Abstract
The present work investigates the effect of phosphorous-acid-induced pH variation on the electrodeposition of Ni–P coatings and examines how changes in electrolyte composition influence current efficiency, deposition behaviour, microstructure, optical properties, tribological response and wettability. In addition, the study assesses the potential of a post-deposition surface modification using stearic acid to enhance the hydrophobic character of the coatings. Ni and Ni–P layers were electrodeposited on 316 L stainless steel using electrolytes containing 0–40 g/L of H3PO3, resulting in progressively lower bath pH and significant changes in deposition kinetics. The introduction of H3PO3 caused a sharp reduction in cathodic current efficiency and deposition rate, producing ultrathin Ni–P films with 20–24 at.% P. XRD and SEM analyses showed a transition from highly crystalline Ni to amorphous, nodular Ni–P structures. Tribological tests revealed a pronounced improvement in sliding performance for all Ni–P coatings compared to pure Ni, with sample S2 (5 g/L of H3PO3) exhibiting the lowest and most stable friction coefficient (~0.30). Wettability studies indicated that all as-deposited Ni–P surfaces were weakly hydrophobic, with surface energies dominated by the dispersive component. A stearic acid post-treatment produced a measurable increase in the water contact angle, indicating successful surface functionalization of the coatings. Overall, this study provides a comprehensive assessment of how phosphorous acid concentration governs the functional behaviour of electrodeposited Ni–P coatings.