Falls in Post-Polio Patients: Prevalence and Risk Factors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods and Materials
2.1. Population
2.2. Tools and Protocol
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Correlations between Gait Parameters and Fall-Related Measures
3.3. Regression Analyses
4. Discussion
5. Conclusions
6. Future Research
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bickerstaffe, A.; Beelen, A.; Nollet, F. Circumstances and consequences of falls in polio survivors. J. Rehabil. Med. 2010, 42, 908–915. [Google Scholar] [CrossRef] [Green Version]
- Nam, K.Y.; Lee, S.; Yang, E.J.; Kim, K.; Jung, S.H.; Jang, S.-N.; Han, S.J.; Kim, W.-H.; Lim, J.-Y. Falls in Korean Polio Survivors: Incidence, Consequences, and Risk Factors. J. Korean Med. Sci. 2016, 31, 301. [Google Scholar] [CrossRef] [Green Version]
- Vreede, K.; Broman, L.; Borg, K. Is Intervention to Prevent Falls Necessary in Prior Polio Patients? J. Rehabil. Med. Clin. Commun. 2020, 3, 1000023. [Google Scholar] [CrossRef] [PubMed]
- Santos Tavares Silva, I.; Sunnerhagen, K.; Willén, C.; Ottenvall Hammar, I. The extent of using mobility assistive devices can partly explain fatigue among persons with late effects of polio—A retrospective registry study in Sweden. BMC Neurol. 2016, 16. [Google Scholar] [CrossRef] [Green Version]
- Farbua, E.; Gilhusa, N.E.; Barnesb, M.P.; Borgc, K.; Visserd, M.D.; Driessene, A.; Howardf, R.; Nolletg, F.; Oparah, J.; Stalbergi, E. EFNS guideline on diagnosis and management of post-polio syndrome. Report of an EFNS task force. Eur. J. Neurol. 2006, 13, 795–801. [Google Scholar]
- Agre, J.; Rodriquez, A.; Franke, T. Strength, endurance, and work capacity after muscle strengthening exercise in postpolio subjects. Arch. Phys. Med. Rehabil. 1997, 78, 681–686. [Google Scholar] [CrossRef]
- Chan, K.; Amirjani, N.; Sumrain, M.; Clarke, A.; Strohschein, F. Randomized controlled trial of strength training in post-polio patients. Muscle Nerve 2003, 27, 332–338. [Google Scholar] [CrossRef]
- Lo, J.; Robinson, L. Post-polio syndrome and the late effects of poliomyelitis: Part 2. treatment, management, and prognosis. Muscle Nerve 2018, 58, 760–769. [Google Scholar] [CrossRef] [PubMed]
- Silver, J.; Aiello, D. Polio survivors: Falls and subsequent injuries. Am. J. Phys. Med. Rehabil. 2002, 81, 567–570. [Google Scholar] [CrossRef] [PubMed]
- Legters, K.; Verbus, N.; Kitchen, S.; Tomecsko, J.; Urban, N. Fear of falling, balance confidence and health-related quality of life in individuals with postpolio syndrome. Physiother. Theory Pract. 2006, 22, 127–135. [Google Scholar] [CrossRef]
- Brogårdh, C.; Flansbjer, U.; Lexell, J. Determinants of Falls and Fear of Falling in Ambulatory Persons With Late Effects of Polio. PM R 2017, 9, 455–463. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, C.; Zuckerman, B.; Olkin, R. Relationship of depression and medications on incidence of falls among people with late effects of polio. Physiother. Theory Pract. 2017, 33, 370–375. [Google Scholar] [CrossRef]
- Lord, S.R.; Allen, G.M.; Williams, P.; Gandevia, S.C. Risk of falling: Predictors based on reduced strength in persons previously affected by polio. Arch. Phys. Med. Rehabil. 2002, 83, 757–763. [Google Scholar] [CrossRef]
- Butler, A.; Lord, S.; Rogers, M.; Fitzpatrick, R. Muscle weakness impairs the proprioceptive control of human standing. Brain Res. 2008, 1242, 244–251. [Google Scholar] [CrossRef]
- Genêt, F.; Schnitzler, A.; Mathieu, S.; Autret, K.; Théfenne, L.; Dizien, O.; Maldjian, A. Orthotic devices and gait in polio patients. Ann. Phys. Rehabil. Med. 2010, 53, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portnoy, S.; Schwartz, I. Gait characteristics of post-poliomyelitis patients: Standardization of quantitative data reporting. Ann. Phys. Rehabil. Med. 2013, 56, 527–541. [Google Scholar] [CrossRef] [Green Version]
- Andrysek, J.; Redekop, S.; Matsui, N.C.; Kooy, J.; Hubbard, S. A Method to Measure the Accuracy of Loads in Knee-Ankle-Foot Orthoses Using Conventional Gait Analysis, Applied to Persons With Poliomyelitis. Arch. Phys. Med. Rehabil. 2008, 89, 1372–1379. [Google Scholar] [CrossRef] [PubMed]
- Andrysek, J.; Klejman, S.; Kooy, J. Examination of Knee Joint Moments on the Function of Knee-Ankle-Foot Orthoses During Walking. J. Appl. Biomech. 2013, 29, 474–480. [Google Scholar] [CrossRef] [Green Version]
- Arazpour, M.; Ahmadi, F.; Bahramizadeh, M.; Samadian, M.; Mousavi, M.E.; Bani, M.A.; Hutchins, S.W. Evaluation of gait symmetry in poliomyelitis subjects: Comparison of a conventional knee–ankle–foot orthosis and a new powered knee–ankle–foot orthosis. Prosthet. Orthot. Int. 2015, 40, 689–695. [Google Scholar] [CrossRef]
- Arazpour, M.; Moradi, A.; Samadian, M.; Bahramizadeh, M.; Joghtaei, M.; Ahmadi Bani, M.; Hutchins, S.W.; Mardani, M.A. The influence of a powered knee–ankle–foot orthosis on walking in poliomyelitis subjects. Prosthet. Orthot. Int. 2016, 40, 377–383. [Google Scholar] [CrossRef]
- Hwang, S.; Kang, S.; Cho, K.; Kim, Y. Biomechanical effect of electromechanical knee–ankle–foot-orthosis on knee joint control in patients with poliomyelitis. Med. Biol. Eng. Comput. 2008, 46, 541–549. [Google Scholar] [CrossRef]
- Arazpour, M.; Ahmadi Bani, M.; Samadian, M.; Mousavi, M.E.; Hutchins, S.W.; Bahramizadeh, M.; Curran, S.; Mardani, M.A. The physiological cost index of walking with a powered knee–ankle–foot orthosis in subjects with poliomyelitis. Prosthet. Orthot. Int. 2016, 40, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Flansbjer, U.-B.; Lexell, J. Reliability of Gait Performance Tests in Individuals With Late Effects of Polio. PM R 2010, 2, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Vreede, K.; Henriksson, J.; Borg, K.; Henriksson, M. Gait characteristics and influence of fatigue during the 6-minute walk test in patients with post-polio syndrome. J. Rehabil. Med. 2013, 45, 924–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ploeger, H.E.; Bus, S.A.; Brehm, M.-A.; Nollet, F. Ankle-foot orthoses that restrict dorsiflexion improve walking in polio survivors with calf muscle weakness. Gait Posture 2014, 40, 391–398. [Google Scholar] [CrossRef]
- Imoto, D.; Sawada, K.; Horii, M.; Hayashi, K.; Yokota, M.; Toda, F.; Saitoh, E.; Mikami, Y.; Kubo, T. Factors associated with falls in Japanese polio survivors. Disabil. Rehabil. 2019, 42, 1814–1818. [Google Scholar] [CrossRef]
- Powell, L.E.; Myers, A.M. The Activities-specific Balance Confidence (ABC) Scale. J. Gerontol. A Biol. Sci. Med. Sci. 1995, 50A, M28–M34. [Google Scholar] [CrossRef] [PubMed]
- Kroneberg, D.; Elshehabi, M.; Meyer, A.-C.; Otte, K.; Doss, S.; Paul, F.; Nussbaum, S.; Berg, D.; Kühn, A.A.; Maetzler, W.; et al. Less Is More—Estimation of the Number of Strides Required to Assess Gait Variability in Spatially Confined Settings. Front. Aging Neurosci. 2019. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.M.; Eng, J.J. Symmetry in vertical ground reaction force is accompanied by symmetry in temporal but not distance variables of gait in persons with stroke. Gait Posture 2003, 18, 23–28. [Google Scholar] [CrossRef]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012, 141, 2–18. [Google Scholar] [CrossRef] [Green Version]
- Myers, A.M.; Fletcher, P.C.; Myers, A.H.; Sherk, W. Discriminative and evaluative properties of the activities-specific balance confidence (ABC) scale. J. Gerontol. Ser. A 1998, 53. [Google Scholar] [CrossRef] [PubMed]
- Cleary, K.; Skornyakov, E. Predicting falls in community dwelling older adults using the Activities-specific Balance Confidence Scale. Arch. Gerontol. Geriatr. 2017, 72, 142–145. [Google Scholar] [CrossRef]
- Lajoie, Y.; Gallagher, S. Predicting falls within the elderly community: Comparison of postural sway, reaction time, the Berg balance scale and the Activities-specific Balance Confidence (ABC) scale for comparing fallers and non-fallers. Arch. Gerontol. Geriatr. 2004, 38, 11–26. [Google Scholar] [CrossRef]
- Fiems, C.L.; Miller, S.A.; Buchanan, N.; Knowles, E.; Larson, E.; Snow, R.; Moore, E.S. Does a Sway-Based Mobile Application Predict Future Falls in People With Parkinson Disease? Arch. Phys. Med. Rehabil. 2020, 101, 472–478. [Google Scholar] [CrossRef] [PubMed]
- An, S.H.; Lee, Y.; Lee, D.G.; Cho, K.H.; Lee, G.C.; Park, D.S. Discriminative and predictive validity of the short-form activities-specific balance confidence scale for predicting fall of stroke survivors. J. Phys. Ther. Sci. 2017, 29, 716–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dibble, L.E.; Lopez-Lennon, C.; Lake, W.; Hoffmeister, C.; Gappmaier, E. Utility of disease-specific measures and clinical balance tests in prediction of falls in persons with multiple sclerosis. J. Neurol. Phys. Ther. 2013, 37, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, C.P.; Miller, L.A.; Morrel, E.C.; Wang, W. Predictive Abilities of Balance Confidence and Fear of Falling Measures on Falls in Polio Survivors. Phys. Occup. Ther. Geriatr. 2019, 37, 16–31. [Google Scholar] [CrossRef]
- Lohnes, C.A.; Earhart, G.M. External validation of abbreviated versions of the activities-specific balance confidence scale in Parkinson’s disease. Mov. Disord. 2010, 25, 485–489. [Google Scholar] [CrossRef] [Green Version]
- Talley, K.M.C.; Wyman, J.F.; Gross, C.R. Psychometric Properties of the Activities-Specific Balance Confidence Scale and the Survey of Activities and Fear of Falling in Older Women. J. Am. Geriatr. Soc. 2008, 56, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Gervásio, F.M.; Santos, G.A.; Ribeiro, D.M.; Menezes, R.L. de Falls risk detection based on spatiotemporal parameters of three-dimensional gait analysis in healthy adult women from 50 to 70 years old. Fisioter. Pesqui. 2016, 23, 358–364. [Google Scholar] [CrossRef]
- Kwon, M.-S.; Kwon, Y.-R.; Park, Y.-S.; Kim, J.-W. Comparison of gait patterns in elderly fallers and non-fallers. Technol. Health Care 2018, 26, 427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silsupadol, P.; Teja, K.; Lugade, V. Reliability and validity of a smartphone-based assessment of gait parameters across walking speed and smartphone locations: Body, bag, belt, hand, and pocket. Gait Posture 2017, 58, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Kuntapun, J.; Silsupadol, P.; Kamnardsiri, T.; Lugade, V. Smartphone Monitoring of Gait and Balance During Irregular Surface Walking and Obstacle Crossing. Front. Sport. Act. Living 2020, 2, 190. [Google Scholar] [CrossRef] [PubMed]
- Amitrano, F.; Coccia, A.; Ricciardi, C.; Donisi, L.; Cesarelli, G.; Capodaglio, E.M.; D’Addio, G. Design and Validation of an E-Textile-Based Wearable Sock for Remote Gait and Postural Assessment. Sensors 2020, 20, 6691. [Google Scholar] [CrossRef]
- Renggli, D.; Graf, C.; Tachatos, N.; Singh, N.; Meboldt, M.; Taylor, W.R.; Stieglitz, L.; Schmid Daners, M. Wearable Inertial Measurement Units for Assessing Gait in Real-World Environments. Front. Physiol. 2020, 11, 90. [Google Scholar] [CrossRef]
- Chheng, C.; Wilson, D. Abnormal Gait Detection Using Wearable Hall-Effect Sensors. Sensors 2021, 21, 1206. [Google Scholar] [CrossRef] [PubMed]
- Nemati, E.; Suh, Y.S.; Motamed, B.; Sarrafzadeh, M. Gait velocity estimation for a smartwatch platform using Kalman filter peak recovery. In Proceedings of the 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN), San Francisco, CA, USA, 14–17 June 2016. [Google Scholar]
- Marques, A.; Almeida, S.; Carvalho, J.; Cruz, J.; Oliveira, A.; Jácome, C. Reliability, Validity, and Ability to Identify Fall Status of the Balance Evaluation Systems Test, Mini–Balance Evaluation Systems Test, and Brief–Balance Evaluation Systems Test in Older People Living in the Community. Arch. Phys. Med. Rehabil. 2016, 97, 2166–2173e1. [Google Scholar] [CrossRef]
Primary Outcome Measures of Gait | Technology | N | Main Finding | Fall-Related Data | Reference |
---|---|---|---|---|---|
Forces and moments passing through knee-ankle-foot orthoses | Load cell in the orthosis | 4 | Knee joint forces and moments) were composed of knee flexion moments and axial compression forces | None | [17] |
Knee extension moments while walking with an orthosis | Load transducer, motion capture system and force plates | 4 | Adding a dorsiflexion stop at the orthotic ankle decreased knee flexion moments | None | [18] |
Gait symmetry while using difference orthoses | Motion capture system | 7 | Powered orthosis affected gait symmetry in the base of support, swing time, stance phase percentage, and knee flexion during swing phase | None | [19] |
Kinematics and spatiotemporal parameters while walking with different orthoses | Motion capture system | 7 | The powered knee-ankle-foot orthosis reduced gait speed and step length and increased stance phase percentage, knee flexion, and hip hiking | None | [20] |
Kinematics and energy consumption while walking with an electromechanical orthosis | Motion capture system and force plates | 4 | Increased knee flexion in the swing phase with the orthosis | None | [21] |
Effect of an orthosis with drop lock vs. powered knee joints on gait speed and distance | Stop watch and distance measurement | 7 | Walking with the powered orthosis reduced walking speed and distance | None | [22] |
Timed Up-and-Go test, the Comfortable and the Fast Gait Speed tests, and 6-Minute Walk test | Stop watch | 30 | Test-retest reliability was established | None | [23] |
Kinematics and 6-Minute Walk test | Motion capture system | 18 | Walking speed was negatively correlated with the increased hip flexion | None | [24] |
Timed Up-and-Go test and 6-Minute Walk test | Stop watch | 81 | Higher score in the 6-min walk test reduced the risk of fall | Fall history and fear of falling | [11] |
Kinematics and kinetics while walking with dorsiflexion-restricting ankle-foot orthoses | Motion capture system and force plates | 16 | The orthosis increased gait speed and forward progression of the center of pressure in mid-stance. It reduced ankle dorsiflexion and knee flexion in mid- and terminal stance | Fear of falling | [25] |
Spatio-temporal parameters and symmetry indices | Motion capture system | 26 | Subjects who did not report falling indoors in the last 6 months had higher gait velocity and cadence, shorter double support stance and step durations, longer step length and better step length symmetry index. | Number of falls | [16] |
Ten-meter walk test and number of steps per day | Pedometer | 128 | Subjects with one or more falls in the preceding year had slower gait speed and higher fear of falling | Fall history and fear of falling | [26] |
Measure | Without Walking Aids (n = 13) | With Walking Aids (n = 37) | p | r |
---|---|---|---|---|
Quadriceps muscle strength (0–5) | 3.2 ± 1.3 | 1.3 ± 1.2 | 0.006 | −0.445 |
ABC score (0–100) | 94.5 ± 37.2 | 64.7 ± 34.5 | 0.013 | −0.352 |
TUG (s) | 17.8 ± 7.4 | 26.4 ± 12.9 | 0.007 | −0.392 |
Gait velocity (m/s) | 0.82 ± 0.22 | 0.56 ± 0.22 | 0.001 | −0.461 |
Cadence (steps/min) | 89.2 ± 14.1 | 74.4 ± 15.5 | 0.007 | −0.383 |
Base width of the weak limb (cm) | 8.9 ± 4.8 | 15.1 ± 6.8 | 0.009 | −0.396 |
Base width of the contralateral limb (cm) | 10.9 ± 5.0 | 15.9 ± 7.1 | 0.036 | −0.316 |
CV double support of the weak limb | 47.5 ± 41.2 | 18.4 ± 27.4 | 0.027 | −0.334 |
CV base width of the weak limb | 45.9 ± 34.1 | 22.7 ± 13.3 | 0.017 | −0.359 |
CV base width of the contralateral limb | 44.2 ± 27.6 | 28.2 ± 21.5 | 0.030 | −0.328 |
Measure | ABC Score | Falls in the Last Year |
---|---|---|
TUG (s) | −0.604, <0.001 | 0.491, 0.001 |
Gait velocity (m/s) | 0.552, <0.001 | −0.400, 0.007 |
Gait cadence (steps/min) | 0.483, <0.001 | −0.405, 0.006 |
Swing duration symmetry index | - | 0.433, 0.003 |
CV Step length of the weak limb | - | 0.442, 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ofran, Y.; Schwartz, I.; Shabat, S.; Seyres, M.; Karniel, N.; Portnoy, S. Falls in Post-Polio Patients: Prevalence and Risk Factors. Biology 2021, 10, 1110. https://doi.org/10.3390/biology10111110
Ofran Y, Schwartz I, Shabat S, Seyres M, Karniel N, Portnoy S. Falls in Post-Polio Patients: Prevalence and Risk Factors. Biology. 2021; 10(11):1110. https://doi.org/10.3390/biology10111110
Chicago/Turabian StyleOfran, Yonah, Isabella Schwartz, Sheer Shabat, Martin Seyres, Naama Karniel, and Sigal Portnoy. 2021. "Falls in Post-Polio Patients: Prevalence and Risk Factors" Biology 10, no. 11: 1110. https://doi.org/10.3390/biology10111110
APA StyleOfran, Y., Schwartz, I., Shabat, S., Seyres, M., Karniel, N., & Portnoy, S. (2021). Falls in Post-Polio Patients: Prevalence and Risk Factors. Biology, 10(11), 1110. https://doi.org/10.3390/biology10111110