family of GTPases |
SANS | Spaceflight-Associated Neuro-ocular Syndrome |
SIRT1 | Sirtuin 1 |
SHBG | Sex Hormone-Binding Globulin |
SOD | Superoxide Dismutase |
SOCS | Suppressor of Cytokine Signaling |
SVC | Stroke Volume Compensation |
TOR | Target of Rapamycin |
References
- Demontis, G.C.; Germani, M.M.; Caiani, E.G.; Barravecchia, I.; Passino, C.; Angeloni, D. Human Pathophysiological Adaptations to the Space Environment. Front. Physiol. 2017, 8, 547. [Google Scholar] [CrossRef] [PubMed]
- Aubert, A.E.; Larina, I.; Momken, I.; Blanc, S.; White, O.; Kim Prisk, G.; Linnarsson, D. Towards human exploration of space: The THESEUS review series on cardiovascular, respiratory, and renal research priorities. npj Microgravity 2016, 2, 16031. [Google Scholar] [CrossRef] [PubMed]
- Juhl, O.J.; Buettmann, E.G.; Friedman, M.A.; DeNapoli, R.C.; Hoppock, G.A.; Donahue, H.J. Update on the effects of microgravity on the musculoskeletal system. npj Microgravity 2021, 7, 28. [Google Scholar] [CrossRef] [PubMed]
- Iosim, S.; MacKay, M.; Westover, C.; Mason, C.E. Translating current biomedical therapies for long duration, deep space missions. Precis. Clin. Med. 2019, 2, 259–269. [Google Scholar] [CrossRef]
- Buchheim, J.-I.; Matzel, S.; Rykova, M.; Vassilieva, G.; Ponomarev, S.; Nichiporuk, I.; Hörl, M.; Moser, D.; Biere, K.; Feuerecker, M.; et al. Stress Related Shift Toward Inflammaging in Cosmonauts After Long-Duration Space Flight. Front. Physiol. 2019, 10, 85. [Google Scholar] [CrossRef]
- Crucian, B.E.; Choukèr, A.; Simpson, R.J.; Mehta, S.; Marshall, G.; Smith, S.M.; Zwart, S.R.; Heer, M.; Ponomarev, S.; Whitmire, A.; et al. Immune System Dysregulation During Spaceflight: Potential Countermeasures for Deep Space Exploration Missions. Front. Immunol. 2018, 9, 1437. [Google Scholar] [CrossRef]
- Willey, J.S.; Britten, R.A.; Blaber, E.; Tahimic, C.G.T.; Chancellor, J.; Mortreux, M.; Sanford, L.D.; Kubik, A.J.; Delp, M.D.; Mao, X.W. The individual and combined effects of spaceflight radiation and microgravity on biologic systems and functional outcomes. J. Environ. Sci. Health C Toxicol. Carcinog. 2021, 39, 129–179. [Google Scholar] [CrossRef]
- Globus, R.K.; Morey-Holton, E. Hindlimb unloading: Rodent analog for microgravity. J. Appl. Physiol. 2016, 120, 1196–1206. [Google Scholar] [CrossRef]
- Stenvinkel, P.; Fröbert, O.; Anderstam, B.; Palm, F.; Eriksson, M.; Bragfors-Helin, A.-C.; Qureshi, A.R.; Larsson, T.; Friebe, A.; Zedrosser, A.; et al. Metabolic Changes in Summer Active and Anuric Hibernating Free-Ranging Brown Bears (Ursus arctos). PLoS ONE 2013, 8, e72934. [Google Scholar] [CrossRef]
- Shah, J.; Ong, J.; Lee, R.; Suh, A.; Waisberg, E.; Gibson, C.R.; Berdahl, J.; Mader, T.H. Risk of Permanent Corneal Injury in Microgravity: Spaceflight-Associated Hazards, Challenges to Vision Restoration, and Role of Biotechnology in Long-Term Planetary Missions. Life 2025, 15, 602. [Google Scholar] [CrossRef]
- Berg von Linde, M.; Arevström, L.; Fröbert, O. Insights from the Den: How Hibernating Bears May Help Us Understand and Treat Human Disease. Clin. Transl. Sci. 2015, 8, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Ursus Arctos (Brown Bear). International Association for Bear Research and Management 2024. 13 November 2024. Available online: https://www.bearbiology.org/the-eight-bear-species/ursus-arctos-brown-bear/ (accessed on 18 August 2025).
- González-Bernardo, E.; Russo, L.F.; Valderrábano, E.; Fernández, Á.; Penteriani, V. Denning in brown bears. Ecol Evol. 2020, 10, 6844–6862. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, P.G.; Arnemo, J.; Swenson, J.E.; Jensen, J.S.; Galatius, S.; Frøbert, O. Low cardiac output as physiological phenomenon in hibernating, free-ranging Scandinavian brown bears (Ursus arctos)—An observational study. Cardiovasc. Ultrasound 2014, 12, 36. [Google Scholar] [CrossRef] [PubMed]
- Thiel, A.; Giroud, S.; Hertel, A.G.; Friebe, A.; Devineau, O.; Fuchs, B.; Blanc, S.; Støen, O.-G.; Laske, T.G.; Arnemo, J.M.; et al. Seasonality in Biological Rhythms in Scandinavian brown Bears. Front. Physiol. 2022, 13, 785706. [Google Scholar] [CrossRef]
- Fröbert, O.; Frøbert, A.M.; Kindberg, J.; Arnemo, J.M.; Overgaard, M.T. The brown bear as a translational model for sedentary lifestyle-related diseases. J. Intern. Med. 2020, 287, 263–270. [Google Scholar] [CrossRef]
- Jansen, H.T.; Leise, T.; Stenhouse, G.; Pigeon, K.; Kasworm, W.; Teisberg, J.; Radandt, T.; Dallmann, R.; Brown, S.; Robbins, C.T. The bear circadian clock doesn’t ‘sleep’ during winter dormancy. Front. Zool. 2016, 13, 42. [Google Scholar] [CrossRef]
- Bogdanović, N.; Zedrosser, A.; Hertel, A.G.; Ćirović, D. Cozy den or winter walk: The effects of climate and supplementary feeding on brown bear winter behavior. J. Zool. 2024, 323, 292–304. [Google Scholar] [CrossRef]
- Van Ombergen, A.; Jillings, S.; Jeurissen, B.; Tomilovskaya, E.; Rumshiskaya, A.; Litvinova, L.; Nosikova, I.; Pechenkova, E.; Rukavishnikov, I.; Manko, O.; et al. Brain ventricular volume changes induced by long-duration spaceflight. Proc. Natl. Acad. Sci. USA 2019, 116, 10531–10536. [Google Scholar] [CrossRef]
- Baran, R.; Marchal, S.; Garcia Campos, S.; Rehnberg, E.; Tabury, K.; Baselet, B.; Wehland, M.; Grimm, D.; Baatout, S. The Cardiovascular System in Space: Focus on In Vivo and In Vitro Studies. Biomedicines 2021, 10, 59. [Google Scholar] [CrossRef]
- Evans, J.M.; Knapp, C.F.; Goswami, N. Artificial Gravity as a Countermeasure to the Cardiovascular Deconditioning of Spaceflight: Gender Perspectives. Front. Physiol. 2018, 9, 716. [Google Scholar] [CrossRef]
- Man, J.; Graham, T.; Squires-Donelly, G.; Laslett, A.L. The effects of microgravity on bone structure and function. npj Microgravity 2022, 8, 9. [Google Scholar] [CrossRef] [PubMed]
- Pierre, A.; Favory, R.; Bourel, C.; Howsam, M.; Romien, R.; Lancel, S.; Preau, S. Muscle weakness after critical illness: Unravelling biological mechanisms and clinical hurdles. Crit. Care 2025, 29, 248. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.G.; Mader, T.H.; Gibson, C.R.; Tarver, W.; Rabiei, P.; Riascos, R.F.; Galdamez, L.A.; Brunstetter, T. Spaceflight associated neuro-ocular syndrome (SANS) and the neuro-ophthalmologic effects of microgravity: A review and an update. npj Microgravity 2020, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Ong, J.; Lee, A.G.; Moss, H.E. Head-Down Tilt Bed Rest Studies as a Terrestrial Analog for Spaceflight Associated Neuro-Ocular Syndrome. Front. Neurol. 2021, 12, 648958. [Google Scholar] [CrossRef]
- Klos, B.; Kaul, A.; Straube, E.; Steinhauser, V.; Gödel, C.; Schäfer, F.; Lambert, C.; Enck, P.; Mack, I. Effects of isolated, confined and extreme environments on parameters of the immune system—A systematic review. Front. Immunol. 2025, 16, 1532103. [Google Scholar] [CrossRef]
- Duporge, I.; Pereira, T.; de Obeso, S.C.; Ross, J.G.B.; Lee, S.J.; Hindle, A.G. The utility of animal models to inform the next generation of human space exploration. npj Microgravity 2025, 11, 7. [Google Scholar] [CrossRef]
- Jansen, H.T.; Trojahn, S.; Saxton, M.W.; Quackenbush, C.R.; Evans Hutzenbiler, B.D.; Nelson, O.L.; Cornejo, O.E.; Robbins, C.T.; Kelley, J.L. Hibernation induces widespread transcriptional remodeling in metabolic tissues of the grizzly bear. Commun. Biol. 2019, 2, 336. [Google Scholar] [CrossRef]
- Lohuis, T.D.; Harlow, H.J.; Beck, T.D.; Iaizzo, P.A. Hibernating bears conserve muscle strength and maintain fatigue resistance. Physiol. Biochem. Zool. 2007, 80, 257–269. [Google Scholar] [CrossRef]
- Sahdo, B.; Evans, A.L.; Arnemo, J.M.; Fröbert, O.; Särndahl, E.; Blanc, S. Body Temperature during Hibernation Is Highly Correlated with a Decrease in Circulating Innate Immune Cells in the Brown Bear (Ursus arctos): A Common Feature among Hibernators? Int. J. Med. Sci. 2013, 10, 508–514. [Google Scholar] [CrossRef]
- Chazarin, B.; Storey, K.B.; Ziemianin, A.; Chanon, S.; Plumel, M.; Chery, I.; Durand, C.; Evans, A.L.; Arnemo, J.M.; Zedrosser, A.; et al. Metabolic reprogramming involving glycolysis in the hibernating brown bear skeletal muscle. Front. Zool. 2019, 16, 12. [Google Scholar] [CrossRef]
- Sonntag, M.; Arendt, T. Neuronal Activity in the Hibernating Brain. Front. Neuroanat. 2019, 13, 71. [Google Scholar] [CrossRef] [PubMed]
- Nelson, O.L.; Robbins, C.T.; Wu, Y.; Granzier, H. Titin isoform switching is a major cardiac adaptive response in hibernating grizzly bears. Am. J. Physiol. Heart Circ. Physiol. 2008, 295, H366–H371. [Google Scholar] [CrossRef] [PubMed]
- Mugahid, D.A.; Sengul, T.G.; You, X.; Wang, Y.; Steil, L.; Bergmann, N.; Radke, M.H.; Ofenbauer, A.; Gesell-Salazar, M.; Balogh, A.; et al. Proteomic and Transcriptomic Changes in Hibernating Grizzly Bears Reveal Metabolic and Signaling Pathways that Protect against Muscle Atrophy. Sci. Rep. 2019, 9, 19976. [Google Scholar] [CrossRef] [PubMed]
- Saxton, M.W.; Perry, B.W.; Hutzenbiler, B.D.E.; Trojahn, S.; Gee, A.; Brown, A.P.; Merrihew, G.E.; Park, J.; Cornejo, O.E.; MacCoss, M.J.; et al. Serum plays an important role in reprogramming the seasonal transcriptional profile of brown bear adipocytes. iScience 2022, 25, 105084. [Google Scholar] [CrossRef]
- Blanco, M.B.; Greene, L.K.; Ellsaesser, L.N.; Williams, C.V.; Ostrowski, C.A.; Davison, M.M.; Welser, K.; Klopfer, P.H. Seasonal variation in glucose and insulin is modulated by food and temperature conditions in a hibernating primate. Front. Physiol. 2023, 14, 1251042. [Google Scholar] [CrossRef]
- Miyazaki, M.; Shimozuru, M.; Tsubota, T. Supplementing cultured human myotubes with hibernating bear serum results in increased protein content by modulating Akt/FOXO3a signaling. PLoS ONE 2022, 17, e0263085. [Google Scholar] [CrossRef]
- Nelson, R.A.; Wahner, H.W.; Jones, J.D.; Ellefson, R.D.; Zollman, P.E. Metabolism of bears before, during, and after winter sleep. Am. J. Physiol. 1973, 224, 491–496. [Google Scholar] [CrossRef]
- Stenvinkel, P.; Jani, A.H.; Johnson, R.J. Hibernating bears (Ursidae): Metabolic magicians of definite interest for the nephrologist. Kidney Int. 2013, 83, 207–212. [Google Scholar] [CrossRef]
- Jani, A.; Martin, S.L.; Jain, S.; Keys, D.; Edelstein, C.L. Renal adaptation during hibernation. Am. J. Physiol. Ren. Physiol. 2013, 305, F1521–F1532. [Google Scholar] [CrossRef]
- Giroud, S.; Chery, I.; Arrivé, M.; Prost, M.; Zumsteg, J.; Heintz, D.; Evans, A.L.; Gauquelin-Koch, G.; Arnemo, J.M.; Swenson, J.E.; et al. Hibernating brown bears are protected against atherogenic dyslipidemia. Sci. Rep. 2021, 11, 18723. [Google Scholar] [CrossRef]
- Perry, B.W.; Saxton, M.W.; Jansen, H.T.; Quackenbush, C.R.; Evans Hutzenbiler, B.D.; Robbins, C.T.; Kelley, J.L.; Cornejo, O.E. A multi-tissue gene expression dataset for hibernating brown bears. BMC Genom. Data 2023, 24, 33. [Google Scholar] [CrossRef]
- Wall, M.J.; Hill, E.; Huckstepp, R.; Barkan, K.; Deganutti, G.; Leuenberger, M.; Preti, B.; Winfield, I.; Carvalho, S.; Suchankova, A.; et al. Selective activation of Gαob by an adenosine A1 receptor agonist elicits analgesia without cardiorespiratory depression. Nat. Commun. 2022, 13, 4150. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Biomedical Imaging and Bioengineering. Induction of a Torpor-Like State with Ultrasound. Available online: https://www.nibib.nih.gov/news-events/newsroom/induction-torpor-state-ultrasound (accessed on 17 August 2025).
- Bark, R.K.; Musacchia, X.J. Radiation Sensitivity of the Hibernating Ground Squirrel, Citellus tridecemlineatus. Exp. Biol. Med. 1967, 124, 1204–1207. [Google Scholar] [CrossRef] [PubMed]
- Puspitasari, A.; Cerri, M.; Takahashi, A.; Yoshida, Y.; Hanamura, K.; Tinganelli, W. Hibernation as a Tool for Radiation Protection in Space Exploration. Life 2021, 11, 54. [Google Scholar] [CrossRef] [PubMed]
- Puspitasari, A.; Squarcio, F.; Quartieri, M.; Totis, C.; Hitrec, T.; Takahashi, A.; Yoshida, Y.; Hanamura, K.; Yako, T.; Cerri, M.; et al. Synthetic torpor protects rats from exposure to accelerated heavy ions. Sci. Rep. 2022, 12, 16405. [Google Scholar] [CrossRef]
- Cahill, T.; Matveychuk, N.; Hardiman, E.; Rosner, H.; Farrell, D.; Hardiman, G. Sedative Agents, Synthetic Torpor, and Long-Haul Space Travel—A Systematic Review. Life 2025, 15, 706. [Google Scholar] [CrossRef]
- Stroik, D.; Gregorich, Z.R.; Raza, F.; Ge, Y.; Guo, W. Titin: Roles in cardiac function and diseases. Front. Physiol. 2024, 15, 1385821. [Google Scholar] [CrossRef]
- Xie, L.-H.; Gwathmey, J.K.; Zhao, Z. Cardiac Adaptation and Cardioprotection Against Arrhythmias and Ischemia-Reperfusion Injury in Mammalian Hibernators. Pflug. Arch. 2021, 473, 407–416. [Google Scholar] [CrossRef]
- Drew, K.L.; Bhowmick, S.; Laughlin, B.W.; Goropashnaya, A.V.; Tøien, Ø.; Sugiura, M.H.; Wong, A.; Pourrezaei, K.; Barati, Z.; Chen, C.-Y. Opportunities and barriers to translating the hibernation phenotype for neurocritical care. Front. Neurol. 2023, 14, 1009718. [Google Scholar] [CrossRef]
- Wang, L.; Teng, R.; Di, L.; Rogers, H.; Wu, H.; Kopp, J.B.; Noguchi, C.T. PPARα and Sirt1 mediate erythropoietin action in increasing metabolic activity and browning of white adipocytes to protect against obesity and metabolic disorders. Diabetes 2013, 62, 4122–4131. [Google Scholar] [CrossRef]
- Thienel, M.; Müller-Reif, J.B.; Zhang, Z.; Ehreiser, V.; Huth, J.; Shchurovska, K.; Kilani, B.; Schweizer, L.; Geyer, P.E.; Zwiebel, M.; et al. Immobility-associated thromboprotection is conserved across mammalian species from bear to human. Science 2023, 380, 178–187. [Google Scholar] [CrossRef]
- De Vrij, E.L.; Bouma, H.R.; Henning, R.H.; Cooper, S.T. Hibernation and hemostasis. Front. Physiol. 2023, 14, 1207003. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, J.; Xu, S.; Peng, X.; Yan, X.; Li, X.; Wang, H.; Chang, H.; Gao, Y. Controllable oxidative stress and tissue specificity in major tissues during the torpor–arousal cycle in hibernating Daurian ground squirrels. Open Biol. 2018, 8, 180068. [Google Scholar] [CrossRef] [PubMed]
- Ong, J.; Mader, T.H.; Gibson, C.R.; Mason, S.S.; Lee, A.G. Spaceflight associated neuro-ocular syndrome (SANS): An update on potential microgravity-based pathophysiology and mitigation development. Eye 2023, 37, 2409–2415. [Google Scholar] [CrossRef] [PubMed]
- Sajdak, B.S.; Bell, B.A.; Lewis, T.R.; Luna, G.; Cornwell, G.S.; Fisher, S.K.; Merriman, D.K.; Carroll, J. Assessment of Outer Retinal Remodeling in the Hibernating 13-Lined Ground Squirrel. Investig. Ophthalmol. Vis. Sci. 2018, 59, 2538–2547. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Sajdak, B.S.; Merriman, D.K.; McCall, M.A.; Carroll, J.; Lipinski, D.M. Electroretinogram of the Cone-Dominant Thirteen-Lined Ground Squirrel during Euthermia and Hibernation in Comparison with the Rod-Dominant Brown Norway Rat. Invest. Ophthalmol. Vis. Sci. 2020, 61, 6. [Google Scholar] [CrossRef]
- Merriman, D.K.; Sajdak, B.S.; Li, W.; Jones, B.W. Seasonal and post-trauma remodeling in cone-dominant ground squirrel retina. Exp. Eye Res. 2016, 150, 90–105. [Google Scholar] [CrossRef]
- Peretti, D.; Bastide, A.; Radford, H.; Verity, N.; Molloy, C.; Martin, M.G.; Moreno, J.A.; Steinert, J.R.; Smith, T.; Dinsdale, D.; et al. RBM3 mediates structural plasticity and protective effects of cooling in neurodegeneration. Nature 2015, 518, 236–239. [Google Scholar] [CrossRef]
- Bastide, A.; Peretti, D.; Knight, J.R.P.; Grosso, S.; Spriggs, R.V.; Pichon, X.; Sbarrato, T.; Roobol, A.; Roobol, J.; Vito, D.; et al. RTN3 Is a Novel Cold-Induced Protein and Mediates Neuroprotective Effects of RBM3. Curr. Biol. 2017, 27, 638–650. [Google Scholar] [CrossRef]
- Yao, F.; Cai, S.-Q.; Cheng, H.-X.; Ren, L.-W.; Hui, K.-L.; Liu, Q.-Z.; Guo, M.; Chen, L.-H.; Qian, B.; Zeng, Y.; et al. Therapeutic Hypothermia Increases the Expression of RNA-binding Protein Motif 3 and Attenuates Cognitive Deficits Following Cardiac Arrest in Rats. Neurochem. Res. 2025, 50, 134. [Google Scholar] [CrossRef]
- Waisberg, E.; Ong, J.; Masalkhi, M.; Shimada, K.; Lee, A.G. Artificial gravity as a potential countermeasure for Spaceflight Associated Neuro-Ocular Syndrome. Eye 2024, 38, 2847–2848. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Yan, J.; Bregere, C.; Zelmer, A.; Goerne, T.; Kapfhammer, J.P.; Guzman, R.; Wellmann, S. RBM3 promotes neurogenesis in a niche-dependent manner via IMP2-IGF2 signaling pathway after hypoxic-ischemic brain injury. Nat. Commun. 2019, 10, 3983. [Google Scholar] [CrossRef] [PubMed]
- Dave, K.R.; Christian, S.L.; Perez-Pinzon, M.A.; Drew, K.L. Neuroprotection: Lessons from hibernators. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2012, 162, 1–9. [Google Scholar] [CrossRef] [PubMed]
- von der Ohe, C.G.; Darian-Smith, C.; Garner, C.C.; Heller, H.C. Ubiquitous and Temperature-Dependent Neural Plasticity in Hibernators. J. Neurosci. 2006, 26, 10590–10598. [Google Scholar] [CrossRef]
- Vidal-Itriago, A.; Radford, R.A.W.; Aramideh, J.A.; Maurel, C.; Scherer, N.M.; Don, E.K.; Lee, A.; Chung, R.S.; Graeber, M.B.; Morsch, M. Microglia morphophysiological diversity and its implications for the CNS. Front. Immunol. 2022, 13, 997786. [Google Scholar] [CrossRef]
- Logan, S.M.; Storey, K.B. Regrowth and neuronal protection are key for mammalian hibernation: Roles for metabolic suppression. Neural Regen. Res. 2020, 15, 2027–2028. [Google Scholar] [CrossRef]
- Gehrke, S.; Rice, S.; Stefanoni, D.; Wilkerson, R.B.; Nemkov, T.; Reisz, J.A.; Hansen, K.C.; Lucas, A.; Cabrales, P.; Drew, K.; et al. Red Blood Cell Metabolic Responses to Torpor and Arousal in the Hibernator Arctic Ground Squirrel. J. Proteome Res. 2019, 18, 1827–1841. [Google Scholar] [CrossRef]
- Dave, K.R.; Prado, R.; Raval, A.P.; Drew, K.L.; Perez-Pinzon, M.A. The arctic ground squirrel brain is resistant to injury from cardiac arrest during euthermia. Stroke 2006, 37, 1261–1265. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Qiao, F.; Hollyfield, J.G.; Qian, H.; Bell, B.A. Retinal Changes Associated with Hibernation Revealed by OCT Imaging. Investig. Ophthalmol. Vis. Sci. 2014, 55, 2174. [Google Scholar]
- Amselem, S.; Eyal, S. The Blood-Brain Barrier in Space: Implications for Space Travelers and for Human Health on Earth. Front. Drug Deliv. 2022, 2, 931221. [Google Scholar] [CrossRef]
- Goto, M. Physiological Changes in the Cardiovascular System During Space Flight—Current Countermeasures and Future Vision. Circ. Rep. 2025, 7, 742–749. [Google Scholar] [CrossRef]
- Han, H.; Jia, H.; Wang, Y.-F.; Song, J.-P. Cardiovascular adaptations and pathological changes induced by spaceflight: From cellular mechanisms to organ-level impacts. Mil. Med. Res. 2024, 11, 68. [Google Scholar] [CrossRef]
- Spaak, J.; Montmerle, S.; Sundblad, P.; Linnarsson, D. Long-term bed rest-induced reductions in stroke volume during rest and exercise: Cardiac dysfunction vs. volume depletion. J. Appl. Physiol. 2005, 98, 648–654. [Google Scholar] [CrossRef]
- Levine, B.D.; Zuckerman, J.H.; Pawelczyk, J.A. Cardiac Atrophy After Bed-Rest Deconditioning. Circulation 1997, 96, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Human Research Program—NASA Technical Reports Server (NTRS). Available online: https://ntrs.nasa.gov/citations/20230015777 (accessed on 18 August 2025).
- Radke, M.H.; Peng, J.; Wu, Y.; McNabb, M.; Nelson, O.L.; Granzier, H.; Gotthardt, M. Targeted deletion of titin N2B region leads to diastolic dysfunction and cardiac atrophy. Proc. Natl. Acad. Sci. USA 2007, 104, 3444–3449. [Google Scholar] [CrossRef] [PubMed]
- Loescher, C.M.; Hobbach, A.J.; Linke, W.A. Titin (TTN): From molecule to modifications, mechanics, and medical significance. Cardiovasc. Res. 2022, 118, 2903–2918. [Google Scholar] [CrossRef] [PubMed]
- Ávila-Gómez, P.; Vieites-Prado, A.; Correa-Paz, C.; Del Pozo-Filíu, L.; Palomar-Alonso, N.; Campos, F.; López-Arias, E. Therapeutic modulation of protein RBM3 for ischemic stroke treatment. Front. Pharmacol. 2025, 16, 1555115. [Google Scholar] [CrossRef]
- Hinze, F.; Dieterich, C.; Radke, M.H.; Granzier, H.; Gotthardt, M. Reducing RBM20 activity improves diastolic dysfunction and cardiac atrophy. J. Mol. Med. 2016, 94, 1349–1358. [Google Scholar] [CrossRef]
- Li, N.; Hang, W.; Shu, H.; Zhou, N. RBM20, a Therapeutic Target to Alleviate Myocardial Stiffness via Titin Isoforms Switching in HFpEF. Front. Cardiovasc. Med. 2022, 9, 928244. [Google Scholar] [CrossRef]
- Van der Pijl, R.J.; Ma, W.; Lewis, C.T.A.; Haar, L.; Buhl, A.; Farman, G.P.; Rhodehamel, M.; Jani, V.P.; Nelson, O.L.; Zhang, C.; et al. Increased cardiac myosin super-relaxation as an energy saving mechanism in hibernating grizzly bears. Mol. Metab. 2024, 92, 102084. [Google Scholar] [CrossRef]
- Zhu, X.; Bührer, C.; Wellmann, S. Cold-inducible proteins CIRP and RBM3, a unique couple with activities far beyond the cold. Cell Mol. Life Sci. 2016, 73, 3839–3859. [Google Scholar] [CrossRef]
- Rosenthal, L.-M.; Tong, G.; Walker, C.; Wowro, S.J.; Krech, J.; Pfitzer, C.; Justus, G.; Berger, F.; Schmitt, K.R.L. Neuroprotection via RNA-binding protein RBM3 expression is regulated by hypothermia but not by hypoxia in human SK-N-SH neurons. Hypoxia 2017, 5, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Zhang, J.; Ma, T.-T.; Zhuang, R.-J.; Lei, B.-B.; Wang, L.; Cheng, B.-F.; Wang, M.; Yang, H.-J. Expression regulation of cold-inducible protein RBM3 by FAK/Src signaling for neuroprotection against rotenone under mild hypothermia. Biochem. Biophys. Res. Commun. 2021, 534, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Zile, M.R.; Abraham, W.T.; Weaver, F.A.; Butter, C.; Ducharme, A.; Halbach, M.; Klug, D.; Lovett, E.G.; Müller-Ehmsen, J.; Schafer, J.E.; et al. Baroreflex activation therapy for the treatment of heart failure with a reduced ejection fraction: Safety and efficacy in patients with and without cardiac resynchronization therapy. Eur. J. Heart Fail. 2015, 17, 1066–1074. [Google Scholar] [CrossRef] [PubMed]
- Gentile, F.; Passino, C.; Emdin, M.; Giannoni, A. Baroreflex activation therapy in heart failure: Targeting the right patient. Eur. J. Heart Fail. 2022, 24, 1674–1676. [Google Scholar] [CrossRef]
- Scott, J.M.; Feiveson, A.H.; English, K.L.; Spector, E.R.; Sibonga, J.D.; Dillon, E.L.; Ploutz-Snyder, L.; Everett, M.E. Effects of exercise countermeasures on multisystem function in long duration spaceflight astronauts. npj Microgravity 2023, 9, 11. [Google Scholar] [CrossRef]
- Lee, S.M.C.; Stenger, M.B.; Laurie, S.S.; Ploutz-Snyder, L.L.; Platts, S.H. High Intensity Resistive and Rowing Exercise Countermeasures Do Not Prevent Orthostatic Intolerance Following 70 Days of Bed Rest 2015. 1 January 2015. Available online: https://ntrs.nasa.gov/citations/20140017003 (accessed on 18 August 2025).
- Ahmed, S.S.; Goswami, N.; Sirek, A.; Green, D.A.; Winnard, A.; Fiebig, L.; Weber, T. Systematic review of the effectiveness of standalone passive countermeasures on microgravity-induced physiologic deconditioning. npj Microgravity 2024, 10, 48. [Google Scholar] [CrossRef]
- Sonawane, R.; Patil, S.; Rahaman, J.; Mukherjee, D. Effect of microgravity on bone Tissue: Mechanisms of osteodegeneration and advanced treatment modalities. Biochem. Biophys. Res. Commun. 2025, 771, 152055. [Google Scholar] [CrossRef]
- Blottner, D.; Moriggi, M.; Trautmann, G.; Hastermann, M.; Capitanio, D.; Torretta, E.; Block, K.; Rittweger, J.; Limper, U.; Gelfi, C.; et al. Space Omics and Tissue Response in Astronaut Skeletal Muscle after Short and Long Duration Missions. Int. J. Mol. Sci. 2023, 24, 4095. [Google Scholar] [CrossRef]
- Krause, A.R.; Speacht, T.L.; Zhang, Y.; Lang, C.H.; Donahue, H.J. Simulated space radiation sensitizes bone but not muscle to the catabolic effects of mechanical unloading. PLoS ONE 2017, 12, e0182403. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, G.; Dong, D.; Shang, P. Effects of Iron Overload and Oxidative Damage on the Musculoskeletal System in the Space Environment: Data from Spaceflights and Ground-Based Simulation Models. Int. J. Mol. Sci. 2018, 19, 2608. [Google Scholar] [CrossRef]
- Chaloulakou, S.; Poulia, K.A.; Karayiannis, D. Physiological Alterations in Relation to Space Flight: The Role of Nutrition. Nutrients 2022, 14, 4896. [Google Scholar] [CrossRef]
- Comfort, P.; McMahon John, J.; Jones Paul, A.; Cuthbert, M.; Kendall, K.; Lake Jason, P.; Haff, G.G. Effects of Spaceflight on Musculoskeletal Health: A Systematic Review and Meta-analysis, Considerations for Interplanetary Travel. Sports Med. 2021, 51, 2097–2114. [Google Scholar] [CrossRef] [PubMed]
- Thomasius, F.; Pesta, D.; Rittweger, J. Adjuvant pharmacological strategies for the musculoskeletal system during long-term space missions. Br. J. Clin. Pharmacol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Nasoori, A.; Okamatsu-Ogura, Y.; Shimozuru, M.; Sashika, M.; Tsubota, T. Hibernating bear serum hinders osteoclastogenesis in-vitro. PLoS ONE 2020, 15, e0238132. [Google Scholar] [CrossRef] [PubMed]
- Goropashnaya, A.V.; Tøien, Ø.; Ramaraj, T.; Sundararajan, A.; Schilkey, F.D.; Barnes, B.M.; Donahue, S.W.; Fedorov, V.B. Transcriptional changes and preservation of bone mass in hibernating black bears. Sci. Rep. 2021, 11, 8281. [Google Scholar] [CrossRef]
- Overstreet, M.; Floyd, T.; Polotsky, A.; Hungerford, D.S.; Frondoza, C.G. Enhancement of osteoblast proliferative capacity by growth factor-like molecules in bear serum. In Vitro Cell Dev. Biol. Anim. 2003, 39, 4–7. [Google Scholar] [CrossRef]
- De Napoli, C.; Schmidt, L.; Montesel, M.; Cussonneau, L.; Sanniti, S.; Marcucci, L.; Germinario, E.; Kindberg, J.; Evans, A.L.; Gauquelin-Koch, G.; et al. Reduced ATP turnover during hibernation in relaxed skeletal muscle. Nat Commun. 2025, 16, 80. [Google Scholar] [CrossRef]
- Fedorov, V.B.; Garreau, A.; Tøien, Ø.; Barnes, B.M.; Goropashnaya, A.V. Transcriptome Remodeling and Adaptive Preservation of Muscle Protein Content in Hibernating Black Bears. Ecol. Evol. 2025, 15, e71669. [Google Scholar] [CrossRef]
- Lotz, E.M.; Lohmann, C.H.; Boyan, B.D.; Schwartz, Z. Bisphosphonates Inhibit Surface Mediated Osteogenesis. J. Biomed. Mater. Res. A 2020, 108, 1774–1786. [Google Scholar] [CrossRef]
- Kramer, H.J.; Heer, M.; Cirillo, M.; De Santo, N.G. Renal hemodynamics in space. Am. J. Kidney Dis. 2001, 38, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Christensen, N.J.; Drummer, C.; Norsk, P. Renal and sympathoadrenal responses in space. Am. J. Kidney Dis. 2001, 38, 679–683. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Q.; Zhao, D.; Liu, J.; Zhang, Y.; Wang, Q.; Wang, X.; Chen, J.; Chi, Y.; Li, P.; Cai, G.; et al. Simulated microgravity predisposes kidney to injury through promoting intrarenal artery remodeling. FASEB J. 2025, 39, e70353. [Google Scholar] [CrossRef] [PubMed]
- da Silveira, W.A.; Fazelinia, H.; Rosenthal, S.B.; Laiakis, E.C.; Kim, M.S.; Meydan, C.; Kidane, Y.; Rathi, K.S.; Smith, S.M.; Stear, B.; et al. Comprehensive Multi-Omics Analysis Reveals Mitochondrial Stress as a Central Biological Hub for Spaceflight Impact. Cell 2020, 183, 1185–1201.e20. [Google Scholar] [CrossRef]
- Locatelli, L.; Castiglioni, S.; Maier, J.A.M. From Cultured Vascular Cells to Vessels: The Cellular and Molecular Basis of Vascular Dysfunction in Space. Front. Bioeng. Biotechnol. 2022, 10, 862059. [Google Scholar] [CrossRef]
- Siew, K.; Nestler, K.A.; Nelson, C.; D’Ambrosio, V.; Zhong, C.; Li, Z.; Grillo, A.; Wan, E.R.; Patel, V.; Overbey, E.; et al. Cosmic kidney disease: An integrated pan-omic, physiological and morphological study into spaceflight-induced renal dysfunction. Nat. Commun. 2024, 15, 4923. [Google Scholar] [CrossRef]
- Pavlakou, P.; Dounousi, E.; Roumeliotis, S.; Eleftheriadis, T.; Liakopoulos, V. Oxidative Stress and the Kidney in the Space Environment. Int. J. Mol. Sci. 2018, 19, 3176. [Google Scholar] [CrossRef]
- Srivastava, A.; Kumar Sarsani, V.; Fiddes, I.; Sheehan, S.M.; Seger, R.L.; Barter, M.E.; Neptune-Bear, S.; Lindqvist, C.; Korstanje, R. Genome assembly and gene expression in the American black bear provides new insights into the renal response to hibernation. DNA Res. 2019, 26, 37–44. [Google Scholar] [CrossRef]
- Welinder, K.G.; Hansen, R.; Overgaard, M.T.; Brohus, M.; Sønderkær, M.; von Bergen, M.; Rolle-Kampczyk, U.; Otto, W.; Lindahl, T.L.; Arinell, K.; et al. Biochemical Foundations of Health and Energy Conservation in Hibernating Free-ranging Subadult Brown Bear Ursus arctos. J. Biol. Chem. 2016, 291, 22509–22523. [Google Scholar] [CrossRef]
- Revsbech, I.G.; Shen, X.; Chakravarti, R.; Jensen, F.B.; Thiel, B.; Evans, A.L.; Kindberg, J.; Fröbert, O.; Stuehr, D.J.; Kevil, C.G.; et al. Hydrogen sulfide and nitric oxide metabolites in the blood of free-ranging brown bears and their potential roles in hibernation. Free Radic. Biol. Med. 2014, 73, 349–357. [Google Scholar] [CrossRef]
- Bertile, F.; Habold, C.; Le Maho, Y.; Giroud, S. Body Protein Sparing in Hibernators: A Source for Biomedical Innovation. Front. Physiol. 2021, 12, 634953. [Google Scholar] [CrossRef] [PubMed]
- Chow, B.A.; Donahue, S.W.; Vaughan, M.R.; McConkey, B.; Vijayan, M.M. Serum Immune-Related Proteins are Differentially Expressed during Hibernation in the American Black Bear. PLoS ONE 2013, 8, e66119. [Google Scholar] [CrossRef] [PubMed]
- Drabeck, D.H.; Anderson, M.; Roback, E.Y.; Lusczek, E.R.; Tri, A.N.; Lassen, J.F.; Kowalczyk, A.E.; McGaugh, S.; Iles, T.L. Metabolomics-Guided Genomic Comparisons Reveal Convergent Evolution of Hibernation Genes in Mammals. Mol. Biol. Evol. 2025, 42, msaf188. [Google Scholar] [CrossRef] [PubMed]
- Perry, B.W.; Jansen, H.T.; Enstrom, A.N.; Kelley, J.L. Genomic Insights into Bear Hibernation. Annu. Rev. Genet. 2025, 59. [Google Scholar] [CrossRef]
- Evans, A.L.; Fuchs, B.; Singh, N.J.; Thiel, A.; Giroud, S.; Blanc, S.; Laske, T.G.; Frobert, O.; Friebe, A.; Swenson, J.E.; et al. Body mass is associated with hibernation length, body temperature, and heart rate in free-ranging brown bears. Front. Zool. 2023, 20, 27. [Google Scholar] [CrossRef]
- Tøien, Ø.; Blake, J.; Edgar, D.M.; Grahn, D.A.; Heller, H.C.; Barnes, B.M. Hibernation in black bears: Independence of metabolic suppression from body temperature. Science 2011, 331, 906–909. [Google Scholar] [CrossRef]
- Tøien, Ø.; Blake, J.; Barnes, B.M. Thermoregulation and energetics in hibernating black bears: Metabolic rate and the mystery of multi-day body temperature cycles. J. Comp. Physiol. B 2015, 185, 447–461. [Google Scholar] [CrossRef]
- RUF, T.; GEISER, F. Daily torpor and hibernation in birds and mammals. Biol. Rev. Camb. Philos. Soc. 2015, 90, 891–926. [Google Scholar] [CrossRef]
- Barnes, B.M. Freeze avoidance in a mammal: Body temperatures below 0 degree C in an Arctic hibernator. Science 1989, 244, 1593–1595. [Google Scholar] [CrossRef]
- Rigano, K.S.; Gehring, J.L.; Evans Hutzenbiler, B.D.; Chen, A.V.; Nelson, O.L.; Vella, C.A.; Robbins, C.T.; Jansen, H.T. Life in the fat lane: Seasonal regulation of insulin sensitivity, food intake, and adipose biology in brown bears. J. Comp. Physiol. B 2017, 187, 649–676. [Google Scholar] [CrossRef]
- Tekin, H.; Frøbert, O.; Græsli, A.R.; Kindberg, J.; Bilgin, M.; Buschard, K. Hibernation and plasma lipids in free-ranging brown bears-implications for diabetes. PLoS ONE 2023, 18, e0291063. [Google Scholar] [CrossRef]
- Vella, C.A.; Nelson, O.L.; Jansen, H.T.; Robbins, C.T.; Jensen, A.E.; Constantinescu, S.; Abbott, M.J.; Turcotte, L.P. Regulation of metabolism during hibernation in brown bears (Ursus arctos): Involvement of cortisol, PGC-1α and AMPK in adipose tissue and skeletal muscle. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2020, 240, 110591. [Google Scholar] [CrossRef] [PubMed]
- Elfeky, M.; Tsubota, A.; Shimozuru, M.; Tsubota, T.; Kimura, K.; Okamatsu-Ogura, Y. Regulation of mitochondrial metabolism by hibernating bear serum: Insights into seasonal metabolic adaptations. Biochem. Biophys. Res. Commun. 2024, 736, 150510. [Google Scholar] [CrossRef]
- Shimozuru, M.; Nagashima, A.; Tanaka, J.; Tsubota, T. Seasonal changes in the expression of energy metabolism-related genes in white adipose tissue and skeletal muscle in female Japanese black bears. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2016, 196–197, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Luan, Y.; Ou, J.; Kunze, V.P.; Qiao, F.; Wang, Y.; Wei, L.; Li, W.; Xie, Z. Integrated transcriptomic and metabolomic analysis reveals adaptive changes of hibernating retinas. J. Cell Physiol. 2018, 233, 1434–1445. [Google Scholar] [CrossRef] [PubMed]
- Gaynullina, D.K.; Shvetsova, A.A.; Borzykh, A.A.; Kiryukhina, O.O.; Sirotina, N.S.; Abramochkin, D.V.; Tarasova, O.S. Hibernation enhances contractile responses of basilar artery in ground squirrels: The role of Rho-kinase and NO. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2025, 301, 111796. [Google Scholar] [CrossRef]
- Duffy, B.M.; Ivy, C.M.; Staples, J.F. Arousal from hibernation increases blood oxygen saturation in 13-lined ground squirrels. J. Exp. Biol. 2025, 228, jeb249830. [Google Scholar] [CrossRef]
- Thiel, A.; Hertel, A.G.; Giroud, S.; Friebe, A.; Fuchs, B.; Kindberg, J.; Græsli, A.R.; Arnemo, J.M.; Evans, A.L. The cost of research: Lasting effects of capture, surgery and muscle biopsy on brown bear (Ursus arctos) movement and physiology. Anim. Welf. 2023, 32, e75. [Google Scholar] [CrossRef]
- Evans, A.L.; Sahlén, V.; Støen, O.-G.; Fahlman, Å.; Brunberg, S.; Madslien, K.; Fröbert, O.; Swenson, J.E.; Arnemo, J.M. Capture, anesthesia, and disturbance of free-ranging brown bears (Ursus arctos) during hibernation. PLoS ONE 2012, 7, e40520. [Google Scholar] [CrossRef]
- Willey, C.; Korstanje, R. Sequencing and assembling bear genomes: The bare necessities. Front. Zool. 2022, 19, 30. [Google Scholar] [CrossRef]
- Gregório, I.; Barros, T.; Pando, D.; Morante, J.; Fonseca, C.; Ferreira, E. Paths for colonization or exodus? New insights from the brown bear (Ursus arctos) population of the Cantabrian Mountains. PLoS ONE 2020, 15, e0227302. [Google Scholar] [CrossRef]
- Ashrafzadeh, M.R.; Khosravi, R.; Mohammadi, A.; Naghipour, A.A.; Khoshnamvand, H.; Haidarian, M.; Penteriani, V. Modeling climate change impacts on the distribution of an endangered brown bear population in its critical habitat in Iran. Sci. Total Environ. 2022, 837, 155753. [Google Scholar] [CrossRef]
- Penteriani, V.; Zarzo-Arias, A.; Novo-Fernández, A.; Bombieri, G.; López-Sánchez, C.A. Responses of an endangered brown bear population to climate change based on predictable food resource and shelter alterations. Glob. Chang. Biol. 2019, 25, 1133–1151. [Google Scholar] [CrossRef]
Physiological Challenges | Hibernating Bear’s Response | Translational Applications in Humans |
---|---|---|
Cardiovascular Compromise | N2B titin isoform switching in the hibernating bear maintains cardiac elasticity and prevents dilation during prolonged bradycardia. This ensures proper left ventricular filling, and circulation is maintained. | Induction of the stiffer titin isoforms may preserve cardiac dimensions among astronauts while on extended space missions, which would prevent syncope and impaired circulation. |
Muscle Atrophy | Hibernating bears can suppress proteolysis and enhance oxidative metabolism to sustain muscle tone and avoid atrophy. | Active compounds from bears can be isolated and tested to have a targeted suppression of proteolysis in humans. Immobilized patients and astronauts may benefit from such treatments to reduce muscle loss. |
Endocrine Dysfunction | During hibernation, bears increase insulin resistance to promote breakdown of the body’s stored energy. After hibernation ends, this resistance is reversed. | Having controlled insulin resistance in humans, as opposed to permanent resistance, can allow the body to burn stored fat, thereby treating conditions such as metabolic syndrome. PPAR or SIRT1 modulation may help achieve metabolic modulation. |
Renal Dysfunction | Although the kidneys stop producing urine, the hibernating bears have intestinal microorganisms that convert urea into amino acids, ensuring that nitrogenous waste does not accumulate. | Probiotics can be given to astronauts to ensure that they do not develop azotemia due to the buildup of nitrogenous waste, which may occur from renal insufficiency during spaceflight. |
Lipid Dysregulation | Increased antioxidant activity and adaptive lipid metabolism prevent vascular damage or atherosclerosis in hibernating bears. | Inflammation and metabolic dysfunction can be prevented in humans by similarly modulating antioxidant activity and lipid metabolism. This may prevent vascular damage in astronauts during spaceflight. |
Physiological Challenges. | Hibernating Bear’s Response | Translational Applications in Humans |
---|---|---|
Orthostatic Intolerance | Hibernating bears preserve their stroke volume, ventricular dimensions, and cardiac preload by expressing the N2B titin isoform. This ensures that the ventricles remain stiff during hibernation, which preserves diastolic function. As a result, syncope does not occur after hibernation, as circulation remains normal. | Atrophy of the left ventricle during spaceflight reduces its filling capacity, which in turn reduces the spaceflight. RBM20 can be silenced to shift human titin isoform composition to more compliant forms, maintaining left ventricular volume and preventing orthostatic intolerance and syncope upon return to Earth. |
Loss of Myocardial Architecture | Cold induction of RBM3 offers a cytoprotective effect in hibernating bears. RBM3 enables protein synthesis, prevents cell death, and allows energy use by protecting the mitochondria. | Cold exposure in humans can potentially activate RBM3 to protect against myocardial damage in states of ischemia or bradycardia that may occur in critical care settings or spaceflight. |
Atrial Fatigue and Dilation | Hibernating bears reduce the amount of force that the atria produce against a stiffened ventricle to prevent atrial fatigue from occurring. | Atrial workload in humans can be reduced through autonomic modulation with implanted devices that can adjust the heart rate and force of contraction. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, J.; Lee, R.; Pathuri, S.; Zheng, J.; Ong, J.; Suh, A.; Rezaei, K.; Mudhar, G.; Parsons, A.D.; Park, J.; et al. The Brown Bear and Hibernating Mammals as a Translational Model for Human Resilience: Insights for Space Medicine, Critical Care, and Austere Environments. Biology 2025, 14, 1434. https://doi.org/10.3390/biology14101434
Shah J, Lee R, Pathuri S, Zheng J, Ong J, Suh A, Rezaei K, Mudhar G, Parsons AD, Park J, et al. The Brown Bear and Hibernating Mammals as a Translational Model for Human Resilience: Insights for Space Medicine, Critical Care, and Austere Environments. Biology. 2025; 14(10):1434. https://doi.org/10.3390/biology14101434
Chicago/Turabian StyleShah, Jainam, Ryung Lee, Sachin Pathuri, Jason Zheng, Joshua Ong, Alex Suh, Kimia Rezaei, Gagandeep Mudhar, Andrew D. Parsons, Jaewoo Park, and et al. 2025. "The Brown Bear and Hibernating Mammals as a Translational Model for Human Resilience: Insights for Space Medicine, Critical Care, and Austere Environments" Biology 14, no. 10: 1434. https://doi.org/10.3390/biology14101434
APA StyleShah, J., Lee, R., Pathuri, S., Zheng, J., Ong, J., Suh, A., Rezaei, K., Mudhar, G., Parsons, A. D., Park, J., & Lee, A. G. (2025). The Brown Bear and Hibernating Mammals as a Translational Model for Human Resilience: Insights for Space Medicine, Critical Care, and Austere Environments. Biology, 14(10), 1434. https://doi.org/10.3390/biology14101434