Evolutionary History and Taxonomic Reappraisal of Coral Reef Rabbitfishes (Siganidae): Patterns of Lineage Diversification and Speciation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Taxonomic Identification and Morphometric Analyses
2.3. DNA Extraction, Amplification and Sequencing
2.4. Phylogenetic Analysis
2.5. Divergence Time Estimation and Phylogeny
3. Results
3.1. Morphological Assessment
3.2. Haplotype Diversity and Sequence Divergence
3.3. Phylogenetic Analyses
3.4. Molecular Dating
4. Discussion
4.1. Phylogenetic, Systematic, and Ecological Inferences
4.2. Biogeographic and Evolutionary History
4.3. Hypothesis: Natural Hybridization and Speciation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woodland, D.J. Revision of the fish family Siganidae with descriptions of two new species and comments on distribution and biology. Indo-Pac. Fishes 1990, 19, 1–136. [Google Scholar]
- Randall, J.E.; Kulbicki, M. Siganus woodlandi, new species of rabbitfish (Siganidae) from New Caledonia. Cybium 2005, 29, 185–189. [Google Scholar]
- Ravago-Gotanco, R.; de la Cruz, T.L.; Pante, M.J.; Borsa, P. Cryptic genetic diversity in the mottled rabbitfish Siganus fuscescens with mitochondrial introgression at a contact zone in the South China Sea. PLoS ONE 2018, 13, e0193220. [Google Scholar] [CrossRef] [Green Version]
- Woodland, D.J. An examination of the effect of ecological factors, especially competitive exclusion, on the distributions of species of an inshore, tropical, marine family of Indo-Pacific fishes (Siganidae). In Proceedings of the 5th Indo-Pacific Fish, Nouméa, New Caledonia, 3–8 November 1997; Séret, B., Sire, J.Y., Eds.; Societe Francaise d’Icthyologie: Paris, France, 1999; pp. 553–562. [Google Scholar]
- Adams, A.; Woodland, D.J. Molecular systematics of the rabbitfishes of the Oramin complex: Towards a resolution of the Siganus fuscescens/S. canaliculatus species problem using allozyme electrophoresis (Siganidae: Pisces). In Proceedings of the Fourth Indo-Pacific Fish, Bangkok, Thailand, 28 November–4 December 1993; Kasetsart University: Bangkok, Thailand, 1994; pp. 373–385. [Google Scholar]
- Sakurai, Y. Revision of the siganid fishes, genus Siganus (Perciformes: Siganidae) found in Ryukyu Islands. Master’s Thesis, University of the Ryukyus, Okinawa, Japan, 1995. [Google Scholar]
- Kuriiwa, K.; Hanazawa, N.; Yoshino, T.; Kimura, S.; Nishida, M. Phylogenetic relationships and natural hybridization in rabbitfishes (Teleostei: Siganidae) inferred from mitochondrial and nuclear DNA analyses. Mol. Phylogenetics Evol. 2007, 45, 69–80. [Google Scholar] [CrossRef]
- Hsu, T.H.; Adiputra, Y.T.; Burridge, C.P.; Gwo, J.C. Two spine foot colour morphs: Mottled spine foot Siganus fuscescens and white-spotted spine foot Siganus canaliculatus are synonyms. J. Fish. Biol. 2011, 79, 1350–1355. [Google Scholar] [CrossRef]
- Lacson, J.M.; Nelson, S.G. Genetic distances among fishes of the genus Siganus(Siganidae) from the western Pacific ocean. Mar. Biol. 1993, 116, 187–192. [Google Scholar] [CrossRef]
- Borsa, P.; Lemer, S.; Aurelle, D. Patterns of lineage diversification in rabbitfishes. Mol. Phylogenetics Evol. 2007, 44, 427–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemer, S.; Aurell, D.; Vigliola, L.; Durand, J.D.; Borsa, P. Cytochrome b barcoding, molecular systematics and geographic differentiation in rabbitfishes (Siganidae). Comptes Rendus Biol. 2007, 330, 86–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siqueira, A.C.; Bellwood, D.R.; Cowman, P.F. The evolution of traits and functions in herbivorous coral reef fishes through space and time. Proc. R. Soc. B 2019, 286, 20182672. [Google Scholar] [CrossRef] [Green Version]
- Siqueira, A.C.; Bellwood, D.R.; Cowman, P.F. Historical biogeography of herbivorous coral reef fishes: The formation of an Atlantic fauna. J. Biogeogr. 2019, 46, 1611–1624. [Google Scholar] [CrossRef]
- Gadagkar, S.R.; Rosenberg, M.S.; Kumar, S. Inferring species phylogenies frommultiple genes: Concatenated sequence tree versus consensus gene tree. J. Exp. Zool. 2005, 304, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Rokas, A.; Carroll, S.B. More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy. Mol. Biol. Evol. 2005, 22, 1337–1444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hebert, P.D.N.; Ratnasingham, S.; de Waard, J.R. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. B Biol. Sci. 2003, 270, S96–S99. [Google Scholar] [CrossRef] [Green Version]
- Ward, R.D.; Zemlak, T.S.; Innes, B.H.; Last, P.R.; Hebert, P.D.N. DNA barcoding Australia’s fish species. Philos. Trans. R. Soc. B 2005, 360, 1847–1857. [Google Scholar] [CrossRef]
- Venkatesh, B.; Ning, Y.; Brenner, S. Late changes in splice osomal introns define clades in vertebrate evolution. Proc. Natl. Acad. Sci. USA 1999, 96, 10267–10271. [Google Scholar] [CrossRef] [Green Version]
- Seah, Y.G.; Abdullah, S.; Zaidi, C.C.; Mazlan, A.G. Systematic accounts and some aspects of feeding and reproductive biology of ponyfishes (Perciformes: Leiognathidae). Sains Malays. 2009, 38, 47–56. [Google Scholar]
- Hubbs, C.L.; Lagler, K.F. Fishes of the Great Lakes Region. Revised Edition; University of Michigan Press: Ann Arbor, MI, USA, 2004. [Google Scholar]
- Arjunaidi, N.N.; Zakaria, M.F.; Abdul Aziz, A.H.; Shahreza, M.S.; Mat Jaafar, T.N.A.; Seah, Y.G.; NurAsma, A. Authentication of Tenualosa species in Perak River, Malaysia: Application of morphological measurement and molecular analysis of partial CO1 and 16S genes to resolve species ambiguity. AACL Bioflux 2016, 9, 1355–1363. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: https://www.R-project.org/ (accessed on 4 July 2021).
- Shapiro, S.S.; Wilk, M.B.; Chen, H.J. A comparative study of various tests for normality. J. Am. Stat. Assoc. 1968, 63, 1343–1372. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 2nd ed.; Sage: Thousand Oaks, CA, USA, 2011; Available online: http://socserv.socsci.mcmaster.ca/jfox/Books/Companion (accessed on 4 July 2021).
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inferene in general parametric models. Biomed. J. 2008, 50, 346–363. [Google Scholar]
- Sebastien, L.; Josse, J.; Husson, F. Factor mine R: An R package for multivariate analysis. J. Stat. Softw. 2008, 2, 1–18. [Google Scholar]
- Venables, W.; Ripley, B. Modern Applied Statistics with S, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Galili, T. Dendextend: An R package for visualizing, adjusting, and comparing trees of hierarchical clustering. Bioinformatics 2015, 31, 3718–3720. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; Available online: https://www.jstatsoft.org/article/view/v035b01/v35b01.pdf (accessed on 4 July 2021).
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Winterbottom, R. Myological evidence for the phylogeny of the recent genera of surgeon fishes (Percomorpha, Acanthuridae), with comments on the Acanthuroidei. Copeia 1993, 1, 21–39. [Google Scholar] [CrossRef]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis ofDNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [Green Version]
- Moore, W.S. Inferring phylogenies from mtDNA variation: Mitochondrial-gene trees versus nuclear-gene trees. Evolution 1995, 49, 718–726. [Google Scholar] [CrossRef]
- Farris, J.S.; Kallersjo, M.; Kluge, A.G.; Bult, C. Testing Significance of Incongruence. Cladistics 1994, 10, 315–319. [Google Scholar] [CrossRef]
- Swofford, D.L. Phylogenetic Analysis Using Parsimony (* and Other Methods); Sinauer Associates: Sunderland, MA, USA, 2002. [Google Scholar]
- Maddison, W.P.; Maddison, D.R. Mesquite: A modular system for evolutionary analysis Version 3.2. 2016. Available online: http://mesquiteproject.org (accessed on 4 June 2021).
- Fisher-Reid, M.C.; Wiens, J.J. What are the consequences of combining nuclear and mitochondrial data for phylogenetic analysis? Lessons from Plethodon salamanders and 13 other vertebrate clades. BMC Evol. Biol. 2011, 11, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Ren, Z.; Von Dohlen, C.D.; Harris, A.J.; Dikow, R.B.; Su, X.; Wen, J. Congruent phylogenetic relationships of Melaphidina aphids (Aphididae: Eriosomatinae: Fordini) according to nuclear and mitochondrial DNA data with taxonomic implications on generic limits. PLoS ONE 2019, 14, e0213181. [Google Scholar] [CrossRef] [Green Version]
- Sorenson, L.; Santini, F.; Carnevale, G.; Alfaro, M.E. A multi-locustime tree of surgeonfishes (Acanthuridae, Percomorpha), with revised family taxonomy. Mol. Phylogenetics Evol. 2013, 68, 150–160. [Google Scholar] [CrossRef]
- Pereira, S.L.; Baker, A.J.; Wajntal, A. Combined nuclear and mitochondrial DNA sequences resolve generic relationships within the Cracidae (Galliformes, Aves). Syst. Biol. 2002, 51, 946–958. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Phylogenetics Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, M.; Kishino, H.; Yano, T.A. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 1985, 22, 160–174. [Google Scholar] [CrossRef]
- Drummond, A.J.; Suchard, M.A.; Xie, D.; Rambaut, A. Bayesian phylogenetics with BEAUTi and the BEAST 1.7. Mol. Phylogenetics Evol. 2012, 29, 1969–1973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drummond, A.J.; Suchard, M.A. Bayesian random local clocks, or one rate to rule them all. BMC Biol. 2010, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Fourment, M.; Darling, A.E. Local and relaxed clocks: The best of both worlds. PeerJ 2018, 6, e5140. [Google Scholar] [CrossRef] [Green Version]
- Ho, S.Y.; Duchêne, S. Molecular-clock methods for estimating evolutionary rates and timescales. Mol. Ecol. 2014, 23, 5947–5965. [Google Scholar] [CrossRef]
- Gavryshkina, A.; Welch, D.; Stadler, T.; Drummond, A.J. Bayesian inference of sampled ancestor tress for epidemiology and fossil calibration. PLoS Comput. Biol. 2014, 10, e1003919. [Google Scholar]
- Rambaut, A.; Suchard, M.A.; Xie, D.; Drummond, A.J. Tracer v1.6. 2014. Available online: http://tree.bio.ed.ac.uk/software/tracer/ (accessed on 13 March 2021).
- Brandl, S.J.; Bellwood, D.R. Morphology, sociality and ecology: Can morphology predict pairing behaviour in coral reef fishes? Coral Reefs 2013, 32, 835–846. [Google Scholar] [CrossRef]
- Marshall, N.J.; Jennings, K.; McFarland, W.N.; Loew, E.R.; Losey, G.S. Visual biology of Hawaiian coral reef fishes: III. Environmental light and an integrated approach to the ecology of reef fish vision. Copeia 2003, 3, 467–480. [Google Scholar] [CrossRef]
- Schmitz, L.; Wainwright, P.C. Nocturnality constrains morphological and functional diversity in the eyes of reef fishes. BMC Evol. Biol. 2011, 11, 338. [Google Scholar] [CrossRef] [Green Version]
- Dornburg, A.; Townsend, J.P.; Friedman, M.; Near, T.J. Phylogenetic informativeness reconciles ray-finned fish molecular divergence times. BMC Evol. Biol. 2014, 14, 169. [Google Scholar] [CrossRef] [Green Version]
- Tyler, J.C.; Johnson, G.D.; Nakamura, I.; Collette, B.B. Morphology of Luvarusimperialis (Luvaridae), with a phylogenetic analysis of the Acanthuroidei (Pisces). Smithson Contrib. Zool. 1989, 485, 1–78. [Google Scholar] [CrossRef] [Green Version]
- Bellwood, D.R. The Eocene fishes of Monte Bolca: The earliest coral reef fish assemblage. Coral Reefs 1996, 15, 11–19. [Google Scholar] [CrossRef]
- Bellwood, D.R.; Wainwright, P.C. The history and biography of fishes on coral reefs. In Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem; Sale, P.F., Ed.; Academic Press: San Diego, CA, USA, 2002; pp. 5–32. [Google Scholar]
- Westneat, M.W.; Alfaro, M.E. Phylogenetic relationships and evolutionary history of the reef fish family Labridae. Mol. Phylogenetics Evol. 2005, 36, 370–390. [Google Scholar] [CrossRef]
- Fessler, J.L.; Westneat, M.W. Molecular phylogenetics of the butterflyfishes (Chaetodontidae): Taxonomy and biogeography of a global coral reef fish family. Mol. Phylogenetics Evol. 2007, 45, 50–69. [Google Scholar] [CrossRef]
- Zachos, J.C.; Pagani, M.; Sloan, L.; Thomas, E.; Billups, K. Trends, rhythms, and aberrations in global climate 65Ma to present. Science 2001, 292, 686–692. [Google Scholar] [CrossRef]
- Stanley, G.D. The History and Sedimentology of Ancient Reef Systems; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Bellwood, D.R.; Goatley, C.H.R.; Brandl, S.J.; Bellwood, O. Fifty million years of herbivory on coral reefs: Fossils, fish and functional innovations. Proc. R. Soc. B 2014, 281, 20133046. [Google Scholar] [CrossRef]
- Tyler, J.C.; Bannikov, A.F. Relationships of the fossil and recent genera of rabbitfishes (Acanthuridae: Siganidae). Smithson. Contrib. Paleobiol. 1997, 84, 1–35. [Google Scholar]
- Strona, G.; Stefani, F.; Galli, P.; Fattorini, S. Reapproaching the centre of origin theory: A case study of siganid fishes (Actinistia: Siganidae). Vie Milieu 2011, 61, 71–76. [Google Scholar]
- Leprieur, F.; Descombes, P.; Gaboriau, T.; Cowman, P.F.; Parravicini, V.; Kulbicki, M. Plate tectonics drive tropical reef biodiversity dynamics. Nat. Commun. 2016, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zachos, J.C.; Shackleton, N.J.; Revenaugh, J.S.; Paelike, H.; Flower, B.P. Climate response to orbital forcing across the Oligocene-Miocene boundary. Science 2001, 292, 274–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiessling, W. Paleoclimatic significance of Phanerozoic reefs. Geology 2001, 29, 751–754. [Google Scholar] [CrossRef]
- Palumbi, S.R. Molecular biogeography of the Pacific. Coral Reefs 1997, 16, S47–S52. [Google Scholar] [CrossRef]
- Clements, K.D.; Gray, R.D.; Choat, J.H. Rapid evolutionary divergence in reef fishes of the family Acanthuridae (Perciformes; Teleostei). Mol. Phylogenetics Evol. 2003, 26, 190–201. [Google Scholar] [CrossRef]
- Leray, M.; Beldade, R.; Holbrook, S.J.; Schmitt, R.J.; Planes, S.; Bernardi, G. Allopatric divergence and speciation in coral reef fish: The three-spot Dascyllus, Dascyllus trimaculatus, species complex. Evolution 2009, 64, 1218–1230. [Google Scholar] [CrossRef]
- Nuryanto, A.; Kochzius, M. Highly restricted gene flow and deep evolutionary lineages in the giant clam Tridacna maxima. Coral reefs 2009, 28, 607–619. [Google Scholar] [CrossRef]
- Iwamoto, K.; Abdullah, M.F.; Chang, C.W.; Yoshino, T.; Imai, H. Genetic isolation of the mottled spine foot Siganus fuscescens Ryukyu Archipelago population. Biogeography 2015, 17, 61–85. [Google Scholar]
- Hall, R. The plate tectonics of Cenozoic SE Asia and the distribution of land and sea. In Biogeography and Geological Evolution of SE Asia; Hall, R., Holloway, J.D., Eds.; Backhuys Publishers: Leiden, The Netherlands, 1998; pp. 99–132. [Google Scholar]
- Wilson, M.E.J.; Rosen, B.R. Implications of the paucity of corals in the Paleogene of SE Asia: Plate tectonics or center of origin. In Biogeography and Geological Evolution of SE Asia; Hall, R., Holloway, J.D., Eds.; Backhuys Publishers: Leiden, The Netherlands, 1998; pp. 165–195. [Google Scholar]
Species | Morphometric Variables | Mean | SD | Range | Sig. (p) | Correlation Coefficient (r) |
---|---|---|---|---|---|---|
S. guttatus | Snout length | 14.1 | 0.8 | 12.5–15.5 | 0.604 | 0.152 |
Length of anal fin base | 43.5 | 1.3 | 42–46.4 | 0.788 | 0.079 | |
Depth of caudal peduncle | 8.1 | 0.4 | 7.1–8.9 | 0.976 | 0.009 | |
Length of lower jaw | 5.0 | 0.4 | 4.4–5.6 | 0.054 | 0.407 | |
S. javus | Snout length | 10.8 | 0.6 | 9.8–11.7 | 0.683 | 0.097 |
Length of anal fin base | 47.2 | 1.0 | 45.6–49.0 | 0.042 | 0.458 | |
Depth of caudal peduncle | 6.8 | 0.4 | 6.0–7.4 | 0.085 | 0.395 | |
Length of lower jaw | 4.2 | 0.3 | 3.7–4.6 | 0.075 | 0.072 | |
S. stellatus | Snout length | 12.4 | 0.9 | 10.6–13.8 | 0.002 | 0.650 |
Length of anal fin base | 42.3 | 1.2 | 40.1–44.4 | 0.945 | 0.016 | |
Depth of caudal peduncle | 7.6 | 0.4 | 7.0–8.4 | 0.402 | 0.198 | |
Length of lower jaw | 3.9 | 0.3 | 3.3–4.3 | 0.764 | 0.007 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zolkaply, S.Z.; Do, T.D.; Asaduzzaman, M.; Seah, Y.G.; Hurwood, D.; Mather, P.; Rahman, M.M.; Wong, L.L. Evolutionary History and Taxonomic Reappraisal of Coral Reef Rabbitfishes (Siganidae): Patterns of Lineage Diversification and Speciation. Biology 2021, 10, 1109. https://doi.org/10.3390/biology10111109
Zolkaply SZ, Do TD, Asaduzzaman M, Seah YG, Hurwood D, Mather P, Rahman MM, Wong LL. Evolutionary History and Taxonomic Reappraisal of Coral Reef Rabbitfishes (Siganidae): Patterns of Lineage Diversification and Speciation. Biology. 2021; 10(11):1109. https://doi.org/10.3390/biology10111109
Chicago/Turabian StyleZolkaply, Siti Zulaiha, Thinh Dinh Do, Md Asaduzzaman, Ying Giat Seah, David Hurwood, Peter Mather, Md Moshiur Rahman, and Li Lian Wong. 2021. "Evolutionary History and Taxonomic Reappraisal of Coral Reef Rabbitfishes (Siganidae): Patterns of Lineage Diversification and Speciation" Biology 10, no. 11: 1109. https://doi.org/10.3390/biology10111109
APA StyleZolkaply, S. Z., Do, T. D., Asaduzzaman, M., Seah, Y. G., Hurwood, D., Mather, P., Rahman, M. M., & Wong, L. L. (2021). Evolutionary History and Taxonomic Reappraisal of Coral Reef Rabbitfishes (Siganidae): Patterns of Lineage Diversification and Speciation. Biology, 10(11), 1109. https://doi.org/10.3390/biology10111109