Damping Properties of Flax/Carbon Hybrid Epoxy/Fibre-Reinforced Composites for Automotive Semi-Structural Applications
Abstract
:1. Introduction
2. Materials and Manufacturing
2.1. Materials
2.2. Composite Manufacture
2.3. Mechanical Testing
3. Results and Discussions
3.1. Tensile Properties
3.2. Damage Characterisation
3.3. Damping Properties
4. Conclusions
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
References
- Masuelli, M.A. Introduction of fibre-reinforced polymers- polymers and composites: Concepts, properties and processes. In Fiber Reinforced Polymers-The Technology Applied for Concrete Repair; IntechOpen: London, UK, 2013. [Google Scholar]
- Njuguna, J. Lightweight Composite Structures in Transport: Design, Manufacturing, Analysis and Performance; Elsevier Woodhead Publishing: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Rueppel, M.; Rion, J.; Dransfeld, C.; Fischer, C.; Masania, K. Damping of carbon fibre and flax fibre angle-ply composite laminates. Compos. Sci. Technol. 2017, 146, 1–9. [Google Scholar] [CrossRef]
- Le Guen, M.J.; Newman, R.H.; Fernyhough, A.; Emms, G.W.; Staiger, M.P. The damping- modulus relationship in flax/carbon fibre hybrid composites. Compos. B 2016, 89, 27–33. [Google Scholar] [CrossRef]
- Vanwalleghem, J.; de Baere, I.; Huysman, S.; Lapeire, L.; Verbeken, K.; Nila, A.; Vanlanduit, S.; Loccufier, M.; van Paepegem, W. Effective use of transient vibration damping results for non-destructive measurements of fibre-matrix adhesion of fibre-reinforced flax and carbon composites. Polym. Test. 2016, 55, 269–277. [Google Scholar] [CrossRef] [Green Version]
- Dhakal, H.; Zhang, Z.; Guthrie, R.; MacMullen, J.; Bennett, N. Development of flax/carbon fibre hybrid composites for enhanced properties. Carbohydr. Polym. 2013, 96, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flynn, J.; Amiri, A.; Ulven, C. Hybridized carbon and flax fiber composites for tailored performance. Mater. Des. 2016, 102, 21–29. [Google Scholar] [CrossRef]
- Bos, H.; van Den Oever, M.J.; Peters, O. Tensile and compressive properties of flax fibres for natural fibre reinforced composites. J. Mater. Sci. 2002, 37, 1683–1692. [Google Scholar] [CrossRef]
- Berthelot, J.; Sefrani, Y. Damping analysis of unidirectional glass and Kevlar fibre composites. Compos. Sci. Technol. 2004, 64, 1261–1278. [Google Scholar] [CrossRef]
- Mahmoudi, S.; Kervoelen, A.; Robin, G.; Duigou, L.; Daya, E.; Cadou, J. Experimental and numerical investigation of the damping of flax/epoxy composite plates. Compos. Struct. 2019, 208, 426–433. [Google Scholar] [CrossRef]
- Cheour, K.; Assarar, M.; Scida, D.; Ayad, R.; Gong, X. Effect of stacking sequences on the mechanical and damping properties of flax glass fiber hybrid. J. Renew. Mater. 2019, 7, 877–889. [Google Scholar] [CrossRef]
- Cheung, H.; Ho, M.; Lau, K.; Cardona, F.; Hui, D. Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Compos. B 2009, 40, 655–663. [Google Scholar] [CrossRef]
- Nabi Saheb, D.; Jog, J.P. Natural fiber polymer composites: A review. Adv. Polym. Technol. 1999, 18, 351–363. [Google Scholar] [CrossRef]
- Faruk, O.; Sain, M. Biofiber Reinforcements in Composite Materials; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Charlet, K.; Jernot, J.; Eve, S.; Gomina, M.; Bréard, J. Multi-scale morphological characterisation of flax: From the stem to the fibrils. Carbohydr. Polym. 2010, 82, 54–61. [Google Scholar] [CrossRef]
- Le Duigou, A.; Davies, P.; Baley, C. Environmental impact analysis of the production of flax fibres to be used as composite material reinforcement. J. Biobased Mater. Bioenergy 2011, 5, 153–165. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, H.; Njuguna, J.; Abhyankar, H. Recent development of flax fibres and their reinforced composites based on different polymeric matrices. Materials 2013, 6, 5171–5198. [Google Scholar] [CrossRef]
- Kalia, S.; Dufresne, A.; Cherian, B.M.; Kaith, B.S.; Avérous, L.; Njuguna, J.; Nassiopoulos, E. Cellulose-Based Bio- and Nanocomposites: A Review. Int. J. Polym. Sci. 2011, 2011, 207–231. [Google Scholar] [CrossRef]
- Ameur, B.M.; El Mahi, A.; Rebiere, J.; Abdennadher, M.; Haddar, M. Damping analysis of unidirectional carbon/flax fiber hybrid composites. Int. J. Appl. Mech. 2018, 10, 1850050. [Google Scholar] [CrossRef]
- Assarar, M.; Zouari, W.; Ayad, R.; Kebir, H.; Berthelot, J. Improving the damping properties of carbon fibre reinforced composites by interleaving flax and viscoelastic layers. Compos. B. 2018, 152, 248–255. [Google Scholar] [CrossRef]
- Assarar, M.; Zouari, W.; Sabhi, H.; Ayad, R.; Berthelot, J. Evaluation of the damping of hybrid carbon-flax reinforced composites. Compos. Struct. 2015, 132, 148–154. [Google Scholar] [CrossRef]
- Van de Weyenberg, I.; Ivens, J.; de Coster, A.; Kino, B.; Baetens, E.; Verpoest, I. Influence of processing and chemical treatment of flax fibres on their composites. Compos. Sci. Technol. 2003, 63, 1241–1246. [Google Scholar] [CrossRef]
- El-Hafidi, A.; Gning, P.; Piezel, B.; Belaïd, M.; Fontaine, S. Determination of dynamic properties of flax fibres reinforced laminate using vibration measurements. Polym. Test. 2017, 57, 219–225. [Google Scholar] [CrossRef]
- Avril, C.; Bailly, P.A.; Njuguna, J.; Nassiopoulos, E.; Larminat, D.A. Development of flax-reinforced bio-composites for high-load bearing automotive parts. In Proceedings of the European Conference on Composite Materials (ECCM), Venice, Italy, 24–28 June 2012. [Google Scholar]
- Fan, J.; Nassiopoulos, E.; Brighton, J.; de Larminat, A.; Njuguna, J. New structural biocomposites for car applications. In Proceedings of the Anonymous Society of Plastics Engineers—EUROTEC 2011 Conference, Barcelona, Spain, 14–15 November 2011. [Google Scholar]
- Akampumuza, O.; Wambua, P.M.; Ahmed, A.; Li, W.; Qin, X.H. Review of the applications of biocomposites in the automotive industry. Polym. Compos. 2017, 38, 2553–2569. [Google Scholar] [CrossRef]
- Vanwalleghem, J. Study of the Damping and Vibration Behaviour of Flax-Carbon Composite Bicycle Racing Frames. Master’s Thesis, Ghent University, Belgium, May 2010. [Google Scholar]
- La Raquette de Tennis en Composite de lin—Le lin ct Nature. Available online: https://www.lelin-cotenature.fr/FR/Une-raquette-de-tennis-legere-et-confortable-46.html (accessed on 4 April 2020).
- ASTM International. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials; ASTM D3039; ASTM International: West Conshohocken, PA, USA, 2008. [Google Scholar]
- ASTM International. Standard Test Method for Measuring Vibration-Damping Properties of Materials; ASTM E756; ASTM International: West Conshohocken, PA, USA, 2010. [Google Scholar]
- Gelfuso, M.V.; Thomazini, D.; de Souza, J.C.; Lima, J.; de Juliano, J. Vibrational analysis of coconut fiber-PP composites. Mater. Res. 2014, 17, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, J.R.; Njuguna, J.; Morishima, R.; Perera, M.; Cheung, C. Free Vibration analysis of a three-layered sandwich beam using theory and experiment. In Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, RI, USA, 1–4 May 2006. [Google Scholar]
- Banerjee, J.R.; Cheung, C.W.; Morishima, R.; Perera, M.; Njuguna, J. Free vibration of a three-layered sandwich beam using the dynamic stiffness method and experiment. Int. J. Solids Struct. 2007, 44, 7543–7563. [Google Scholar] [CrossRef] [Green Version]
- Nassiopoulos, E.; Njuguna, J. Thermo-mechanical performance of poly (lactic acid)/flax fibre-reinforced biocomposites. Mater. Des. 2015, 66, 473–485. [Google Scholar] [CrossRef]
- Ravandi, M.; Kureemun, U.; Banu, M.; Teo, W.S.; Tong, L.; Tay, T.E.; Lee, H.P. Effect of interlayer carbon fiber dispersion on the low-velocity impact performance of woven flax-carbon hybrid composites. J. Compos. Mater. 2019, 53, 1717–1734. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Ma, H.; Yu, T. Tensile and interfacial properties of unidirectional flax/glass fiber reinforced hybrid composites. Compos. Sci. Technol. 2013, 88, 172–177. [Google Scholar] [CrossRef]
- Li, Y.; Cai, S.; Huang, X. Multi-scaled enhancement of damping property for carbon fiber reinforced composites. Compos. Sci. Technol. 2017, 143, 89–97. [Google Scholar] [CrossRef]
- Prabhakaran, S.; Krishnaraj, V.; Zitoune, R. Sound and vibration damping properties of flax fiber reinforced composites. Procedia Eng. 2014, 97, 573–581. [Google Scholar] [CrossRef] [Green Version]
- Saidane, E.H.; Scida, D.; Assarar, M.; Sabhi, H.; Ayad, R. Hybridisation effect on diffusion kinetic and tensile mechanical behaviour of epoxy based flax glass composites. Compos. A 2016, 87, 153–160. [Google Scholar] [CrossRef]
- Hadi, A.; Ashton, J. Measurement and theoretical modelling of the damping properties of a uni-directional glass/epoxy composite. Compos. Struct. 1996, 34, 381–385. [Google Scholar] [CrossRef]
- Njuguna, J.; Su, H.; Cheung, C.W.; Banerjee, J.R. The influence of ply orientation on the free vibration of composite beams. In Proceedings of the UNSW 2002 Conference, Sydney, Australia, 21–25 July 2002; pp. 307–314. [Google Scholar]
Laminates | Stacking Sequence C: Carbon Fibre F: Flax | Ply Number Ratio (Carbon/Flax) | Weight Fraction (%) Carbon/Flax/Epoxy | Flax Fibre Content (%) | Thickness (mm) |
---|---|---|---|---|---|
[C/F2/]s | C F F F F C | (4/4) | 30/30/40 | 30 | 2.65 |
[C/F2/C]s | C F F C C F F C | (4/4) | 30/30/40 | 30 | 3.30 |
[F2/C2]s | F F C C C C F F | (4/4) | 30/30/40 | 30 | 2.80 |
[F/C3]s | F C C C C C C F | (6/2) | 45/15/40 | 15 | 2.26 |
Carbon | C C C C C C C C | (8/0) | 60/0/40 | 0 | 1.80 |
Flax | F F F F F F F F | (0/8) | 0/60/40 | 60 | 3.55 |
Specimen | Average Young’s Modulus (GPa), Standard Deviation (%) | Ultimate Tensile Strength (MPa), Standard Deviation (%) | Damping Ratio from Bandwidth Method (%), Standard Deviation (%) | Damping Ratio from Time Domain (%), Standard Deviation (%) |
---|---|---|---|---|
[C/F2/]s | 11.833 (9.06) | 173.75 (5.80) | 1.0544 (27.81) | 0.2359 (12.18) |
[C/F2/C]s | 11.735 (7.82) | 224.40 (13.33) | 1.1087 (25.89) | 0.2460 (18.36) |
[F2/C2]s | 13.946 (2.51) | 297.41 (4.94) | 1.6709 (28.57) | 0.3939 (10.06) |
[F/C3]s | 18.234 (3.75) | 358.04 (3.58) | 0.9779 (28.61) | 0.3140 (8.33) |
Carbon Fibre | 25.353 (12.91) | 503.27 (10.37) | 0.8703 (26.49) | 0.203 (42.34) |
Flax | 5.549 (3.82) | 101.66 (1.61) | 1.9180 (31.57) | 0.5565 (5.66) |
Specimen | Test Number | Mode of Failure * |
---|---|---|
[C/F2/]s | A | LAB |
B | LAT | |
C | AAT | |
D | LIT | |
E | LIT | |
[C/F2/C]s | A | LMV |
B | LMV | |
C | LMV | |
D | LGM | |
E | LGM | |
[F2/C2]s | A | LAT |
B | LMV | |
C | LAB | |
D | DMV | |
E | DAT | |
[F/C3]s | A | AAT |
B | AAB | |
C | AAT | |
D | AAT | |
E | DAB | |
Carbon Fibre | A | LAT |
B | LAT | |
C | LAT | |
D | LAT | |
E | LMV | |
Flax | A | LAT |
B | LIB | |
C | LIT | |
D | LIB | |
E | LIB |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fairlie, G.; Njuguna, J. Damping Properties of Flax/Carbon Hybrid Epoxy/Fibre-Reinforced Composites for Automotive Semi-Structural Applications. Fibers 2020, 8, 64. https://doi.org/10.3390/fib8100064
Fairlie G, Njuguna J. Damping Properties of Flax/Carbon Hybrid Epoxy/Fibre-Reinforced Composites for Automotive Semi-Structural Applications. Fibers. 2020; 8(10):64. https://doi.org/10.3390/fib8100064
Chicago/Turabian StyleFairlie, George, and James Njuguna. 2020. "Damping Properties of Flax/Carbon Hybrid Epoxy/Fibre-Reinforced Composites for Automotive Semi-Structural Applications" Fibers 8, no. 10: 64. https://doi.org/10.3390/fib8100064
APA StyleFairlie, G., & Njuguna, J. (2020). Damping Properties of Flax/Carbon Hybrid Epoxy/Fibre-Reinforced Composites for Automotive Semi-Structural Applications. Fibers, 8(10), 64. https://doi.org/10.3390/fib8100064