One-Step Potentiostatic Deposition of Micro-Particles on Al Alloy as Superhydrophobic Surface for Enhanced Corrosion Resistance by Reducing Interfacial Interactions
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation
2.3. Characterization
3. Results and Discussion
3.1. Fabrication of Superhydrophobic Surfaces
3.2. Anticorrosion Behaviors of as-Prepared Al Alloys
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, T.; Luo, H.Y.; Su, Y.Q.; Xu, P.W.; Luo, J.; Li, S.J. Effect of precipitate embryo induced by strain on natural aging and corrosion behavior of 2024 Al alloy. Coatings 2018, 8, 92. [Google Scholar] [CrossRef]
- Massardier, V.; Epicier, T.; Merle, P. Correlation between the microstructural evolution of a 6061 aluminium alloy and the evolution of its thermoelectric power. Acta Mater. 2017, 48, 2911–2924. [Google Scholar] [CrossRef]
- Choi, I.K.; Cho, S.H.; Kim, S.J.; Jo, Y.S.; Kim, S.H. Improved corrosion resistance of 5xxx aluminum alloy by homogenization heat treatment. Coatings 2018, 8, 39. [Google Scholar] [CrossRef]
- Katkar, V.A.; Gunasekaran, G. Galvanic corrosion of AA6061 with other ship building materials in seawater. Corrosion 2015, 72, 400–412. [Google Scholar] [CrossRef]
- Chen, M.D.; Zhang, F.; Liu, Z.Y.; Yang, C.H.; Ding, G.Q.; Li, X.G. Galvanic series of metals and effect of alloy compositions on corrosion resistance in Sanya seawater. Acta Metall. Sin. 2018, 54, 1311–1321. [Google Scholar]
- Jedrusik, M.; Debowska, A.; Kopia, A. Characterisationof oxide coatings produced on aluminum alloys by MAO and chemical methods. Arch. Metall. Mater. 2018, 63, 125–128. [Google Scholar]
- Kwolek, P.; Krupa, K.; Obloj, A.; Kocurek, P.; Wierzbinska, M.; Sieniawski, J. Tribological properties of the oxide coatings produced onto 6061-T6 aluminum alloy in the hard anodizing process. J. Mater. Eng. Perform. 2018, 27, 3268–3275. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Huang, J.M.; Claypool, J.B.; Castano, C.E.; O’Keefe, M.J. Structure and corrosion behavior of sputter deposited cerium oxide based coatings with various thickness on Al 2024-T3 alloy substrates. Appl. Surf. Sci. 2015, 355, 805–813. [Google Scholar] [CrossRef]
- Serizawa, A.; Oda, T.; Watanabe, K.; Mori, K.; Yokomizo, T.; Ishizaki, T. Formation of anticorrosive film for suppressing pitting corrosion on Al-Mg-Si alloy by steam coating. Coatings 2018, 8, 23. [Google Scholar] [CrossRef]
- Lin, J.; Battocchi, D.; Bierwagen, G.P. Inhibitors for prolonging corrosion protection of Mg-rich primer on al alloy 2024-T3. J. Coat. Technol. Res. 2017, 14, 497–504. [Google Scholar] [CrossRef]
- Hikku, G.S.; Jeyasubramanian, K.; Venugopal, A.; Ghosh, R. Corrosion resistance behaviour of graphene/polyvinyl alcohol nanocomposite coating for aluminium-2219 alloy. J. Alloy. Compd. 2017, 716, 259–269. [Google Scholar] [CrossRef]
- Zhu, Y.; Ji, Q.Q.; Jin, M. Effects of non-isothermal aging process on mechanical properties and corrosion resistance of Al-Mg-Si aluminum alloy. Mater. Corros. 2018, 69, 634–640. [Google Scholar] [CrossRef]
- Lin, Y.C.; Jiang, Y.Q.; Xia, Y.C.; Zhang, X.C.; Zhou, H.M.; Deng, J. Effects of creep-aging processing on the corrosion resistance and mechanical properties of an Al-Cu-Mg alloy. Mater. Sci. Eng. A 2014, 605, 192–202. [Google Scholar] [CrossRef]
- Seikh, A.H.; Baig, M.; Ammar, H.R.; Alam, M.A. The influence of transition metals addition on the corrosion resistance of nanocrystalline Al alloys produced by mechanical alloying. Metals 2016, 6, 140. [Google Scholar] [CrossRef]
- Ravnikar, D.; Rajamure, R.S.; Trdan, U.; Dahotre, N.B.; Grum, J. Electrochemical and DFT studies of laser-alloyed TiB2/TiC/Al coatings on aluminium alloy. Corros. Sci. 2018, 136, 18–27. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Y.; Zhang, J.X.; Gu, X.H.; Qin, P.; Dai, N.W.; Li, X.P.; Kruth, J.P.; Zhang, L.C. Improved corrosion behavior of ultrafine-grained eutectic Al-12Si alloy produced by selective laser melting. Mater. Des. 2018, 146, 239–248. [Google Scholar] [CrossRef]
- Kaseem, M.; Yong, H.L.; Ko, Y.G. Incorporation of MoO2, and ZrO2, particles into the oxide film formed on 7075 Al alloy via micro-arc oxidation. Mater. Lett. 2016, 182, 260–263. [Google Scholar] [CrossRef]
- Ji, S.P.; Weng, Y.C.; Wu, Z.Z.; Ma, Z.Y.; Tian, X.B.; Fu, R.K.Y.; Lin, H.; Wu, G.S.; Chu, P.K.; Pan, F. Excellent corrosion resistance of P and Fe modified micro-arc oxidation coating on Al alloy. J. Alloy. Compd. 2017, 710, 452–459. [Google Scholar] [CrossRef]
- Navaser, M.; Atapour, M. Effect of friction stir processing on pitting corrosion and intergranular attack of 7075 aluminum alloy. J. Mater. Sci. Technol. 2017, 2, 155–165. [Google Scholar] [CrossRef]
- Li, N.; Li, W.Y.; Xu, Y.X.; Yang, X.W.; Alexopoulos, N.D. Influence of rotation speed on mechanical properties and corrosion sensitivity of friction stir welded AA2024-T3 joints. Mater. Corros. 2018, 69, 1016–1024. [Google Scholar] [CrossRef]
- Sebastian, D.; Yao, C.W.; Lian, I. Mechanical durability of engineered superhydrophobic surfaces for anti-corrosion. Coatings 2018, 8, 162. [Google Scholar] [CrossRef]
- Li, X.W.; Zhang, Q.X.; Guo, Z.; Shi, T.; Yu, J.G.; Tang, M.K.; Huang, X.J. Fabrication of superhydrophobic surface with improved corrosion inhibition on 6061 aluminum alloy substrate. Appl. Surf. Sci. 2015, 342, 76–83. [Google Scholar] [CrossRef]
- Bayer, I.S. On the durability and wear resistance of transparent superhydrophobic coatings. Coatings 2017, 7, 12. [Google Scholar] [CrossRef]
- Wang, G.Y.; Liu, S.; Wei, S.F.; Liu, Y.; Lian, J.S.; Jiang, Q. Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity. Sci. Rep. 2016, 6, 20933. [Google Scholar] [CrossRef] [PubMed]
- Li, X.W.; Liu, C.; Shi, T.; Lei, Y.J.; Zhang, Q.X.; Zhou, C.; Huang, X.J. Preparation of multifunctional Al alloys substrates based on micro/nanostructures and surface modification. Mater. Des. 2017, 122, 21–30. [Google Scholar] [CrossRef]
- Lee, J.W.; Hwang, W. Exploiting the silicon content of aluminum alloys to create a superhydrophobic surface using the sol-gel process. Mater. Lett. 2016, 168, 83–85. [Google Scholar] [CrossRef]
- Ishizaki, T.; Kumagai, S.; Tsunakawa, M.; Furukawa, T.; Nakamura, K. Ultrafast fabrication of superhydrophobic surfaces on engineering light metals by single-step immersion process. Mater. Lett. 2017, 193, 42–45. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.H.; Li, Y.D.; Yu, M.; Li, S.M.; Xue, B. A facile approach to superhydrophobic LiAl-layered double hydroxide film on Al-Li alloy substrate. J. Coat. Technol. Res. 2015, 12, 595–601. [Google Scholar] [CrossRef]
- Li, L.J.; Huang, T.; Lei, J.L.; He, J.X.; Qu, L.F.; Huang, P.L.; Zhou, W.; Li, N.B.; Pan, F.S. Robust biomimetic-structural superhydrophobic surface on aluminum alloy. ACS Appl. Mater. Interfaces 2014, 7, 1449–1457. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.H.; Jim, B.Y.; Wang, B.; Fu, Y.C.; Zhan, X.L.; Chen, F.Q. Fabrication of a highly stable superhydrophobic surface with dual-scale structure and its antifrosting properties. Ind. Eng. Chem. Res. 2017, 56, 2754–2763. [Google Scholar] [CrossRef]
- Belsanti, L.; Ogihara, H.; Mahanty, S.; Luciano, G. Electrochemical behaviour of superhydrophobic coating fabricated by spraying a carbon nanotube suspension. Bull. Mater. Sci. 2015, 38, 579–582. [Google Scholar] [CrossRef]
- Tang, M.K.; Huang, X.J.; Guo, Z.; Yu, J.G.; Li, X.W.; Zhang, Q.X. Fabrication of robust and stable superhydrophobic surface by a convenient, low-cost and efficient laser marking approach. Colloids Surf. A 2015, 484, 449–456. [Google Scholar] [CrossRef]
- Li, P.P.; Chen, X.H.; Yang, G.B.; Yu, L.G.; Zhang, P.Y. Fabrication and characterization of stable superhydrophobic surface with good friction-reducing performance on Al foil. Appl. Surf. Sci. 2014, 300, 184–190. [Google Scholar] [CrossRef]
- Le, Y.; Dale, B.; Akisik, F.; Koons, K.; Lin, C. Preparation and anti-icing behavior of superhydrophobic surfaces on aluminum alloy substrates. Langmuir 2013, 29, 8482–8491. [Google Scholar]
- Li, J.Y.; Lu, S.X.; Xu, W.G.; He, G.; Yu, T.L.; Cheng, Y.Y.; Wu, B. Fabrication of stable Ni-Al4Ni3-Al2O3superhydrophobic surface on aluminum substrate for self-cleaning, anti-corrosive and catalytic performance. J. Mater. Sci. 2018, 53, 1097–1109. [Google Scholar] [CrossRef]
- Ou, J.; Hu, W.; Xue, M.; Wang, F.; Li, W. One-step solution immersion process to fabricate superhydrophobic surfaces on light alloys. ACS Appl. Mater. Interfaces 2013, 5, 9867–9871. [Google Scholar] [CrossRef] [PubMed]
- Saleema, N.; Sarkar, D.K.; Gallant, D.; Paynter, R.W.; Chen, X.G. Chemical nature of superhydrophobic aluminum alloy surfaces produced via a one-step process using fluoroalkyl-silane in a base medium. ACS Appl. Mater. Interfaces 2011, 3, 4775–4781. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.W.; Li, S.; Cheng, Z.L.; Xu, G.Y.; Quan, X.J.; Zhou, Y.T. Facile fabrication of super-hydrophobic FAS modified electroless Ni-P coating meshes for rapid water-oil separation. Colloids Surf. A 2018, 540, 224–232. [Google Scholar] [CrossRef]
- Lee, C.; Nam, Y.; Lastakowski, H.; Hur, J.I.; Shin, S.; Biance, A.L.; Pirat, C.; Kim, C.J.; Ybert, C. Two types of cassie-to-wenzel wetting transitions on superhydrophobic surfaces during drop impact. Soft Matter 2015, 11, 4592–4599. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, H. Preparation and anti-icing property of a porous superhydrophobic magnesium oxide coating with low sliding angle. Adv. Mater. Res. 2012, 557–559, 1884–1887. [Google Scholar] [CrossRef]
- Shi, T.; Kong, J.Y.; Wang, X.D.; Li, X.W. Preparation of multifunctional Al-Mg alloy surface with hierarchical micro/nanostructures by selective chemical etching processes. Appl. Surf. Sci. 2016, 389, 335–343. [Google Scholar] [CrossRef]
- Li, X.W.; Shi, T.; Liu, C.; Zhang, Q.X.; Huang, X.J. Multifunctional substrate of Al alloy based on general hierarchical micro/nanostructures: Superamphiphobicityand enhanced corrosion resistance. Sci. Rep. 2016, 6, 35940. [Google Scholar] [CrossRef] [PubMed]
- Min, R.; Li, W.; Wang, B.; Luo, Q.; Ma, F.M.; Yu, Z.L. Optimal conditions for the preparation of superhydrophobic surfaces on Al substrates using a simple etching approach. Appl. Surf. Sci. 2012, 258, 7031–7035. [Google Scholar]
Element | Mg | Fe | Mn | Zn | Cu | Si | Cr | Al |
---|---|---|---|---|---|---|---|---|
wt.% | 1.5 | 0.7 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 97.0 |
Samples | Rs (Ω·cm2) | Rct (Ω·cm2) | Rc (Ω·cm2) | Rt (Ω·cm2) | W (Ω·cm2) |
---|---|---|---|---|---|
Substrate | 12 | 2690 | – | 2690 | – |
D-sample | 9 | 2416 | – | 2416 | – |
M-D-sample | 10 | 7105 | 437 | 7542 | 0.0028 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, T.; Li, X.; Zhang, Q.; Li, B. One-Step Potentiostatic Deposition of Micro-Particles on Al Alloy as Superhydrophobic Surface for Enhanced Corrosion Resistance by Reducing Interfacial Interactions. Coatings 2018, 8, 392. https://doi.org/10.3390/coatings8110392
Shi T, Li X, Zhang Q, Li B. One-Step Potentiostatic Deposition of Micro-Particles on Al Alloy as Superhydrophobic Surface for Enhanced Corrosion Resistance by Reducing Interfacial Interactions. Coatings. 2018; 8(11):392. https://doi.org/10.3390/coatings8110392
Chicago/Turabian StyleShi, Tian, Xuewu Li, Qiaoxin Zhang, and Ben Li. 2018. "One-Step Potentiostatic Deposition of Micro-Particles on Al Alloy as Superhydrophobic Surface for Enhanced Corrosion Resistance by Reducing Interfacial Interactions" Coatings 8, no. 11: 392. https://doi.org/10.3390/coatings8110392
APA StyleShi, T., Li, X., Zhang, Q., & Li, B. (2018). One-Step Potentiostatic Deposition of Micro-Particles on Al Alloy as Superhydrophobic Surface for Enhanced Corrosion Resistance by Reducing Interfacial Interactions. Coatings, 8(11), 392. https://doi.org/10.3390/coatings8110392