Evidence of Folliculogenesis and the Potential of Oocyte Recovery from Koalas with Different Levels of Reproductive Pathology
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Clinical Diagnosis
2.3. Gross Observations and Histology of the Ovary
2.4. Assessment of Ovarian Activity
2.5. Chlamydia Pecorum PCR
2.6. Recovery of Fresh Oocytes
3. Results
3.1. Evidence of Follicular Development
3.2. Bursal and Uterine Adhesions
3.3. Preliminary Study of Oocyte Recovery from Freshly Collected Ovaries
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Commonwealth of Australia. List of Threatened Species Amendment (Phascolarctos cinereus (Combined Populations of Queensland, New South Wales and the Australian Capital Territory) (280)) Instrument 2022. F2022L00131. C. 2022; Federal Register of Legislation. Available online: https://www.legislation.gov.au/Details/F2022L00131 (accessed on 21 June 2024).
- Wan, C.; Loader, J.; Hanger, J.; Beagley, K.; Timms, P.; Polkinghorne, A. Using quantitative polymerase chain reaction to correlate Chlamydia pecorum infectious load with ocular, urinary and reproductive tract disease in the koala (Phascolarctos cinereus). Aust. Vet. J. 2011, 89, 409–412. [Google Scholar] [CrossRef]
- Quigley, B.L.; Timms, P. Helping koalas battle disease—Recent advances Chlamydia koala retrovirus (KORV) disease understanding and treatment in koalas. FEMS Microbiol. Rev. 2020, 44, 583–605. [Google Scholar] [CrossRef]
- Kayesh, M.E.H.; Hashem, M.A.; Tsukiyama-Kohara, K. Epidemiology, Transmission Mode, and Pathogenesis of Chlamydia pecorum Infection in Koalas (Phascolarctos cinereus): An Overview. Animals 2024, 14, 2686. [Google Scholar] [CrossRef]
- Polkinghorne, A.; Hanger, J.; Timms, P. Recent advances in understanding the biology, epidemiology and control of chlamydial infections in koalas. Vet. Microbiol. 2013, 165, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Jelocnik, M.; Gillett, A.; Hanger, J.; Polkinghorne, A. Chlamydiosis in koalas. In Current Therapy in Medicine of Australian Mammals, 2nd ed.; Vogelnest, L., Portas, T., Eds.; CSIRO Publishing: Clayton, Australia, 2019; pp. 495–505. [Google Scholar]
- Pagliarani, S.; Johnston, S.D.; Beagley, K.W.; Hulse, L.; Palmieri, C. Chlamydiosis and cystic dilatation of the ovarian bursa in the female koala (Phascolarctos cinereus): Novel insights into the pathogenesis and mechanisms of formation. Theriogenology 2022, 189, 280–289. [Google Scholar] [CrossRef]
- Obendorf, D.L. Pathology of the female reproductive tract in the Koala, Phascolarctos cinereus (Goldfuss), from Victoria, Australia. J. Wildl. Dis. 1981, 17, 587–592. [Google Scholar] [CrossRef]
- Selwood, L.; Robinson, E.S.; Pedersen, R.A.; Vandeberg, J.L. Development in vitro of Marsupials: A comparative review of species and a timetable of cleavage and early blastocyst stages of development in Monodelphis domestica. Int. J. Dev. Biol. 1997, 41, 397–410. [Google Scholar]
- Moore, H.D.; Taggart, D.A. In vitro fertilization and embryo culture in the grey short-tailed opossum, Monodelphis domestica. J. Reprod. Fertil. 1993, 98, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Magarey, G.M.; Mate, K.E. Fertilization following intracytoplasmic sperm injection of in vivo and in vitro matured oocytes from an Australian marsupial, the tammar wallaby (Macropus eugenii). Zygote 2003, 11, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Richings, N.M.; Shaw, G.; Temple-Smith, P.D.; Renfree, M.B. Intra-cytoplasmic sperm injection in a marsupial. Reproduction 2004, 128, 595–605. [Google Scholar] [CrossRef] [PubMed]
- West, M.; Lacham-Kaplan, O.; Cleary, M.; Galloway, D.; Shaw, J.; Trounson, A.O.; Paris, M.C.J. In vitro maturation and intracytoplasmic sperm injection of oocytes collected from hormonally stimulated common wombats, Vombatus ursinus. Anim. Reprod. Sci. 2007, 98, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Mtango, N.; Scicluna, E.L.; Ord, S.; Pask, A.J. Generation and assessment of high-quality fat-tailed dunnart oocytes following superovulation in prepubertal animals. Biol. Reprod. 2025, 113, 894–902. [Google Scholar] [CrossRef]
- Howell, L.G.; Witt, R.R. Emerging arguments for reproductive technologies in wildlife and their implications for assisted reproduction and conservation of threatened marsupials. Theriogenology 2023, 198, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Palacios, P.D.; Gurkin, R.J.; Campbell, Y.; Zhao, J.; Pini, T.; Johnston, S.; Gambini, A. 28 Successful production kangaroo ICSI embryos. Reprod. Fertil. Dev. 2024, 37, RDv37n1Ab28. [Google Scholar] [CrossRef]
- Johnston, S.D.; Holt, W.V. Using the koala (Phascolarctos cinereus) as a case study to illustrate the development of artificial breeding technology in marsupials: An update. Adv. Exp. Med. Biol. 2019, 1200, 327–362. [Google Scholar] [CrossRef]
- Herrin, K.V. Surgery. In Current Therapy in Medicine of Australian Mammals, 3rd ed.; Vogelnest, L., Portas, P., Eds.; CSIRO Publishing: Collingwood, Australia, 2025; pp. 151–168. [Google Scholar]
- Gordon, G. Estimation of the age of the Koala, Phascolarctos cinereus (Marsupialia: Phascolarctidae), from tooth wear and growth. Aust. Mammal. 1991, 14, 5–12. [Google Scholar] [CrossRef]
- Blanshard, W.; Bodley, K. Koalas. In Medicine of Australian Mammals, 1st ed.; Vogelnest, L., Woods, R., Eds.; CSIRO Publishing: Collingwood, Australia, 2008; pp. 227–327. [Google Scholar]
- Hulse, L.S.; McDonald, S.; Johnston, S.D.; Beagley, K.W. Rapid point-of-care diagnostics for the detection of Chlamydia pecorum in koalas (Phascolarctos cinereus) using loop—Mediated isothermal amplification without nucleic acid purification. MicrobiologyOpen 2019, 8, e916. [Google Scholar] [CrossRef]
- Department of Environment and Science. Guideline Nature Conservation Act. Determining Whether a Koala Requires Euthanasia. Available online: https://environment.des.qld.gov.au/__data/assets/pdf_file/0020/316424/guideline-koala-euthanasia.pdf (accessed on 9 September 2015).
- Pagliarani, S.; Palmieri, C.; McGowan, M.; Carrick, F.; Boyd, J.; Johnston, S.D. Anatomy of the Female Koala Reproductive Tract. Biology 2023, 12, 1445. [Google Scholar] [CrossRef]
- Hulse, L.S.; Hickey, D.; Mitchell, J.M.; Beagley, K.W.; Ellis, W.; Johnston, S.D. Development and application of two multiplex real-time PCR assays for detection and speciation of bacterial pathogens in the koala. J. Vet. Diagn. Investig. 2018, 30, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Frankenberg, S.; Renfree, M.B. Conceptus coats of marsupials and monotremes. Curr. Top. Dev. Biol. 2018, 130, 357–377. [Google Scholar] [CrossRef] [PubMed]
- Chapman, J.A.; Leigh, C.M.; Breed, W.G. The zona pellucida of the koala (Phascolarctos cinereus): Its morphogenesis and thickness. J. Anat. 2006, 209, 393–400. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]


| Reproductive Pathology (n = 44 Koalas; 85 Ovaries) | % of Ovaries with Antral Follicles |
|---|---|
| No gross pathology (n = 18 koalas; 36 ovaries) | 94.4 |
| Bursal pathology only (n = 11 koalas; 22 ovaries) | 95.2 |
| Uterine pathology only (n = 4 koalas; 8 ovaries) | 100 |
| Bursal and uterine pathology (n = 11 koalas; 19 ovaries) | 90.1 |
| Ovary ID | Antral Follicles | Comments | Ovary ID | Antral Follicles | Comments |
|---|---|---|---|---|---|
| K2a | Yes | - | K2b | Yes | - |
| K11a | Yes | - | K11b | Yes | - |
| K13a | Yes | Presumptive preovulatory follicle 3.6mm diameter | K13b | Yes | - |
| K14a | Yes | Degenerating CL 3.3 mm diameter | K14b | Yes | - |
| K15a | Yes | Degenerating CL 3.5 mm diameter | K15b | Yes | - |
| K18a | Yes | Ovarian carcinoma | K18b | Yes | Ovarian carcinoma |
| K19a | Yes | Active CL 5.1 mm diameter + smaller regressing CL 2.5 mm diameter | K19b | Yes | 2 small regressing CLs, 2.8 mm and 3 mm in diameter |
| K23a | Yes | - | K23b | Yes | - |
| K25a | Yes | Regressing CL 4.4 mm diameter | K25b | Yes | - |
| K26a | Yes | Regressing CL 3.2 mm diameter | K26b | Yes | - |
| K27a | Yes | - | K27b | Yes | - |
| K28a | Yes | Bursal–ovarian adhesions; Regressing CL 2.5 mm diameter | K28b | Yes | - |
| K29a | Yes | Few antral follicles; high proportion of interstitial tissue | K29b | Yes | Few antral follicles; high proportion of interstitial tissue |
| K32a | Yes | Bursal-ovarian adhesions | K32b | No | - |
| K39a | Yes | High proportion of interstitial tissue | K39b | No | High proportion of interstitial tissue |
| K40a | Yes | Moderate CL 4 mm diameter | K40b | Yes | - |
| K42a | Yes | Large preovulatory follicle 3.9 mm diameter | K42b | Yes | Regressing CL 3.5 mm diameter |
| K43a | Yes | - | K43b | Yes | - |
| Ovary ID | Bursal Pathology | Antral Follicles | Comments | Ovary ID | Bursal Pathology | Antral Follicles | Comments |
|---|---|---|---|---|---|---|---|
| K4a | Moderate | Yes | - | K4b | Severe | Yes | Active CL 7.3 mm diameter |
| K5a | Moderate | Yes | K5b | Normal | Yes | Active CL 5.7 mm diameter | |
| K7a | Moderate | Yes | - | K7b | Normal | Yes | Regressing CL 2.7 mm diameter |
| K8a | Severe | Yes | Bursal–ovarian adhesions | K8b | Severe | Yes | |
| K9a | Moderate | Yes | Regressing CL 3.6 mm diameter | K9b | Normal | Yes | - |
| K16a | Moderate | Yes | - | K16b | Normal | Yes | - |
| K17a | Mild | Yes | - | K17b | Mild | Yes | - |
| K20a | Moderate | No | Inflammation and fibrosis in the ovary; abscess | K20b | Normal | Yes | |
| K30a | Moderate | Yes | - | K30b | Normal | Yes | |
| K44a | Severe | Yes | Inflammation of the bursa | K44b | Normal | Yes | Moderate CL 4.0 mm diameter |
| K45a | Mild | Yes | Regressing CL 3.0 mm diameter | K45b | Mild | Yes | Regressing CL 2.8 mm diameter |
| Ovary ID | Uterine Pathology | Antral Follicles | Comments | Ovary ID | Uterine Pathology | Antral Follicles | Comments |
|---|---|---|---|---|---|---|---|
| K12a | Pathology | Yes | Endometritis; Active CL 5.6 mm diameter | K12b | Pathology | Yes | Endometritis |
| K24a | Normal | Yes | Active CL 5.4 mm diameter | K24b | Pathology | Yes | Pyometra; Regressing CL 3.4 mm diameter |
| K31a | Pathology | Yes | Hydrometra; Active CL 7 mm diameter, Regressing CLs 3.2 mm and 4.6 mm diameter | K31b | Normal | Yes | Regressing CL 4.6 mm diameter |
| K37a | Pathology | Yes | Presumptive preovulatory follicle 3.9 mm diameter | K37b | Pathology | Yes | Uterine cyst |
| Ovary ID | Bursal Pathology | Uterine Pathology | Antral Follicles | Comments | Ovary ID | Bursal Pathology | Uterine Pathology | Antral Follicles | Comments |
|---|---|---|---|---|---|---|---|---|---|
| K1a | Severe | Pathology | Yes | Pyometra; Endometritis; Regressing CL 2.4 mm diameter | K1b | Normal | Normal | N/A | Ovary not found in the bursa |
| K3a | Mild | Pathology | Yes | Hydrometra | K3b | Normal | Pathology | Yes | Hydrometra |
| K6a | Normal | Pathology | Yes | Thrombosis of the arteries on the ovarian surface | K6b | Mild | Normal | Yes | - |
| K10a | Moderate | Normal | No | Anestrus, bursal-ovarian adhesions | K10b | Moderate | Normal | N/A | Ovary not found in the bursa |
| K22a | Normal | Pathology | Yes | Hydrometra; Presumptive preovulatory follicle 5.3 mm diameter | K22b | Normal | Normal | N/A | Ovary not found in the bursa |
| K33a | Mild | Pathology | Yes | Regressing CL 4.0 mm diameter | K33b | Normal | Pathology | Yes | Active CL 5.8 mm diameter |
| K34a | Mild | Pathology | Yes | Dilated uterus | K34b | Mild | Normal | Yes | Presumptive preovulatory follicle 4.5 mm diameter |
| K35a | Moderate | Pathology | Yes | Presumptive preovulatory follicle 5.9 mm diameter | K35b | Moderate | Pathology | Yes | - |
| K36a | Moderate | Pathology | Yes | Pyometra | K36b | Moderate | Normal | Yes | - |
| K38a | Normal | Pathology | Yes | Dilated uterus; Bursal-ovarian adhesions; Presumptive preovulatory 5.2 mm diameter | K38b | Severe | Pathology | No | Dilated uterus; Bursal-ovarian adhesions |
| K41a | Mild | Pathology | Yes | K41b | Normal | Normal | Yes | Active CL 5.1 mm diameter |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnston, S.D.; Boyd, J.; Palacios, P.D.; Grosmaire, J.; Lee, A.; Hulse, L.; Vega, L.; Pyne, M.; Gambini, A.; Palmieri, C. Evidence of Folliculogenesis and the Potential of Oocyte Recovery from Koalas with Different Levels of Reproductive Pathology. Biology 2025, 14, 1435. https://doi.org/10.3390/biology14101435
Johnston SD, Boyd J, Palacios PD, Grosmaire J, Lee A, Hulse L, Vega L, Pyne M, Gambini A, Palmieri C. Evidence of Folliculogenesis and the Potential of Oocyte Recovery from Koalas with Different Levels of Reproductive Pathology. Biology. 2025; 14(10):1435. https://doi.org/10.3390/biology14101435
Chicago/Turabian StyleJohnston, Stephen D., Jackson Boyd, Patricio D. Palacios, Julien Grosmaire, Alexander Lee, Lyndal Hulse, Leslie Vega, Michael Pyne, Andres Gambini, and Chiara Palmieri. 2025. "Evidence of Folliculogenesis and the Potential of Oocyte Recovery from Koalas with Different Levels of Reproductive Pathology" Biology 14, no. 10: 1435. https://doi.org/10.3390/biology14101435
APA StyleJohnston, S. D., Boyd, J., Palacios, P. D., Grosmaire, J., Lee, A., Hulse, L., Vega, L., Pyne, M., Gambini, A., & Palmieri, C. (2025). Evidence of Folliculogenesis and the Potential of Oocyte Recovery from Koalas with Different Levels of Reproductive Pathology. Biology, 14(10), 1435. https://doi.org/10.3390/biology14101435

