Drilling Defects and Process Optimization in Carbon Fiber-Reinforced Polymer Composites: A Review
Abstract
1. Introduction
2. Drilling Defect Types and Formation Mechanism
2.1. Delamination
2.2. Burrs
2.3. Tearing
2.4. Summary
3. Process Optimization Methods for Drilling Defect
3.1. Cutting Parameter Optimization
3.2. Tool Optimization
3.2.1. Tool Geometry
3.2.2. Tool Coating
3.2.3. Summary
3.3. Optimization of the Drilling Environment
3.3.1. Cryogenic Cooling Technology
3.3.2. Minimum Quantity Lubrication
3.3.3. Summary
3.4. Process Strategy Optimization
3.4.1. Pilot Hole
3.4.2. Support Plate
3.4.3. Variable Feed Rate
3.4.4. Summary
3.5. Advanced Drilling Technologies
3.5.1. Ultrasonic Vibration-Assisted Drilling
3.5.2. Orbital Drilling
3.5.3. Other Technologies
3.5.4. Summary
4. Conclusions and Future Perspectives
- Based on current research, future efforts should focus on establishing an intelligent system for high-quality CFRP drilling. This entails developing real-time, in situ intelligent monitoring to dynamically quantify defect formation, alongside creating physics-informed, data-driven models for high-fidelity process simulation and optimization to reveal underlying material removal mechanisms. Furthermore, establishing standardized, quantitative correlations between defect characteristics and component service performance is crucial for informing industrial quality standards. Ultimately, advancing eco-friendly drilling technologies through novel green cooling/lubrication media and energy-efficient processes, supported by systematic life-cycle assessment, will be key to achieving sustainable manufacturing.
- The anisotropy, heterogeneity, low interlaminar strength, and poor thermal conductivity of CFRP collectively lead to its complex cutting mechanism, poor surface quality, and high susceptibility to drilling damage. The fiber cutting angle, as a key geometric parameter, significantly influences chip separation and the formation of defects such as delamination, burrs, and tearing.
- While widely used due to their simplicity and ease of measurement, current one- and two-dimensional delamination factors only provide static, two-dimensional characterization of damage. Existing systems struggle to describe the dynamic initiation and evolution of damage—particularly complex forms like tearing—and lack the ability to quantitatively correlate defect morphology with component service performance (e.g., fatigue strength, joint reliability). Therefore, developing an intelligent evaluation framework that integrates dynamic monitoring, multi-dimensional characterization, and performance prediction remains a critical and urgent challenge.
- The general principle of high rotational speed and low feed rate helps reduce cutting forces and thermal load. Variable feed strategies, specially designed tool geometries (e.g., step drills, dagger drills), and high-performance coatings such as diamond/DLC effectively suppress delamination and burrs by optimizing force distribution, improving chip evacuation, and reducing wear. Future optimization must shift from single-parameter adjustment toward multi-objective optimization based on digital twins of the machining process.
- Cryogenic cooling (LN2/LCO2) significantly lowers the cutting zone temperature, mitigating damage caused by resin thermal softening. Minimum Quantity Lubrication (MQL) provides effective lubrication and cooling while avoiding moisture ingress. As passive suppression strategies, pilot holes and backing plates eliminate the extrusion effect of the chisel edge and enhance exit support stiffness, respectively. Exploring eco-friendly coolants and developing adaptive, intelligent auxiliary systems present key opportunities for enhancing process sustainability and stability.
- Ultrasonic Vibration-Assisted Drilling (UVAD) reduces average thrust force by 30%–50% through intermittent cutting, significantly improving hole wall quality. Orbital Drilling (OD) transforms concentrated loads into distributed loads, fundamentally suppressing exit delamination. Technologies such as Tilting Helical Milling (THM), Abrasive Waterjet Drilling (AWJD), and Laser-Assisted Drilling (LAD) offer low-damage solutions for specific scenarios. These technologies are advancing the drilling paradigm from material removal toward controlled manufacturing.
- To date, most research on CFRP drilling damage formation still relies on traditional experimental and simulation methods. A systematic explanation of the damage formation mechanism has yet to be established. Developing accurate and reliable thermomechanical constitutive models for fiber-reinforced composites could serve as an alternative pathway to reveal the complex micro-scale drilling mechanisms in CFRP. This is poised to become a frontier direction for future research on CFRP cutting mechanisms.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, A.; Zillur Rahman, M.; Ou, Y.; Liu, S.; Mobasher, B.; Guo, S.; Zhu, D. A Review on the Tensile Behavior of Fiber-Reinforced Polymer Composites under Varying Strain Rates and Temperatures. Constr. Build. Mater. 2021, 294, 123565. [Google Scholar] [CrossRef]
- Zadafiya, K.; Bandhu, D.; Kumari, S.; Chatterjee, S.; Abhishek, K. Recent Trends in Drilling of Carbon Fiber Reinforced Polymers (CFRPs): A State-of-the-Art Review. J. Manuf. Process. 2021, 69, 47–68. [Google Scholar] [CrossRef]
- Abrão, A.M.; Faria, P.E.; Rubio, J.C.C.; Reis, P.; Davim, J.P. Drilling of Fiber Reinforced Plastics: A Review. J. Mater. Process. Technol. 2007, 186, 1–7. [Google Scholar] [CrossRef]
- Soutis, C. Carbon Fiber Reinforced Plastics in Aircraft Construction. Mater. Sci. Eng. A 2005, 412, 171–176. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.J.; Tao, J.P. Investigation on Thrust in Vibration Drilling of Fiber-Reinforced Plastics. J. Mater. Process. Technol. 2004, 148, 239–244. [Google Scholar] [CrossRef]
- Geier, N.; Davim, J.P.; Szalay, T. Advanced Cutting Tools and Technologies for Drilling Carbon Fibre Reinforced Polymer (CFRP) Composites: A Review. Compos. Part A Appl. Sci. Manuf. 2019, 125, 105552. [Google Scholar] [CrossRef]
- Zhu, W.; Fu, H.; Li, F.; Ji, X.; Li, Y.; Bai, F. Optimization of CFRP Drilling Process: A Review. Int. J. Adv. Manuf. Technol. 2022, 123, 1403–1432. [Google Scholar] [CrossRef]
- Melentiev, R.; Priarone, P.C.; Robiglio, M.; Settineri, L. Effects of Tool Geometry and Process Parameters on Delamination in CFRP Drilling: An Overview. Procedia CIRP 2016, 45, 31–34. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, K.K. An Approach towards Damage Free Machining of CFRP and GFRP Composite Material: A Review. Adv. Compos. Mater. 2015, 24, 49–63. [Google Scholar] [CrossRef]
- Hegde, S.; Satish Shenoy, B.; Chethan, K.N. Review on Carbon Fiber Reinforced Polymer (CFRP) and Their Mechanical Performance. Mater. Today Proc. 2019, 19, 658–662. [Google Scholar] [CrossRef]
- Altin Karataş, M.; Gökkaya, H. A Review on Machinability of Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) Composite Materials. Def. Technol. 2018, 14, 318–326. [Google Scholar] [CrossRef]
- Aamir, M.; Tolouei-Rad, M.; Giasin, K.; Nosrati, A. Recent Advances in Drilling of Carbon Fiber–Reinforced Polymers for Aerospace Applications: A Review. Int. J. Adv. Manuf. Technol. 2019, 105, 2289–2308. [Google Scholar] [CrossRef]
- Ferreira Batista, M.; Basso, I.; De Assis Toti, F.; Roger Rodrigues, A.; Ricardo Tarpani, J. Cryogenic Drilling of Carbon Fibre Reinforced Thermoplastic and Thermoset Polymers. Compos. Struct. 2020, 251, 112625. [Google Scholar] [CrossRef]
- Liu, D.; Tang, Y.; Cong, W.L. A Review of Mechanical Drilling for Composite Laminates. Compos. Struct. 2012, 94, 1265–1279. [Google Scholar] [CrossRef]
- Xu, J.; Geier, N.; Shen, J.; Krishnaraj, V.; Samsudeensadham, S. A Review on CFRP Drilling: Fundamental Mechanisms, Damage Issues, and Approaches toward High-Quality Drilling. J. Mater. Res. Technol. 2023, 24, 9677–9707. [Google Scholar] [CrossRef]
- Geier, N.; Xu, J.; Pereszlai, C.; Poór, D.I.; Davim, J.P. Drilling of Carbon Fibre Reinforced Polymer (CFRP) Composites: Difficulties, Challenges and Expectations. Procedia Manuf. 2021, 54, 284–289. [Google Scholar] [CrossRef]
- Singh, A.P.; Sharma, M.; Singh, I. A Review of Modeling and Control during Drilling of Fiber Reinforced Plastic Composites. Compos. Part B Eng. 2013, 47, 118–125. [Google Scholar] [CrossRef]
- Anand, R.S.; Patra, K. Mechanistic Cutting Force Modelling for Micro-Drilling of CFRP Composite Laminates. CIRP J. Manuf. Sci. Technol. 2017, 16, 55–63. [Google Scholar] [CrossRef]
- Geier, N.; Patra, K.; Anand, R.S.; Ashworth, S.; Balázs, B.Z.; Lukács, T.; Magyar, G.; Tamás-Bényei, P.; Xu, J.; Davim, J.P. A Critical Review on Mechanical Micro-Drilling of Glass and Carbon Fibre Reinforced Polymer (GFRP and CFRP) Composites. Compos. Part B Eng. 2023, 254, 110589. [Google Scholar] [CrossRef]
- Pecat, O.; Rentsch, R.; Brinksmeier, E. Influence of Milling Process Parameters on the Surface Integrity of CFRP. Procedia CIRP 2012, 1, 466–470. [Google Scholar] [CrossRef]
- Ozkan, D.; Sabri Gok, M.; Oge, M.; Cahit Karaoglanli, A. Milling Behavior Analysis of Carbon Fiber-Reinforced Polymer (CFRP) Composites. Mater. Today Proc. 2019, 11, 526–533. [Google Scholar] [CrossRef]
- Application of Fuzzy Logic for Modeling Surface Roughness in Turning CFRP Composites Using CBN Tool|Production Engineering. Available online: https://link.springer.com/article/10.1007/s11740-011-0297-y (accessed on 14 December 2024).
- Rajasekaran, T.; Palanikumar, K.; Vinayagam, B.K. Turning CFRP Composites with Ceramic Tool for Surface Roughness Analysis. Procedia Eng. 2012, 38, 2922–2929. [Google Scholar] [CrossRef]
- Gao, T.; Li, C.; Wang, Y.; Liu, X.; An, Q.; Li, H.N.; Zhang, Y.; Cao, H.; Liu, B.; Wang, D.; et al. Carbon Fiber Reinforced Polymer in Drilling: From Damage Mechanisms to Suppression. Compos. Struct. 2022, 286, 115232. [Google Scholar] [CrossRef]
- Kodama, H.; Okazaki, S.; Jiang, Y.; Yoden, H.; Ohashi, K. Thermal Influence on Surface Layer of Carbon Fiber Reinforced Plastic (CFRP) in Grinding. Precis. Eng. 2020, 65, 53–63. [Google Scholar] [CrossRef]
- Xu, J.; Yin, Y.; Paulo Davim, J.; Li, L.; Ji, M.; Geier, N.; Chen, M. A Critical Review Addressing Drilling-Induced Damage of CFRP Composites. Compos. Struct. 2022, 294, 115594. [Google Scholar] [CrossRef]
- Vigneshwaran, S.; Uthayakumar, M.; Arumugaprabu, V. Review on Machinability of Fiber Reinforced Polymers: A Drilling Approach. Silicon 2018, 10, 2295–2305. [Google Scholar] [CrossRef]
- Khashaba, U. Drilling of Polymer Matrix Composites: A Review. J. Compos. Mater. 2013, 47, 1817–1832. [Google Scholar] [CrossRef]
- Alberdi, A.; Artaza, T.; Suárez, A.; Rivero, A.; Girot, F. An Experimental Study on Abrasive Waterjet Cutting of CFRP/Ti6Al4V Stacks for Drilling Operations. Int. J. Adv. Manuf. Technol. 2016, 86, 691–704. [Google Scholar] [CrossRef]
- Karnik, S.R.; Gaitonde, V.N.; Rubio, J.C.; Correia, A.E.; Abrão, A.M.; Davim, J.P. Delamination Analysis in High Speed Drilling of Carbon Fiber Reinforced Plastics (CFRP) Using Artificial Neural Network Model. Mater. Des. 2008, 29, 1768–1776. [Google Scholar] [CrossRef]
- Su, F.; Wang, Z.; Yuan, J.; Cheng, Y. Study of Thrust Forces and Delamination in Drilling Carbon-Reinforced Plastics (CFRPs) Using a Tapered Drill-Reamer. Int. J. Adv. Manuf. Technol. 2015, 80, 1457–1469. [Google Scholar] [CrossRef]
- Geier, N.; Póka, G.; Jacsó, Á.; Pereszlai, C. A Method to Predict Drilling-Induced Burr Occurrence in Chopped Carbon Fibre Reinforced Polymer (CFRP) Composites Based on Digital Image Processing. Compos. Part B Eng. 2022, 242, 110054. [Google Scholar] [CrossRef]
- Li, S.; Li, Q.; Dai, L.; Liang, W.; Li, C.; Li, P.; Qiu, X.; Ko, T.J. Formation Mechanism of Outlet Damage in Interlaminar Drilling of CFRP. Int. J. Adv. Manuf. Technol. 2023, 129, 5117–5133. [Google Scholar] [CrossRef]
- Jin, Z.J.; Bao, Y.J.; Gao, H. Disfigurement Formation and Control in Drilling Carbon Fibre Reinforced Composites. Int. J. Mater. Prod. Technol. 2008, 31, 46. [Google Scholar] [CrossRef]
- Xu, J. Research Advances in Drilling-Induced Defects of Carbon Fiber Reinforced Polymer. Aeronaut. Manuf. Technol. 2022, 65, 24–33. [Google Scholar]
- Xu, J.; Lin, T.; Chen, M.; Davim, J.P. Machining Responses of High-Strength Carbon/Epoxy Composites Using Diamond-Coated Brad Spur Drills. Mater. Manuf. Process. 2020, 36, 722–729. [Google Scholar] [CrossRef]
- Rahme, P.; Landon, Y.; Lachaud, F.; Piquet, R.; Lagarrigue, P. Delamination-Free Drilling of Thick Composite Materials. Compos. Part A Appl. Sci. Manuf. 2015, 72, 148–159. [Google Scholar] [CrossRef]
- Lai, W.L.; Saeedipour, H.; Goh, K.L. Mechanical Properties of Low-Velocity Impact Damaged Carbon Fibre Reinforced Polymer Laminates: Effects of Drilling Holes for Resin-Injection Repair. Compos. Struct. 2020, 235, 111806. [Google Scholar] [CrossRef]
- Girot, F.; Dau, F.; Gutiérrez-Orrantia, M.E. New Analytical Model for Delamination of CFRP during Drilling. J. Mater. Process. Technol. 2017, 240, 332–343. [Google Scholar] [CrossRef]
- Chen, W.-C. Some Experimental Investigations in the Drilling of Carbon Fiber-Reinforced Plastic (CFRP) Composite Laminates. Int. J. Mach. Tools Manuf. 1997, 37, 1097–1108. [Google Scholar] [CrossRef]
- Davim, J.P.; Rubio, J.C.; Abrao, A.M. A Novel Approach Based on Digital Image Analysis to Evaluate the Delamination Factor after Drilling Composite Laminates. Compos. Sci. Technol. 2007, 67, 1939–1945. [Google Scholar] [CrossRef]
- Xu, J.; Li, C.; Mi, S.; An, Q.; Chen, M. Study of Drilling-Induced Defects for CFRP Composites Using New Criteria. Compos. Struct. 2018, 201, 1076–1087. [Google Scholar] [CrossRef]
- Faraz, A.; Biermann, D.; Weinert, K. Cutting Edge Rounding: An Innovative Tool Wear Criterion in Drilling CFRP Composite Laminates. Int. J. Mach. Tools Manuf. 2009, 49, 1185–1196. [Google Scholar] [CrossRef]
- Tsao, C.C.; Kuo, K.L.; Hsu, I.C. Evaluation of a Novel Approach to a Delamination Factor after Drilling Composite Laminates Using a Core–Saw Drill. Int. J. Adv. Manuf. Technol. 2012, 59, 617–622. [Google Scholar] [CrossRef]
- Nagarajan, V.A.; Selwin Rajadurai, J.; Annil Kumar, T. A Digital Image Analysis to Evaluate Delamination Factor for Wind Turbine Composite Laminate Blade. Compos. Part B Eng. 2012, 43, 3153–3159. [Google Scholar] [CrossRef]
- Babu, J.; Alex, N.P.; Mohan, K.P.; Philip, J.; Davim, J.P. Examination and Modification of Equivalent Delamination Factor for Assessment of High Speed Drilling. J. Mech. Sci. Technol. 2016, 30, 5159–5165. [Google Scholar] [CrossRef]
- Al-wandi, S. An Approach to Evaluate Delamination Factor When Drilling Carbon Fiber-Reinforced Plastics Using Different Drill Geometries: Experiment and Finite Element Study. Int. J. Adv. Manuf. Technol. 2017, 93, 4043–4061. [Google Scholar] [CrossRef]
- Teixeira, J.J.P. Image Processing Methodology for Assessment of Drilling Induced Damage in CFRP. Master’s Thesis, NOVA University Lisbon, Lisbon, Portugal, 2013. [Google Scholar]
- Hou, G.; Zhang, K.; Fan, X.; Luo, B.; Cheng, H.; Yan, X.; Li, Y. Analysis of Exit-Ply Temperature Characteristics and Their Effects on Occurrence of Exit-Ply Damages during UD CFRP Drilling. Compos. Struct. 2020, 231, 111456. [Google Scholar] [CrossRef]
- Li, Y.; Jiao, F.; Zhang, Z.; Feng, Z.; Niu, Y. Research on Entrance Delamination Characteristics and Damage Suppression Strategy in Drilling CFRP/Ti6Al4V Stacks. J. Manuf. Process. 2022, 76, 518–531. [Google Scholar] [CrossRef]
- Tang, W.; Chen, Y.; Yang, H.; Wang, H.; Yao, Q. Numerical Investigation of Delamination in Drilling of Carbon Fiber Reinforced Polymer Composites. Appl. Compos. Mater. 2018, 25, 1419–1439. [Google Scholar] [CrossRef]
- Jia, Z.; Chen, C.; Wang, F.; Zhang, C. Analytical Study of Delamination Damage and Delamination-Free Drilling Method of CFRP Composite. J. Mater. Process. Technol. 2020, 282, 116665. [Google Scholar] [CrossRef]
- Wang, Q.; Jia, X. Analytical Study and Experimental Investigation on Delamination in Drilling of CFRP Laminates Using Twist Drills. Thin-Walled Struct. 2021, 165, 107983. [Google Scholar] [CrossRef]
- Ismail, S.O.; Ojo, S.O.; Dhakal, H.N. Thermo-Mechanical Modelling of FRP Cross-Ply Composite Laminates Drilling: Delamination Damage Analysis. Compos. Part B Eng. 2017, 108, 45–52. [Google Scholar] [CrossRef]
- Massoom, Z.F.; Kishawy, H.A. Prediction of Critical Thrust Force Generated at the Onset of Delamination in Machining Carbon Reinforced Composites. Int. J. Adv. Manuf. Technol. 2019, 103, 2751–2759. [Google Scholar] [CrossRef]
- Chen, R.; Li, S.; Zhou, Y.; Qiu, X.; Li, P.; Zhang, H.; Wang, Z. Damage Formation and Evolution Mechanisms in Drilling CFRP with Prefabricated Delamination Defects: Simulation and Experimentation. J. Mater. Res. Technol. 2023, 26, 6994–7011. [Google Scholar] [CrossRef]
- Cui, J.; Liu, W.; Zhang, Y.; Gao, C.; Lu, Z.; Li, M.; Wang, F. A Novel Method for Predicting Delamination of Carbon Fiber Reinforced Plastic (CFRP) Based on Multi-Sensor Data. Mech. Syst. Signal Process. 2021, 157, 107708. [Google Scholar] [CrossRef]
- Feito, N.; López-Puente, J.; Santiuste, C.; Miguélez, M.H. Numerical Prediction of Delamination in CFRP Drilling. Compos. Struct. 2014, 108, 677–683. [Google Scholar] [CrossRef]
- Choi, J.G.; Kim, D.C.; Chung, M.; Lim, S.; Park, H.W. Multimodal 1D CNN for Delamination Prediction in CFRP Drilling Process with Industrial Robots. Comput. Ind. Eng. 2024, 190, 110074. [Google Scholar] [CrossRef]
- Fard, M.G.; Baseri, H.; Azami, A.; Zolfaghari, A. Prediction of Delamination Defects in Drilling of Carbon Fiber Reinforced Polymers Using a Regression-Based Approach. Machines 2024, 12, 783. [Google Scholar] [CrossRef]
- Aurich, J.C.; Dornfeld, D.; Arrazola, P.J.; Franke, V.; Leitz, L.; Min, S. Burrs—Analysis, Control and Removal. CIRP Ann. 2009, 58, 519–542. [Google Scholar] [CrossRef]
- Geng, D.; Liu, Y.; Shao, Z.; Lu, Z.; Cai, J.; Li, X.; Jiang, X.; Zhang, D. Delamination Formation, Evaluation and Suppression during Drilling of Composite Laminates: A Review. Compos. Struct. 2019, 216, 168–186. [Google Scholar] [CrossRef]
- Voß, R.; Henerichs, M.; Rupp, S.; Kuster, F.; Wegener, K. Evaluation of Bore Exit Quality for Fibre Reinforced Plastics Including Delamination and Uncut Fibres. CIRP J. Manuf. Sci. Technol. 2016, 12, 56–66. [Google Scholar] [CrossRef]
- Lee, J.H.; Ge, J.C.; Song, J.H. Study on Burr Formation and Tool Wear in Drilling CFRP and Its Hybrid Composites. Appl. Sci. 2021, 11, 384. [Google Scholar] [CrossRef]
- Geier, N.; Szalay, T.; Takács, M. Analysis of Thrust Force and Characteristics of Uncut Fibres at Non-Conventional Oriented Drilling of Unidirectional Carbon Fibre-Reinforced Plastic (UD-CFRP) Composite Laminates. Int. J. Adv. Manuf. Technol. 2019, 100, 3139–3154. [Google Scholar] [CrossRef]
- Pereszlai, C.; Geier, N. Comparative Analysis of Wobble Milling, Helical Milling and Conventional Drilling of CFRPs. Int. J. Adv. Manuf. Technol. 2020, 106, 3913–3930. [Google Scholar] [CrossRef]
- Chen, T.; Wang, C.; Xiang, J.; Wang, Y. Study on Tool Wear Mechanism and Cutting Performance in Helical Milling of CFRP with Stepped Bi-Directional Milling Cutters. Int. J. Adv. Manuf. Technol. 2020, 111, 2441–2448. [Google Scholar] [CrossRef]
- Wang, S.; Price, M.; Lim, M.K.; Jin, Y.; Luo, Y.; Chen, R. (Eds.) Recent Advances in Intelligent Manufacturing: First International Conference on Intelligent Manufacturing and Internet of Things and 5th International Conference on Computing for Sustainable Energy and Environment, IMIOT and ICSEE 2018, Chongqing, China, September 21–23, 2018, Proceedings, Part I; Communications in Computer and Information Science; Springer: Singapore, 2018; Volume 923. [Google Scholar]
- Poór, D.I.; Geier, N.; Pereszlai, C.; Xu, J. A Critical Review of the Drilling of CFRP Composites: Burr Formation, Characterisation and Challenges. Compos. Part B Eng. 2021, 223, 109155. [Google Scholar] [CrossRef]
- Cococcetta, N.M.; Pearl, D.; Jahan, M.P.; Ma, J. Investigating Surface Finish, Burr Formation, and Tool Wear during Machining of 3D Printed Carbon Fiber Reinforced Polymer Composite. J. Manuf. Process. 2020, 56, 1304–1316. [Google Scholar] [CrossRef]
- Wang, F.; Wang, X.; Zhao, X.; Bi, G.; Fu, R. A Numerical Approach to Analyze the Burrs Generated in the Drilling of Carbon Fiber Reinforced Polymers (CFRPs). Int. J. Adv. Manuf. Technol. 2020, 106, 3533–3546. [Google Scholar] [CrossRef]
- Xu, J.; An, Q.; Chen, M. A Comparative Evaluation of Polycrystalline Diamond Drills in Drilling High-Strength T800S/250F CFRP. Compos. Struct. 2014, 117, 71–82. [Google Scholar] [CrossRef]
- Meng, Q.; Cai, J.; Cheng, H.; Zhang, K. Investigation of CFRP Cutting Mechanism Variation and the Induced Effects on Cutting Response and Damage Distribution. Int. J. Adv. Manuf. Technol. 2020, 106, 2893–2907. [Google Scholar] [CrossRef]
- Gaitonde, V.N.; Karnik, S.R.; Rubio, J.C.; Correia, A.E.; Abrão, A.M.; Davim, J.P. Analysis of Parametric Influence on Delamination in High-Speed Drilling of Carbon Fiber Reinforced Plastic Composites. J. Mater. Process. Technol. 2008, 203, 431–438. [Google Scholar] [CrossRef]
- Campos Rubio, J.; Abrao, A.M.; Faria, P.E.; Correia, A.E.; Davim, J.P. Effects of High Speed in the Drilling of Glass Fibre Reinforced Plastic: Evaluation of the Delamination Factor. Int. J. Mach. Tools Manuf. 2008, 48, 715–720. [Google Scholar] [CrossRef]
- Wang, Q.; Jia, X. Optimization of Cutting Parameters for Improving Exit Delamination, Surface Roughness, and Production Rate in Drilling of CFRP Composites. Int. J. Adv. Manuf. Technol. 2021, 117, 3487–3502. [Google Scholar] [CrossRef]
- Shetty, N.; Shahabaz, S.M.; Sharma, S.S.; Divakara Shetty, S. A Review on Finite Element Method for Machining of Composite Materials. Compos. Struct. 2017, 176, 790–802. [Google Scholar] [CrossRef]
- Sorrentino, L.; Turchetta, S.; Bellini, C. A New Method to Reduce Delaminations during Drilling of FRP Laminates by Feed Rate Control. Compos. Struct. 2018, 186, 154–164. [Google Scholar] [CrossRef]
- Bhushi, U.; Suthar, J.; Teli, S.N. Performance Analysis of Metaheuristics Optimization Techniques for Drilling Process on CFRP Composites. Mater. Today Proc. 2020, 28, 1106–1114. [Google Scholar] [CrossRef]
- Sardiñas, R.Q.; Reis, P.; Davim, J.P. Multi-Objective Optimization of Cutting Parameters for Drilling Laminate Composite Materials by Using Genetic Algorithms. Compos. Sci. Technol. 2006, 66, 3083–3088. [Google Scholar] [CrossRef]
- Krishnaraj, V.; Prabukarthi, A.; Ramanathan, A.; Elanghovan, N.; Senthil Kumar, M.; Zitoune, R.; Davim, J.P. Optimization of Machining Parameters at High Speed Drilling of Carbon Fiber Reinforced Plastic (CFRP) Laminates. Compos. Part B Eng. 2012, 43, 1791–1799. [Google Scholar] [CrossRef]
- Mkaddem, A.; Ben Soussia, A.; El Mansori, M. Wear Resistance of CVD and PVD Multilayer Coatings When Dry Cutting Fiber Reinforced Polymers (FRP). Wear 2013, 302, 946–954. [Google Scholar] [CrossRef]
- Devitte, C.; Souza, G.S.C.; Souza, A.J.; Tita, V. Optimization for Drilling Process of Metal-Composite Aeronautical Structures. Sci. Eng. Compos. Mater. 2021, 28, 264–275. [Google Scholar] [CrossRef]
- Abhishek, K.; Datta, S.; Mahapatra, S.S. Multi-Objective Optimization in Drilling of CFRP (Polyester) Composites: Application of a Fuzzy Embedded Harmony Search (HS) Algorithm. Measurement 2016, 77, 222–239. [Google Scholar] [CrossRef]
- Sugita, N.; Shu, L.; Kimura, K.; Arai, G.; Arai, K. Dedicated Drill Design for Reduction in Burr and Delamination during the Drilling of Composite Materials. CIRP Ann. 2019, 68, 89–92. [Google Scholar] [CrossRef]
- Feito, N.; Díaz-Álvarez, J.; López-Puente, J.; Miguelez, M.H. Experimental and Numerical Analysis of Step Drill Bit Performance When Drilling Woven CFRPs. Compos. Struct. 2018, 184, 1147–1155. [Google Scholar] [CrossRef]
- Raj, D.S.; Karunamoorthy, L. Study of the Effect of Tool Wear on Hole Quality in Drilling CFRP to Select a Suitable Drill for Multi-Criteria Hole Quality. Mater. Manuf. Process. 2016, 31, 587–592. [Google Scholar] [CrossRef]
- Su, F.; Zheng, L.; Sun, F.; Wang, Z.; Deng, Z.; Qiu, X. Novel Drill Bit Based on the Step-Control Scheme for Reducing the CFRP Delamination. J. Mater. Process. Technol. 2018, 262, 157–167. [Google Scholar] [CrossRef]
- Jia, Z.; Fu, R.; Niu, B.; Qian, B.; Bai, Y.; Wang, F. Novel Drill Structure for Damage Reduction in Drilling CFRP Composites. Int. J. Mach. Tools Manuf. 2016, 110, 55–65. [Google Scholar] [CrossRef]
- Yu, Z.; Li, C.; Kurniawan, R.; Park, K.M.; Ko, T.J. Drill Bit with a Helical Groove Edge for Clean Drilling of Carbon Fiber-Reinforced Plastic. J. Mater. Process. Technol. 2019, 274, 116291. [Google Scholar] [CrossRef]
- Kwon, B.; Mai, N.D.D.; Cheon, E.S.; Ko, S.L. Development of a Step Drill for Minimization of Delamination and Uncut in Drilling Carbon Fiber Reinforced Plastics (CFRP). Int. J. Adv. Manuf. Technol. 2020, 106, 1291–1301. [Google Scholar] [CrossRef]
- Jia, Z.; Zhang, C.; Wang, F.; Fu, R.; Chen, C. Multi-Margin Drill Structure for Improving Hole Quality and Dimensional Consistency in Drilling Ti/CFRP Stacks. J. Mater. Process. Technol. 2020, 276, 116405. [Google Scholar] [CrossRef]
- Xu, J.; El Mansori, M. Experimental Study on Drilling Mechanisms and Strategies of Hybrid CFRP/Ti Stacks. Compos. Struct. 2016, 157, 461–482. [Google Scholar] [CrossRef]
- Heisel, U.; Pfeifroth, T. Influence of Point Angle on Drill Hole Quality and Machining Forces When Drilling CFRP. Procedia CIRP 2012, 1, 471–476. [Google Scholar] [CrossRef]
- Rawat, S.; Attia, H. Wear Mechanisms and Tool Life Management of WC–Co Drills during Dry High Speed Drilling of Woven Carbon Fibre Composites. Wear 2009, 267, 1022–1030. [Google Scholar] [CrossRef]
- Wang, X.; Kwon, P.Y.; Sturtevant, C.; Lantrip, J. Tool Wear of Coated Drills in Drilling CFRP. J. Manuf. Process. 2013, 15, 127–135. [Google Scholar] [CrossRef]
- Zhong, B.; Zou, F.; An, Q.; Chen, M.; Zhang, H.; Xie, C. Experimental Study on Drilling Process of a Newly Developed CFRP/Al/CFRP Co-Cured Material. J. Manuf. Process. 2022, 75, 476–484. [Google Scholar] [CrossRef]
- Iliescu, D.; Gehin, D.; Gutierrez, M.E.; Girot, F. Modeling and Tool Wear in Drilling of CFRP. Int. J. Mach. Tools Manuf. 2010, 50, 204–213. [Google Scholar] [CrossRef]
- Swan, S.; Bin Abdullah, M.S.; Kim, D.; Nguyen, D.; Kwon, P. Tool Wear of Advanced Coated Tools in Drilling of CFRP. J. Manuf. Sci. Eng. 2018, 140, 111018. [Google Scholar] [CrossRef]
- Zitoune, R.; Krishnaraj, V.; Sofiane Almabouacif, B.; Collombet, F.; Sima, M.; Jolin, A. Influence of Machining Parameters and New Nano-Coated Tool on Drilling Performance of CFRP/Aluminium Sandwich. Compos. Part B Eng. 2012, 43, 1480–1488. [Google Scholar] [CrossRef]
- D’Orazio, A.; El Mehtedi, M.; Forcellese, A.; Nardinocchi, A.; Simoncini, M. Tool Wear and Hole Quality in Drilling of CFRP/AA7075 Stacks with DLC and Nanocomposite TiAlN Coated Tools. J. Manuf. Process. 2017, 30, 582–592. [Google Scholar] [CrossRef]
- Hwang, J.-Y.; Ahn, D.-G. Effects of Carbide Substrate Properties and Diamond Coating Morphology on Drilling Performance of CFRP Composite. J. Manuf. Process. 2020, 58, 1274–1284. [Google Scholar] [CrossRef]
- Dilip Jerold, B.; Pradeep Kumar, M. Experimental Comparison of Carbon-Dioxide and Liquid Nitrogen Cryogenic Coolants in Turning of AISI 1045 Steel. Cryogenics 2012, 52, 569–574. [Google Scholar] [CrossRef]
- Biermann, D.; Hartmann, H. Reduction of Burr Formation in Drilling Using Cryogenic Process Cooling. Procedia CIRP 2012, 3, 85–90. [Google Scholar] [CrossRef]
- Morkavuk, S.; Köklü, U.; Bağcı, M.; Gemi, L. Cryogenic Machining of Carbon Fiber Reinforced Plastic (CFRP) Composites and the Effects of Cryogenic Treatment on Tensile Properties: A Comparative Study. Compos. Part B Eng. 2018, 147, 1–11. [Google Scholar] [CrossRef]
- Pereira, O.; Rodríguez, A.; Barreiro, J.; Fernández-Abia, A.I.; de Lacalle, L.N.L. Nozzle Design for Combined Use of MQL and Cryogenic Gas in Machining. Int. J. Precis. Eng. Manuf. Green Technol. 2017, 4, 87–95. [Google Scholar] [CrossRef]
- Xia, T.; Kaynak, Y.; Arvin, C.; Jawahir, I.S. Cryogenic Cooling-Induced Process Performance and Surface Integrity in Drilling CFRP Composite Material. Int. J. Adv. Manuf. Technol. 2016, 82, 605–616. [Google Scholar] [CrossRef]
- Agrawal, C.; Khanna, N.; Pimenov, D.Y.; Wojciechowski, S.; Giasin, K.; Sarıkaya, M.; Yıldırım, Ç.V.; Jamil, M. Experimental Investigation on the Effect of Dry and Multi-Jet Cryogenic Cooling on the Machinability and Hole Accuracy of CFRP Composites. J. Mater. Res. Technol. 2022, 18, 1772–1783. [Google Scholar] [CrossRef]
- Basmaci, G.; Yoruk, A.; Koklu, U.; Morkavuk, S. Impact of Cryogenic Condition and Drill Diameter on Drilling Performance of CFRP. Appl. Sci. 2017, 7, 667. [Google Scholar] [CrossRef]
- Giasin, K.; Ayvar-Soberanis, S.; Hodzic, A. Evaluation of Cryogenic Cooling and Minimum Quantity Lubrication Effects on Machining GLARE Laminates Using Design of Experiments. J. Clean. Prod. 2016, 135, 533–548. [Google Scholar] [CrossRef]
- Rodríguez, A.; Calleja, A.; de Lacalle, L.N.L.; Pereira, O.; Rubio-Mateos, A.; Rodríguez, G. Drilling of CFRP-Ti6Al4V Stacks Using CO2-Cryogenic Cooling. J. Manuf. Process. 2021, 64, 58–66. [Google Scholar] [CrossRef]
- Impero, F.; Dix, M.; Squillace, A.; Prisco, U.; Palumbo, B.; Tagliaferri, F. A Comparison between Wet and Cryogenic Drilling of CFRP/Ti Stacks. Mater. Manuf. Process. 2018, 33, 1354–1360. [Google Scholar] [CrossRef]
- Khanna, N.; Desai, K.; Sheth, A.; Øllgaard Larsen, J. CFRP Machining on Indigenously Developing Cryogenic Machining Facility: An Initial Study. Mater. Today Proc. 2019, 18, 4598–4604. [Google Scholar] [CrossRef]
- Shokrani, A.; Leafe, H.; Newman, S.T. Cryogenic Drilling of Carbon Fibre Reinforced Plastic with Tool Consideration. Procedia CIRP 2019, 85, 55–60. [Google Scholar] [CrossRef]
- Nagaraj, A.; Uysal, A.; Jawahir, I.S. An Investigation of Process Performance When Drilling Carbon Fiber Reinforced Polymer (CFRP) Composite under Dry, Cryogenic and MQL Environments. Procedia Manuf. 2020, 43, 551–558. [Google Scholar] [CrossRef]
- Joshi, S.; Rawat, K.; A.S.S, B. A Novel Approach to Predict the Delamination Factor for Dry and Cryogenic Drilling of CFRP. J. Mater. Process. Technol. 2018, 262, 521–531. [Google Scholar] [CrossRef]
- Sharma, A.K.; Tiwari, A.K.; Dixit, A.R. Effects of Minimum Quantity Lubrication (MQL) in Machining Processes Using Conventional and Nanofluid Based Cutting Fluids: A Comprehensive Review. J. Clean. Prod. 2016, 127, 1–18. [Google Scholar] [CrossRef]
- Said, Z.; Gupta, M.; Hegab, H.; Arora, N.; Khan, A.M.; Jamil, M.; Bellos, E. A Comprehensive Review on Minimum Quantity Lubrication (MQL) in Machining Processes Using Nano-Cutting Fluids. Int. J. Adv. Manuf. Technol. 2019, 105, 2057–2086. [Google Scholar] [CrossRef]
- Jia, D.; Li, C.; Zhang, Y.; Zhang, D.; Zhang, X. Experimental Research on the Influence of the Jet Parameters of Minimum Quantity Lubrication on the Lubricating Property of Ni-Based Alloy Grinding. Int. J. Adv. Manuf. Technol. 2016, 82, 617–630. [Google Scholar] [CrossRef]
- Iqbal, A.; Zhao, G.; Zaini, J.; Jamil, M.; Nauman, M.M.; Khan, A.M.; Zhao, W.; He, N.; Suhaimi, H. CFRP Drilling under Throttle and Evaporative Cryogenic Cooling and Micro-Lubrication. Compos. Struct. 2021, 267, 113916. [Google Scholar] [CrossRef]
- Meshreki, M.; Damir, A.; Sadek, A.; Attia, M.H. Investigation of Drilling of CFRP-Aluminum Stacks Under Different Cooling Modes. In Proceedings of the ASME’s International Mechanical Engineering Congress & Exposition (IMECE), Phoenix, AZ, USA, 11–17 November 2016. [Google Scholar]
- Xu, J.; Ji, M.; Chen, M.; El Mansori, M. Experimental Investigation on Drilling Machinability and Hole Quality of CFRP/Ti6Al4V Stacks under Different Cooling Conditions. Int. J. Adv. Manuf. Technol. 2020, 109, 1527–1539. [Google Scholar] [CrossRef]
- Xu, J.; Ji, M.; Chen, M.; Ren, F. Investigation of Minimum Quantity Lubrication Effects in Drilling CFRP/Ti6Al4V Stacks. Mater. Manuf. Process. 2019, 34, 1401–1410. [Google Scholar] [CrossRef]
- Kim, J.W.; Nam, J.; Lee, S.W. Experimental Study on Micro-Drilling of Unidirectional Carbon Fiber Reinforced Plastic (UD-CFRP) Composite Using Nano-Solid Lubrication. J. Manuf. Process. 2019, 43, 46–53. [Google Scholar] [CrossRef]
- Iskandar, Y.; Tendolkar, A.; Attia, M.H.; Hendrick, P.; Damir, A.; Diakodimitris, C. Flow Visualization and Characterization for Optimized MQL Machining of Composites. CIRP Ann. 2014, 63, 77–80. [Google Scholar] [CrossRef]
- Wang, D.; Jiao, F.; Mao, X. Mechanics of Thrust Force on Chisel Edge in Carbon Fiber Reinforced Polymer (CFRP) Drilling Based on Bending Failure Theory. Int. J. Mech. Sci. 2020, 169, 105336. [Google Scholar] [CrossRef]
- Shyha, I.S.; Aspinwall, D.K.; Soo, S.L.; Bradley, S. Drill Geometry and Operating Effects When Cutting Small Diameter Holes in CFRP. Int. J. Mach. Tools Manuf. 2009, 49, 1008–1014. [Google Scholar] [CrossRef]
- Basso, I.; Batista, M.F.; Jasinevicius, R.G.; Rubio, J.C.C.; Rodrigues, A.R. Micro Drilling of Carbon Fiber Reinforced Polymer. Compos. Struct. 2019, 228, 111312. [Google Scholar] [CrossRef]
- Won, M.S.; Dharan, C.K.H. Chisel Edge and Pilot Hole Effects in Drilling Composite Laminates. J. Manuf. Sci. Eng. 2002, 124, 242–247. [Google Scholar] [CrossRef]
- Tsao, C.C. The Effect of Pilot Hole on Delamination When Core Drill Drilling Composite Materials. Int. J. Mach. Tools Manuf. 2006, 46, 1653–1661. [Google Scholar] [CrossRef]
- Tsao, C.C.; Hocheng, H. The Effect of Chisel Length and Associated Pilot Hole on Delamination When Drilling Composite Materials. Int. J. Mach. Tools Manuf. 2003, 43, 1087–1092. [Google Scholar] [CrossRef]
- Wang, C.; Cheng, K.; Rakowski, R.; Greenwood, D.; Wale, J. Comparative Studies on the Effect of Pilot Drillings with Application to High-Speed Drilling of Carbon Fibre Reinforced Plastic (CFRP) Composites. Int. J. Adv. Manuf. Technol. 2017, 89, 3243–3255. [Google Scholar] [CrossRef]
- Dogrusadik, A.; Kentli, A. Comparative Assessment of Support Plates’ Influences on Delamination Damage in Micro-Drilling of CFRP Laminates. Compos. Struct. 2017, 173, 156–167. [Google Scholar] [CrossRef]
- Kang, Y.S.; Kim, D.E.; Park, H.W.; Seo, J. Sustainable CFRP Drilling Using Support Plates: A Comprehensive Analysis of Delamination Suppression and Cost-Effectiveness. Mater. Today Sustain. 2025, 30, 101085. [Google Scholar] [CrossRef]
- Dogrusadik, A.; Kentli, A. Experimental Investigation of Support Plates’ Influences on Tool Wear in Micro-Drilling of CFRP Laminates. J. Manuf. Process. 2019, 38, 214–222. [Google Scholar] [CrossRef]
- Capello, E. Workpiece Damping and Its Effect on Delamination Damage in Drilling Thin Composite Laminates. J. Mater. Process. Technol. 2004, 148, 186–195. [Google Scholar] [CrossRef]
- Tsao, C.C.; Hocheng, H. Effects of Exit Back-up on Delamination in Drilling Composite Materials Using a Saw Drill and a Core Drill. Int. J. Mach. Tools Manuf. 2005, 45, 1261–1270. [Google Scholar] [CrossRef]
- Shyha, I.S.; Soo, S.L.; Aspinwall, D.K.; Bradley, S. The Effect of Peel Ply Layer on Hole Integrity When Drilling Carbon Fibre-Reinforced Plastic. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2011, 225, 1217–1223. [Google Scholar] [CrossRef]
- Dharan, C.K.H.; Won, M.S. Machining Parameters for an Intelligent Machining System for Composite Laminates. Int. J. Mach. Tools Manuf. 2000, 40, 415–426. [Google Scholar] [CrossRef]
- Li, M.; Soo, S.L.; Aspinwall, D.K.; Pearson, D.; Leahy, W. Study on Tool Wear and Workpiece Surface Integrity Following Drilling of CFRP Laminates with Variable Feed Rate Strategy. Procedia CIRP 2018, 71, 407–412. [Google Scholar] [CrossRef]
- Yaşar, N.; Günay, M. Experimental Investigation on Novel Drilling Strategy of CFRP Laminates Using Variable Feed Rate. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 150. [Google Scholar] [CrossRef]
- Shuaipu, W.; Jie, L. The Study of CFRP Variable Feed Drilling Method Based on Sinusoidal Curve. Int. J. Adv. Manuf. Technol. 2022, 120, 6029–6039. [Google Scholar] [CrossRef]
- Tamura, S.; Matsumura, T. Delamination-Free Drilling of Carbon Fiber Reinforced Plastic with Variable Feed Rate. Precis. Eng. 2021, 70, 70–76. [Google Scholar] [CrossRef]
- Arul, S.; Vijayaraghavan, L.; Malhotra, S.K.; Krishnamurthy, R. The Effect of Vibratory Drilling on Hole Quality in Polymeric Composites. Int. J. Mach. Tools Manuf. 2006, 46, 252–259. [Google Scholar] [CrossRef]
- Zheng, K.; Dong, S.; Liao, W. Investigation on Thrust Force in Rotary Ultrasonic Drilling of CFRP Using Brad Drill. Mach. Sci. Technol. 2019, 23, 971–984. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, K.; Xiao, J.; Zhou, Y.; Xing, Y.; Zhang, H. Experimental Research on Ultrasonic Vibration Countersinking Process of CFRP Composite Laminates. Int. J. Adv. Manuf. Technol. 2021, 112, 2249–2258. [Google Scholar] [CrossRef]
- Peng, X.; Li, L.; Yang, Y.; Zhao, G.; Zeng, T. Experimental Study on Rotary Ultrasonic Vibration Assisted Drilling Rock. Adv. Space Res. 2021, 67, 546–556. [Google Scholar] [CrossRef]
- Huang, W.; Cao, S.; Li, H.N.; Zhou, Q.; Wu, C.; Zhu, D.; Zhuang, K. Tool Wear in Ultrasonic Vibration–Assisted Drilling of CFRP: A Comparison with Conventional Drilling. Int. J. Adv. Manuf. Technol. 2021, 115, 1809–1820. [Google Scholar] [CrossRef]
- Sun, Z.; Geng, D.; Meng, F.; Zhou, L.; Jiang, X.; Zhang, D. High Performance Drilling of T800 CFRP Composites by Combining Ultrasonic Vibration and Optimized Drill Structure. Ultrasonics 2023, 134, 107097. [Google Scholar] [CrossRef]
- Geng, D.; Zhang, D.; Xu, Y.; He, F.; Liu, F. Comparison of Drill Wear Mechanism between Rotary Ultrasonic Elliptical Machining and Conventional Drilling of CFRP. J. Reinf. Plast. Compos. 2014, 33, 797–809. [Google Scholar] [CrossRef]
- Hussein, R.; Sadek, A.; Elbestawi, M.A.; Attia, M.H. Elimination of Delamination and Burr Formation Using High-Frequency Vibration-Assisted Drilling of Hybrid CFRP/Ti6Al4V Stacked Material. Int. J. Adv. Manuf. Technol. 2019, 105, 859–873. [Google Scholar] [CrossRef]
- Geng, D.; Liu, Y.; Shao, Z.; Zhang, M.; Jiang, X.; Zhang, D. Delamination Formation and Suppression during Rotary Ultrasonic Elliptical Machining of CFRP. Compos. Part B Eng. 2020, 183, 107698. [Google Scholar] [CrossRef]
- Shao, Z.; Jiang, X.; Li, Z.; Geng, D.; Li, S.; Zhang, D. Feasibility Study on Ultrasonic-Assisted Drilling of CFRP/Ti Stacks by Single-Shot under Dry Condition. Int. J. Adv. Manuf. Technol. 2019, 105, 1259–1273. [Google Scholar] [CrossRef]
- Shan, C.; Zhang, X.; Dang, J.; Yang, Y. Rotary Ultrasonic Drilling of Needle-Punched Carbon/Carbon Composites: Comparisons with Conventional Twist Drilling and High-Speed Drilling. Int. J. Adv. Manuf. Technol. 2018, 98, 189–200. [Google Scholar] [CrossRef]
- Ma, G.; Kang, R.; Dong, Z.; Yin, S.; Bao, Y.; Guo, D. Hole Quality in Longitudinal–Torsional Coupled Ultrasonic Vibration Assisted Drilling of Carbon Fiber Reinforced Plastics. Front. Mech. Eng. 2020, 15, 538–546. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, M. Investigation on a Novel Variant-Dimension Vibration-Assisted Drilling System for CFRP: Locus Model, Control Strategy, and Machining Experiments. Int. J. Adv. Manuf. Technol. 2021, 113, 2629–2650. [Google Scholar] [CrossRef]
- Haiyan, W.; Xuda, Q.; Hao, L.; Chengzu, R. Analysis of Cutting Forces in Helical Milling of Carbon Fiber–Reinforced Plastics. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2013, 227, 62–74. [Google Scholar] [CrossRef]
- Ozturk, O.M.; Kilic, Z.M.; Altintas, Y. Mechanics and Dynamics of Orbital Drilling Operations. Int. J. Mach. Tools Manuf. 2018, 129, 37–47. [Google Scholar] [CrossRef]
- Pereira, R.B.D.; Brandão, L.C.; De Paiva, A.P.; Ferreira, J.R.; Davim, J.P. A Review of Helical Milling Process. Int. J. Mach. Tools Manuf. 2017, 120, 27–48. [Google Scholar] [CrossRef]
- Liu, J.; Chen, G.; Ji, C.; Qin, X.; Li, H.; Ren, C. An Investigation of Workpiece Temperature Variation of Helical Milling for Carbon Fiber Reinforced Plastics (CFRP). Int. J. Mach. Tools Manuf. 2014, 86, 89–103. [Google Scholar] [CrossRef]
- Iyer, R.; Koshy, P.; Ng, E. Helical Milling: An Enabling Technology for Hard Machining Precision Holes in AISI D2 Tool Steel. Int. J. Mach. Tools Manuf. 2007, 47, 205–210. [Google Scholar] [CrossRef]
- Brinksmeier, E.; Fangmann, S.; Meyer, I. Orbital Drilling Kinematics. Prod. Eng. Res. Devel. 2008, 2, 277–283. [Google Scholar] [CrossRef]
- Wang, H.; Qin, X.; Li, H.; Tan, Y. A Comparative Study on Helical Milling of CFRP/Ti Stacks and Its Individual Layers. Int. J. Adv. Manuf. Technol. 2016, 86, 1973–1983. [Google Scholar] [CrossRef]
- Qin, X.; Wang, B.; Wang, G.; Li, H.; Jiang, Y.; Zhang, X. Delamination Analysis of the Helical Milling of Carbon Fiber-Reinforced Plastics by Using the Artificial Neural Network Model. J. Mech. Sci. Technol. 2014, 28, 713–719. [Google Scholar] [CrossRef]
- Ahmad, N.; Khan, S.A.; Raza, S.F. Influence of Hole Diameter, Workpiece Thickness, and Tool Surface Condition on Machinability of CFRP Composites in Orbital Drilling: A Case of Workpiece Rotation. Int. J. Adv. Manuf. Technol. 2019, 103, 2007–2015. [Google Scholar] [CrossRef]
- Voss, R.; Henerichs, M.; Kuster, F. Comparison of Conventional Drilling and Orbital Drilling in Machining Carbon Fibre Reinforced Plastics (CFRP). CIRP Ann. 2016, 65, 137–140. [Google Scholar] [CrossRef]
- Sadek, A.; Meshreki, M.; Attia, M.H. Characterization and Optimization of Orbital Drilling of Woven Carbon Fiber Reinforced Epoxy Laminates. CIRP Ann. 2012, 61, 123–126. [Google Scholar] [CrossRef]
- Brinksmeier, E.; Fangmann, S.; Rentsch, R. Drilling of Composites and Resulting Surface Integrity. CIRP Ann. 2011, 60, 57–60. [Google Scholar] [CrossRef]
- Kong, L.; Gao, D.; Lu, Y.; Jiang, Z. Novel Orbital Drilling and Reaming Tool for Machining Holes in Carbon Fiber–Reinforced Plastic (CFRP) Composite Laminates. Int. J. Adv. Manuf. Technol. 2020, 110, 977–988. [Google Scholar] [CrossRef]
- Geier, N.; Szalay, T. Optimisation of Process Parameters for the Orbital and Conventional Drilling of Uni-Directional Carbon Fibre-Reinforced Polymers (UD-CFRP). Measurement 2017, 110, 319–334. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, Y.; Bitou, T.; Nomura, M.; Fujii, T. Proposal of a Tilted Helical Milling Technique for High Quality Hole Drilling of CFRP: Kinetic Analysis of Hole Formation and Material Removal. Int. J. Adv. Manuf. Technol. 2018, 94, 4221–4235. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, Y.; Li, Y.; Lu, D.; Bitoh, T. Proposal of a Tilted Helical Milling Technique for High-Quality Hole Drilling of CFRP: Analysis of Hole Surface Finish. Int. J. Adv. Manuf. Technol. 2019, 101, 1041–1049. [Google Scholar] [CrossRef]
- Pereszlai, C.; Geier, N.; Poór, D.I.; Balázs, B.Z.; Póka, G. Drilling Fibre Reinforced Polymer Composites (CFRP and GFRP): An Analysis of the Cutting Force of the Tilted Helical Milling Process. Compos. Struct. 2021, 262, 113646. [Google Scholar] [CrossRef]
- Dhakal, H.N.; Ismail, S.O.; Ojo, S.O.; Paggi, M.; Smith, J.R. Abrasive Water Jet Drilling of Advanced Sustainable Bio-Fibre-Reinforced Polymer/Hybrid Composites: A Comprehensive Analysis of Machining-Induced Damage Responses. Int. J. Adv. Manuf. Technol. 2018, 99, 2833–2847. [Google Scholar] [CrossRef]
- Montesano, J.; Bougherara, H.; Fawaz, Z. Influence of Drilling and Abrasive Water Jet Induced Damage on the Performance of Carbon Fabric/Epoxy Plates with Holes. Compos. Struct. 2017, 163, 257–266. [Google Scholar] [CrossRef]
- Ahmad Sobri, S.; Heinemann, R.; Whitehead, D.; Shuaib, N.A. Drilling Strategy for Thick Carbon Fiber Reinforced Polymer Composites (CFRP): A Preliminary Assessment. J. Eng. Technol. Sci. 2018, 50, 21–39. [Google Scholar] [CrossRef]
- Li, Z.L.; Zheng, H.Y.; Lim, G.C.; Chu, P.L.; Li, L. Study on UV Laser Machining Quality of Carbon Fibre Reinforced Composites. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1403–1408. [Google Scholar] [CrossRef]
- Thirumalai Kumaran, S.; Ko, T.J.; Li, C.; Yu, Z.; Uthayakumar, M. Rotary Ultrasonic Machining of Woven CFRP Composite in a Cryogenic Environment. J. Alloys Compd. 2017, 698, 984–993. [Google Scholar] [CrossRef]
- Park, K.M.; Kurniawan, R.; Yu, Z.; Ko, T.J. Evaluation of a Hybrid Cryogenic Deburring Method to Remove Uncut Fibers on Carbon Fiber-Reinforced Plastic Composites. Int. J. Adv. Manuf. Technol. 2019, 101, 1509–1523. [Google Scholar] [CrossRef]

























| Defect Type | Preeminent Physical Mechanism | Key Process Parameters | Key References |
|---|---|---|---|
| Delamination | Interlaminar fracture caused by out-of-plane stresses (dominantly from thrust force) exceeding the interlaminar bonding strength, leading to ply separation. | Thrust force, Feed rate, Tool geometry, Tool wear, Fiber cutting angle, Back-up support. | Su et al. [31] |
| Burrs | Dull cutting edges or poor cutting conditions prevent clean shear fracture of fibers. Instead, fibers bend, are pulled out, and form ragged edges at the exit/entry. | Fiber cutting angle, Tool wear, Tool geometry, Cutting speed, Feed rate, Back-up support. | Geier et al. [32] |
| Tearing | Occurs mainly at the hole wall or entry. An unfavorable combination of cutting forces and fiber orientation causes fibers to undergo large-scale stretching and tearing before fracture, resulting in a rough, uneven damaged surface. | Fiber Cutting angle, Feed rate, Tool wear. | Li et al. [33] |
| Delamination Quantification | Calculation Formula | Reference |
|---|---|---|
| Conventional one-dimension delamination factor (Fd) | Chen [40] | |
| Two-dimension delamination factor (Fa) | Faraz et al. [43] | |
| Adjusted delamination factor (Fda) | Davim et al. [41] | |
| Equivalent delamination factor (Fed) | Tsao et al. [44] | |
| Refined delamination factor (FDR) | Nagarajan et al. [45] | |
| Refined equivalent delamination ratio (Fred). | Babu et al. [46] | |
| Equivalent adjusted delamination coefficient (Feda) | Al-Wandi et al. [47] | |
| Minimum delamination factor (Fdmin) | Da Silva. [48] | |
| Three-dimensional delamination factor (Fv) | Dmax—maximum diameter of the delaminated zone Do—nominal diameter of the drilled hole | Xu et al. [42] |
![]() | Dmin—diameter of the minimum enclosing delamination area Dnom—nominal hole diameter Ad—total area of the drilled hole Adel—cumulative peripheral delamination area Anom—nominal drilled hole area Amax—area belonging to Dmax AO—area corresponding to DO AH—heavy damage area AM—medium damage area AL—low damage area Ae—damaged area |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, K.; Wu, S.; Wang, J.; Huo, L. Drilling Defects and Process Optimization in Carbon Fiber-Reinforced Polymer Composites: A Review. Coatings 2026, 16, 204. https://doi.org/10.3390/coatings16020204
Wang K, Wu S, Wang J, Huo L. Drilling Defects and Process Optimization in Carbon Fiber-Reinforced Polymer Composites: A Review. Coatings. 2026; 16(2):204. https://doi.org/10.3390/coatings16020204
Chicago/Turabian StyleWang, Kaiwei, Shujing Wu, Jiaran Wang, and Lichao Huo. 2026. "Drilling Defects and Process Optimization in Carbon Fiber-Reinforced Polymer Composites: A Review" Coatings 16, no. 2: 204. https://doi.org/10.3390/coatings16020204
APA StyleWang, K., Wu, S., Wang, J., & Huo, L. (2026). Drilling Defects and Process Optimization in Carbon Fiber-Reinforced Polymer Composites: A Review. Coatings, 16(2), 204. https://doi.org/10.3390/coatings16020204

