Piezodynamic Behavior of HA-BT Osteoconductive Coatings Under LIPUS Stimulation in Lab-on-a-Chip Model: A Promising Strategy for Bone Regeneration
Abstract
1. Introduction
2. Materials and Methods
3. Results
- (i)
- HA10BT: E = 105 ± 1 GPa, H = 7.1 ± 0.2 GPa;
- (ii)
- HA30BT: E = 123 ± 2 GPa, H = 9.1 ± 0.3 GPa;
- (iii)
- HA50BT: E = 136 ± 3 GPa, H = 13.0 ± 0.5 GPa.
4. Conclusions
- The atmospheric plasma spraying (APS) technique has proven to be an effective method for fabricating HA-BT composite coatings. Although the high temperatures inherent to this process can induce partial thermal degradation of hydroxyapatite (HA), leading to the formation of secondary phases such as β-tricalcium phosphate (β-TCP), tricalcium phosphate (TCP), and tetracalcium phosphate (TTCP), the processing parameters employed in this study successfully minimized their formation. Additionally, a strong coating–substrate interface was achieved. As a result, the produced coatings meet the compositional and thickness requirements specified by ISO 13779 and ASTM F1609-08 standards.
- The incorporation of BT into the HA matrix significantly enhances the piezoelectric response of the coatings while also improving their corrosion resistance, particularly at BT concentrations up to 30 wt%. Importantly, this level of BT incorporation does not compromise biocompatibility or impair cell adhesion to the coating surface.
- However, when evaluating the piezodynamic response under low-intensity pulsed ultrasound (LIPUS) stimulation, it was observed that excessive BT content (50 wt%), associated with higher effective piezoelectric coefficients, can induce cellular stress, negatively affecting cell adhesion and the different pathways related to this behavior, like OCN expression and cell proliferation. Therefore, an optimal BT concentration (30 wt%) was identified that closely mimics the piezoelectric behavior of natural bone, promoting favorable cellular responses through piezodynamic stimulation without inducing adverse effects.
- Overall, the results demonstrate the multifunctional potential of HA-BT composite coatings for bone regeneration applications, combining enhanced corrosion resistance with bioactive piezoelectric properties that support tissue integration and cellular activity.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scholz, M.S.; Blanchfield, J.P.; Bloom, L.D.; Coburn, B.H.; Elkington, M.; Fuller, J.D.; Bond, I.P. The use of composite materials in modern orthopaedic medicine and prosthetic devices: A review. Compos. Sci. Technol. 2011, 71, 1791–1803. [Google Scholar] [CrossRef]
- Choudhury, P.; Agrawal, D.C. Hydroxyapatite (HA) coatings for biomaterials. In Nanomedicine: Technologies and Applications; Woodhead Publishing Limited: Cambridge, UK, 2012. [Google Scholar]
- Awasthi, S.; Pandey, S.K.; Arunan, E.; Srivastava, C. A review on hydroxyapatite coatings for the biomedical applications: Experimental and theoretical perspectives. J. Mater. Chem. B 2021, 9, 228–249. [Google Scholar] [CrossRef] [PubMed]
- Gkomoza, P.; Vardavoulias, M.; Pantelis, D.I.; Sarafoglou, C. Comparative study of structure and properties of thermal spray coatings using conventional and nanostructured hydroxyapatite powder, for applications in medical implants. Surf. Coat. Technol. 2019, 357, 748–758. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, W.; Xiong, Z.; Hu, Y.; Xiao, J. Effects of biomimetic hydroxyapatite coatings on osteoimmunomodulation. Biomater. Adv. 2022, 134, 112640. [Google Scholar] [CrossRef]
- Blum, M.; Sayed, M.; Mahmoud, E.M.; Killinger, A.; Gadow, R.; Naga, S.M. In vitro evaluation of biologically derived hydroxyapatite coatings manufactured by high velocity suspension spraying. J. Therm. Spray Technol. 2021, 30, 1891–1904. [Google Scholar] [CrossRef]
- Khlifi, K.; Dhiflaoui, H.; Rhouma, A.B.; Faure, J.; Benhayoune, H.; Laarbi, A.B.C. Nanomechanical behavior, adhesion and corrosion resistance of hydroxyapatite coatings for orthopedic implant applications. Coatings 2021, 11, 477. [Google Scholar] [CrossRef]
- Carrera, K.; Huerta, V.; Orozco, V.; Matutes, J.; Urbieta, A.; Fernández, P.; Herrera, M. Formation of oxygen vacancies in Cr3+-doped hydroxyapatite nanofibers and their role in generating paramagnetism. Biomed. Mater. Devices 2025, 3, 529–544. [Google Scholar] [CrossRef]
- Pereira, H.F.; Cengiz, I.F.; Silva, F.S.; Reis, R.L.; Oliveira, J.M. Scaffolds and coatings for bone regeneration. J. Mater. Sci. Mater. Med. 2020, 31, 26. [Google Scholar] [CrossRef]
- Popescu-Pelin, G.; Ristoscu, C.; Duta, L.; Pasuk, I.; Stan, G.E.; Stan, M.S.; Mihailescu, I.N. Fish bone derived bi-phasic calcium phosphate coatings fabricated by pulsed laser deposition for biomedical applications. Mar. Drugs 2020, 18, 623. [Google Scholar] [CrossRef]
- Duta, L.; Stan, G.E.; Popescu-Pelin, G.; Zgura, I.; Anastasescu, M.; Oktar, F.N. Influence of post-deposition thermal treatments on the morpho-structural, and bonding strength characteristics of lithium-doped biological-derived hydroxyapatite coatings. Coatings 2022, 12, 1883. [Google Scholar] [CrossRef]
- Wang, Q.; Du, J.; Sun, Q.; Xiao, S.; Huang, W. Evaluation of the osteoconductivity and the degradation of novel hydroxyapatite/polyurethane combined with mesoporous silica microspheres in a rabbit osteomyelitis model. J. Orthop. Surg. 2023, 31, 10225536231206921. [Google Scholar] [CrossRef] [PubMed]
- Kien, P.T.; Quan, T.N.; Tuyet Anh, L.H. Coating characteristic of hydroxyapatite on titanium substrates via hydrothermal treatment. Coatings 2021, 11, 1226. [Google Scholar] [CrossRef]
- Drevet, R.; Benhayoune, H. Advanced biomaterials and coatings. Coatings 2022, 12, 965. [Google Scholar] [CrossRef]
- Drevet, R.; Fauré, J.; Benhayoune, H. Bioactive calcium phosphate coatings for bone implant applications: A review. Coatings 2023, 13, 1091. [Google Scholar] [CrossRef]
- Levingstone, T.J.; Ardhaoui, M.; Benyounis, K.; Looney, L.; Stokes, J.T. Plasma sprayed hydroxyapatite coatings: Understanding process relationships using design of experiment analysis. Surf. Coat. Technol. 2015, 283, 29–36. [Google Scholar] [CrossRef]
- Vilardell, A.M.; Cinca, N.; Garcia-Giralt, N.; Dosta, S.; Cano, I.G.; Nogués, X.; Guilemany, J.M. In-vitro comparison of hydroxyapatite coatings obtained by cold spray and conventional thermal spray technologies. Mater. Sci. Eng. C 2020, 107, 110306. [Google Scholar] [CrossRef]
- Kowalski, S.; Gonciarz, W.; Belka, R.; Góral, A.; Chmiela, M.; Lechowicz, Ł.; Kaca, W.; Żórawski, W. Plasma-sprayed hydroxyapatite coatings and their biological properties. Coatings 2022, 12, 1317. [Google Scholar] [CrossRef]
- Qi, J.; Yu, T.; Hu, B.; Wu, H.; Ouyang, H. Current biomaterial-based bone tissue engineering and translational medicine. Int. J. Mol. Sci. 2021, 22, 10233. [Google Scholar] [CrossRef]
- Feng, J.; Liu, J.; Wang, Y.; Diao, J.; Kuang, Y.; Zhao, N. Beta-TCP scaffolds with rationally designed macro-micro hierarchical structure improved angio/osteo-genesis capability for bone regeneration. J. Mater. Sci. Mater. Med. 2023, 34, 36. [Google Scholar] [CrossRef]
- Li, T.T.; Ling, L.; Lin, M.C.; Peng, H.-K.; Ren, H.-T.; Lou, C.-W.; Lin, J.-H. Recent advances in multifunctional hydroxyapatite coating by electrochemical deposition. J. Mater. Sci. 2020, 55, 6352–6374. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, S.; Zhou, C.; Cheng, L.; Gao, X.; Xie, X.; Xu, H.H.K. Advanced smart biomaterials and constructs for hard tissue engineering and regeneration. Bone Res. 2018, 6, 31. [Google Scholar] [CrossRef] [PubMed]
- Khare, D.; Basu, B.; Dubey, A.K. Electrical stimulation and piezoelectric biomaterials for bone tissue engineering applications. Biomaterials 2020, 258, 120280. [Google Scholar]
- Jacob, J.; More, N.; Kalia, K.; Kapusetti, G. Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflamm. Regen. 2018, 38, 2. [Google Scholar] [CrossRef] [PubMed]
- Carter, A.; Popowski, K.; Cheng, K.; Greenbaum, A.; Ligler, F.S.; Moatti, A. Enhancement of bone regeneration through the converse piezoelectric effect, a novel approach for applying mechanical stimulation. Bioelectricity 2021, 3, 255–271. [Google Scholar] [CrossRef]
- Stock, J.T. Wolff’s law (bone functional adaptation). Int. Encycl. Biol. Anthropol. 2018, 4, 1–2. [Google Scholar]
- Bur, A. Measurements of the dynamic piezoelectric properties of bone as a function of temperature and humidity. J. Biomech. 1976, 9, 495–507. [Google Scholar] [CrossRef]
- Halperin, C.; Mutchnik, S.; Agronin, A.; Molotskii, M.; Urenski, P.; Salai, M.; Rosenman, G. Piezoelectric effect in human bones studied in nanometer scale. J. Appl. Phys. 2004, 96, 4–7. [Google Scholar] [CrossRef]
- Galkhowski, B.; Petrisor, B.; Dick, D. Bone stimulation for fracture healing. Indian J. Orthop. 2009, 43, 132–138. [Google Scholar]
- Reis, J.; Frias, C.; Canto, C.; Lu, M.; Marques, T.; Sim, O.; Potes, J. A new piezoelectric actuator induces bone formation in vivo: A preliminary study. J. Biomed. Biotechnol. 2012, 2012, 613403. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, C.; Li, J.; Yu, T.; Ruan, J.; Yang, F. Advanced Piezoelectric Materials, Devices, and Systems for Orthopedic Medicine. Adv. Sci. 2025, 12, 2410400. [Google Scholar] [CrossRef]
- Kwon, J.; Cho, H. Piezoelectric Heterogeneity in Collagen Type I Fibrils Quantitatively Characterized by Piezoresponse Force Microscopy. ACS Biomater. Sci. Eng. 2020, 6, 6680–6689. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Wang, K.; Liu, X.; Liu, X.; Wang, J.; Suo, M.; Li, Z. Piezoelectric Biomaterials for Providing Electrical Stimulation in Bone Tissue Engineering: Barium Titanate. J. Orthop. Transl. 2025, 51, 94–107. [Google Scholar] [CrossRef] [PubMed]
- Zarkoob, H.; Ziaei-Rad, S.; Fathi, M.; Dadkhah, H. Synthesis, Characterization and Bioactivity Evaluation of Porous Barium Titanate with Nanostructured Hydroxyapatite Coating for Biomedical Application. Adv. Eng. Mater. 2012, 14, B322–B329. [Google Scholar] [CrossRef]
- Senthilkumar, G.; Kaliaraj, G.S.; Vignesh, P.; Vishwak, R.S.; Joy, T.N.; Hemanandh, J. Hydroxyapatite–Barium/Strontium Titanate Composite Coatings for Better Mechanical, Corrosion and Biological Performance. Mater. Today Proc. 2021, 44, 3618–3621. [Google Scholar] [CrossRef]
- Nair, A.S.; Viannie, L.R. Piezoelectric Barium Titanate/Hydroxyapatite Composite Coatings on Ti-6Al-4V Alloy via Electrophoretic Deposition. Heliyon 2024, 10, e11598. [Google Scholar] [CrossRef]
- Prakasam, M.; Albino, M.; Lebraud, E.; Maglione, M.; Elissalde, C.; Largeteau, A. Hydroxyapatite–Barium Titanate Piezocomposites with Enhanced Electrical Properties. J. Am. Ceram. Soc. 2017, 100, 2621–2631. [Google Scholar] [CrossRef]
- Tavangar, M.; Heidari, F.; Hayati, R.; Tabatabaei, F.; Vashaee, D.; Tayebi, L. Manufacturing and Characterization of Mechanical, Biological and Dielectric Properties of Hydroxyapatite–Barium Titanate Nanocomposite Scaffolds. Ceram. Int. 2020, 46, 9086–9095. [Google Scholar] [CrossRef]
- Fan, B.; Guo, Z.; Li, X.; Li, S.; Gao, P.; Xiao, X.; Hou, W. Electroactive Barium Titanate Coated Titanium Scaffold Improves Osteogenesis and Osseointegration with Low-Intensity Pulsed Ultrasound for Large Segmental Bone Defects. Bioact. Mater. 2020, 5, 1087–1101. [Google Scholar] [CrossRef]
- Dias, I.J.G.; Pádua, A.S.; Pires, E.A.; Borges, J.P.M.R.; Silva, J.C.; Lança, M.C. Hydroxyapatite–Barium Titanate Biocoatings Using Room Temperature Coblasting. Crystals 2023, 13, 579. [Google Scholar] [CrossRef]
- Chen, J.; Li, S.; Jiao, Y.; Li, J.; Li, Y.; Hao, Y.L.; Zuo, Y. In Vitro Study on the Piezodynamic Therapy with a BaTiO3-Coating Titanium Scaffold under Low-Intensity Pulsed Ultrasound Stimulation. ACS Appl. Mater. Interfaces 2021, 13, 49542–49555. [Google Scholar] [CrossRef]
- Doan, N.; Reher, P.; Meghji, S.; Harris, M. In Vitro Effects of Therapeutic Ultrasound on Cell Proliferation, Protein Synthesis, and Cytokine Production by Human Fibroblasts, Osteoblasts, and Monocytes. J. Oral Maxillofac. Surg. 1999, 57, 409–419. [Google Scholar] [CrossRef] [PubMed]
- García, M.; Riverón, F.; Zarco, R.; Medina, E.; Medina, A.; Alvarado, L.; Mercado, P. Ultrasonido de Baja Intensidad en el Tratamiento de la Consolidación Ósea de Radio y Cúbito. Rev. Mex. Fís. 2001, 47, 13. [Google Scholar]
- Della Rocca, G.J. The Science of Ultrasound Therapy for Fracture Healing. Indian J. Orthop. 2009, 43, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Fung, C.-H.; Cheung, W.-H.; Pounder, N.M.; De Ana, F.J.; Harrison, A.; Leung, K.-S. Effects of different therapeutic ultrasound intensities on fracture healing in rats. Ultrasound Med. Biol. 2012, 38, 745–752. [Google Scholar] [CrossRef]
- Padilla, F.; Puts, R.; Vico, L.; Raum, K. Stimulation of bone repair with ultrasound: A review of the possible mechanical effects. Ultrasonics 2014, 54, 1125–1145. [Google Scholar] [CrossRef]
- Cao, H.; Feng, L.; Wu, Z.; Hou, W.; Li, S.; Hao, Y.; Wu, L. Effect of low-intensity pulsed ultrasound on the biological behavior of osteoblasts on porous titanium alloy scaffolds: An in vitro and in vivo study. Mater. Sci. Eng. C 2017, 80, 7–17. [Google Scholar] [CrossRef]
- Li, Y.; Li, W.; Liu, X.; Liu, X.; Zhu, B.; Guo, S.; Wang, C.; Wang, D.; Li, S.; Zhang, Z. Effects of low-intensity pulsed ultrasound in tendon injuries. J. Ultrasound Med. 2023, 42, 1923–1939. [Google Scholar] [CrossRef]
- Tang, L.; Wu, T.; Li, J.; Yu, Y.; Ma, Z.; Sun, L.; Ta, D.; Fan, X. Study on synergistic effects of nanohydroxyapatite/high-viscosity carboxymethyl cellulose scaffolds stimulated by LIPUS for bone defect repair in rats. ACS Biomater. Sci. Eng. 2024, 10, 1018–1030. [Google Scholar] [CrossRef]
- Temiz, Y.; Lovchik, R.D.; Kaigala, G.V.; Delamarche, E. Lab-on-a-chip devices: How to close and plug the lab? Microelectron. Eng. 2015, 132, 156–175. [Google Scholar] [CrossRef]
- Lafleur, J.P.; Jönsson, A.; Senkbeil, S.; Kutter, J.P. Recent advances in lab-on-a-chip for biosensing applications. Biosens. Bioelectron. 2016, 76, 213–233. [Google Scholar] [CrossRef]
- Lins, F.M.; Castor, K.; Monteiro, R.; Mota, F.B.; Rocha, L.F.M. Mapping the lab-on-a-chip patent landscape through bibliometric techniques. World Pat. Inf. 2019, 58, 101904. [Google Scholar]
- Sanjay, G.; Shreedhara, L.; Mallya, V.; Sarpangala, P.; Guttal, K.; Nandimath, K. Lab-on-a-chip—The advent of instantaneous diagnosis for a plethora of diseases. J. Acad. Dent. Educ. 2023, 9, 64–72. [Google Scholar] [CrossRef]
- Gómez, R.; Guzmán, Z.S.; Carrera, K.I.; Leal-Berumen, I.; Hurtado, A.; Herrera, G.; Orozco, V.M. Impact evaluation of high energy ball milling homogenization process in the phase distribution of hydroxyapatite-barium titanate plasma spray biocoating. Coatings 2021, 11, 728. [Google Scholar] [CrossRef]
- Putz, H.; Brandenburg, K. Match! 3.11—Phase Analysis Using Powder Diffraction; Crystal Impact: Bonn, Germany, 2003. [Google Scholar]
- Momma, K.; Izumi, F. Visualization for Electronic and Structural Analysis (VESTA), Version 3.5.7; JP-Minerals: Tsukuba-shi, Japan, 2021. [Google Scholar]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B Condens. Matter 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Yacoubi, A.E.; Massit, A.; Moutaoikel, S.E.; Rezzouk, A.; Idrissi, B.C.E. Rietveld refinement of the crystal structure of hydroxyapatite using X-ray powder diffraction. Am. J. Mater. Sci. Eng. 2017, 5, 1–5. [Google Scholar] [CrossRef]
- Al-Shakarchi, E.K.; Mahmood, N.B. Three techniques used to produce BaTiO3 fine powder. J. Mod. Phys. 2011, 2, 9. [Google Scholar] [CrossRef]
- Yashima, M.; Sakai, A.; Kamiyama, T.; Hoshikawa, A. Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction. J. Solid State Chem. 2003, 175, 272–277. [Google Scholar] [CrossRef]
- Thakur, S.; Singh, S.; Pal, B. Superior adsorptive removal of brilliant green and phenol red dyes mixture by CaO nanoparticles extracted from egg shells. J. Nanostruct. Chem. 2022, 12, 207–221. [Google Scholar] [CrossRef]
- Komuro, N.; Mikami, M.; Saines, P.J.; Cheetham, A.K. Structure-property correlations in Eu-doped tetra calcium phosphate phosphor: A key to solid-state lighting application. J. Lumin. 2015, 162, 25–30. [Google Scholar] [CrossRef]
- Kokubo, T. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef] [PubMed]
- Jhonson, D. CView, Version 3.5h; Scribner Associates, Inc.: Southern Pines, NC, USA, 2020. [Google Scholar]
- Denning, D.; Guyonnet, J.; Rodriguez, B.J. Applications of piezoresponse force microscopy in materials research: From inorganic ferroelectrics to biopiezoelectrics and beyond. Int. Mater. Rev. 2016, 61, 46–70. [Google Scholar] [CrossRef]
- Qiao, H.; Kwon, O.; Kim, Y. Electrostatic effect on off-field ferroelectric hysteresis loop in piezoresponse force microscopy. Appl. Phys. Lett. 2020, 116, 172903. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, J.; Yang, Y.; Wang, Y.; Wu, Y.; He, H.; Jiang, Z. Piezoelectric properties of rhombic LiNbO3 nanowires. RSC Adv. 2012, 2, 7380–7383. [Google Scholar] [CrossRef]
- Carl Zeiss Microscopy GmbH; ZEN 3.0, Blue Edition; Carl Zeiss Microscopy Gmbh: Jena, Germany, 2019.
- Aimi, A.; Horiuchi, K.; Yamaguchi, Y.; Ito, S.; Fujimoto, K. Disordered off-center direction of Ti4+ in pseudo-cubic type BaTiO3 prepared by mixed hydroxide process. J. Ceram. Soc. Jpn. 2021, 129, 73–78. [Google Scholar] [CrossRef]
- Zhu, W.; Akbar, S.A.; Asiaie, R.; Dutta, P.K. Synthesis, microstructure and electrical properties of hydrothermally prepared ferroelectric BaTiO3 thin films. J. Electroceram. 1998, 2, 21–31. [Google Scholar] [CrossRef]
- Khomchenko, V.A.; Kiselev, D.A.; Vieira, J.M.; Jian, L.; Kholkin, A.L.; Lopes, A.M.L.; Maglione, M. Effect of diamagnetic Ca, Sr, Pb, and Ba substitution on the crystal structure and multiferroic properties of the BiFeO3 perovskite. J. Appl. Phys. 2008, 103, 024107. [Google Scholar] [CrossRef]
- Gross, K.A.; Gross, V.; Berndt, C.C. Thermal analysis of amorphous phases in hydroxyapatite coatings. J. Am. Ceram. Soc. 1998, 81, 106–112. [Google Scholar] [CrossRef]
- Cihlár, J.A.; Buchal, A.; Trunec, M. Kinetics of thermal decomposition of hydroxyapatite bioceramics. J. Mater. Sci. 1999, 34, 6121–6131. [Google Scholar] [CrossRef]
- Wang, H.; Lee, J.K.; Moursi, A.; Lannutti, J.J. Ca/P ratio effects on the degradation of hydroxyapatite in vitro. J. Biomed. Mater. Res. Part A 2003, 67, 599–608. [Google Scholar] [CrossRef]
- Heimann, R. B Structure, properties, and biomedical performance of osteocondctive bioceramic coatings. Surf. Coat. Technol. 2013, 233, 27–38. [Google Scholar] [CrossRef]
- Singh, T.P.; Singh, H.; Singh, H. Characterization of thermal sprayed hydroxyapatite coatings on some biomedical implant materials. J. Appl. Biomater. Funct. Mater. 2014, 12, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Heimann, R.B. Plasma-sprayed hydroxylapatite coatings as biocompatible intermediaries between inorganic implant surfaces and living tissue. J. Therm. Spray Technol. 2018, 27, 1212–1237. [Google Scholar] [CrossRef]
- Kotian, R.; Rao, P.P.; Madhyastha, P. X-ray diffraction analysis of hydroxyapatite-coated in different plasma gas atmosphere on Ti and Ti-6Al-4V. Eur. J. Dent. 2019, 11, 438–446. [Google Scholar] [CrossRef]
- ISO 13779-3:2018; Implants for Surgery—Hydroxyapatite—Part 3: Chemical Analysis and Characterization of Crystallinity and Phase Purity. International Organization for Standardization: Geneva, Switzerland, 2010.
- ASTM F1609-08; Standard Specification for Calcium Phosphate Coatings for Implantable Materials. ASTM International: West Conshohocken, PA, USA, 2008.
- Kaur, S.; Sharma, S.; Bala, N. A comparative study of corrosion resistance of biocompatible coating on titanium alloy and stainless steel. Mater. Chem. Phys. 2019, 238, 121923. [Google Scholar] [CrossRef]
- Canpolat, Ö.; Çanakçı, A.; Gültekin, G. Effect of HA ratio on the morphology and characteristics of Ti-HA composite coatings on Ti6Al4V-ELI synthesized via mechanical milling. Tribol. Mater. Surf. Interfaces 2024, in press. [Google Scholar] [CrossRef]
- ISO 10993-3; Biological Evaluation of Medical Devices—Part 3: Tests for Genotoxicity, Carcinogenicity and Reproductive Toxicity. International Organization for Standardization: Geneva, Switzerland, 2018.
- ASTM F895-08; Standard Test Method for Agar Diffusion Cell Culture Screening for Cytotoxicity. ASTM International: West Conshohocken, PA, USA, 2008.
- Ossa, C.P.O.; Rogero, S.O.; Tschiptschin, A.P. Cytotoxicity study of plasma-sprayed hydroxyapatite coating on high nitrogen austenitic stainless steels. J. Mater. Sci. Mater. Med. 2006, 17, 1095–1100. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Fan, T.; Tan, Z.; Zhou, Z.; He, D. In vitro evaluation of hydroxyapatite coatings with (002) crystallographic texture deposited by micro-plasma spraying. Mater. Sci. Eng. C 2017, 75, 596–601. [Google Scholar] [CrossRef]
- Vouilloz, F.J.; Castro, M.S.; Vargas, G.E.; Gorustovich, A.; Fanovich, M.A. Reactivity of BaTiO3-Ca10(PO4)6(OH)2 phases in composite materials for biomedical applications. Ceram. Int. 2017, 43, 4212–4221. [Google Scholar] [CrossRef]
- Liu, X.; He, D.; Zhou, Z.; Guo, X.; Liu, Y.; Hou, W.; Li, H. In vitro bioactivity and antibacterial performances of atmospheric plasma sprayed c-axis preferential oriented hydroxyapatite coatings. Surf. Coat. Technol. 2021, 417, 127209. [Google Scholar] [CrossRef]
- Zhao, C.; Gao, L.; Jing, L.; Wang, X.; Zhou, Q.; Chang, J. The role of the micro-pattern and nano-topography of hydroxyapatite bioceramics on stimulating osteogenic differentiation of mesenchymal stem cells. Acta Biomater. 2018, 73, 509–521. [Google Scholar] [CrossRef] [PubMed]
- Elango, J.; Hou, C.; Bao, B.; Wang, S.; Maté Sánchez de Val, J.E.; Wenhui, W. The Molecular Interaction of Collagen with Cell Receptors for Biological Function. Polymers 2022, 14, 876. [Google Scholar] [CrossRef] [PubMed]
- Rammelt, S.; Neumann, M.; Hanisch, U.; Reinstorf, A.; Pompe, W.; Zwipp, H.; Biewener, A. Osteocalcin enhances bone remodeling around hydroxyapatite/collagen composites. J. Biomed. Mater. Res. Part A 2005, 73, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Tsao, Y.; Huang, Y.; Wu, H.; Liu, Y.; Liu, Y.; Lee, O. Osteocalcin mediates biomineralization during osteogenic maturation in human mesenchymal stromal cells. Int. J. Mol. Sci. 2017, 18, 159. [Google Scholar] [CrossRef]
- Hosseini, S.; Naderi-Manesh, H.; Vali, H.; Eslaminejad, B.; Sayahpour, F.; Sheibani, S.; Faghihi, S. Contribution of osteocalcin-mimetic peptide enhances osteogenic activity and extracellular matrix mineralization of human osteoblast-like cells. Colloids Surf. B Biointerfaces 2019, 173, 662–671. [Google Scholar] [CrossRef]
- Manolagas, S. Osteocalcin promotes bone mineralization but is not a hormone. PLoS Genet. 2020, 16, e1008584. [Google Scholar] [CrossRef]
- Chen, K.; Wang, Y.; Wu, C.; Du, Y.; Tang, H.; Zheng, S.; Wu, G. In vitro assessment of immunomodulatory and osteogenic properties in 3D-printed hydroxyapatite/barium titanate piezoelectric ceramic scaffolds. Ceram. Int. 2024, 50, 8751–8759. [Google Scholar] [CrossRef]
- Ehterami, A.; Kazemi, M.; Nazari, B.; Saraeian, P.; Azami, M. Fabrication and characterization of highly porous barium titanate based scaffold coated by Gel/HA nanocomposite with high piezoelectric coefficient for bone tissue engineering applications. J. Mech. Behav. Biomed. Mater. 2018, 79, 195–202. [Google Scholar] [CrossRef]
w/w% Ratio | ||
---|---|---|
Nomenclature | HA | BT |
HA | 100 | -- |
90H10BT | 90 | 10 |
70H30BT | 70 | 30 |
50H50BT | 50 | 50 |
Parameters | ||
---|---|---|
HA | HA-BT | |
Primary gas, Ar (psi) | 55 | 55 |
Secondary gas, He (psi) | 110 | 110 |
Carrying gas, Ar (psi) | 50 | 75 |
Voltage (V) | 32 | 32 |
Current (A) | 600 | 650 |
Powder feed (lb/hr) | 2 | 2.2 |
Atomization distance (cm) | 8.5 | 8.5 |
PHASE | HA10BT | HA30BT | HA50BT | |
---|---|---|---|---|
HA P63/m (no. 176) | Weight fraction (%) | 87.58 (±1.12) | 67.12 (±1.05) | 45.68 (±1.35) |
a = b (Å) | 9.4135 (8) | 9.4129(3) | 9.4098 (2) | |
c (Å) | 6.9147 (1) | 6.9145(2) | 6.9113 (3) | |
BT P4mm (no. 99) | Weight fraction (%) | 7.19 (±0.35) | 26.82 (±0.25) | 46.95 (±0.35) |
a = b (Å) | 3.9927 (9) | 3.9925 (1) | 3.9921 (9) | |
c (Å) | 4.0096 (1) | 4.0095 (1) | 4.0093 (4) | |
β-TCP R3c (no. 161) | Weight fraction (%) | 1.98 (±1.30) | 1.51 (±1.01) | 1.23 (±1.11) |
a = b (Å) | 10.4488 (8) | 10.4355 (8) | 10.4354 (8) | |
c (Å) | 37.4801 (4) | 37.4502 (4) | 37.4491 (9) | |
CaO Fm-3m (no. 225) | Weight fraction (%) | 1.13 (±1.65) | 1.12 (±1.17) | 1.03 (±1.89) |
a = b = c (Å) | 4.7990 (2) | 4.7989 (5) | 4.7989 (2) | |
TTCP P21 (no. 4) | Weight fraction (%) | 2.12 (±2.13) | 3.43 (±1.71) | 5.11 (±1.11) |
a (Å) | 7.0230 (1) | 7.0239 (1) | 7.0244 (3) | |
b (Å) | 11.9860 (1) | 11.9861 (2) | 11.9863 (8) | |
c (Å) | 9.4730 (1) | 9.4731 (3) | 9.4732 (1) | |
Reliability factors and goodness-of-fit | Rwp (%) | 4.35 | 4.23 | 5.1 |
Rexp (%) | 3.75 | 3.60 | 4.31 | |
ꭓ2 | 1.35 | 1.38 | 1.40 |
Ecorr (mV) | Icorr (A/cm2) | |||
---|---|---|---|---|
Ti6Al4V | −502 | ±3.1 × 10−2 | 3.83 × 10−7 | ±1.8 × 10−7 |
HA | −182 | ±4.5 × 10−2 | 2.53 × 10−7 | ±2.6 × 10−7 |
HA10BT | −218 | ±4.3 × 10−2 | 1.09 × 10−7 | ±6.1 × 10−8 |
HA30BT | −242 | ±2.3 × 10−2 | 1.57 × 10−7 | ±1.1 × 10−7 |
HA50BT | −267 | ±1.8 × 10−2 | 7.99 × 10−7 | ±3.1 × 10−7 |
D | ET | Ti6Al4V | σ | HA | σ | HA10BT | σ | HA30BT | σ | HA50BT | σ |
---|---|---|---|---|---|---|---|---|---|---|---|
1:2 | 1 | −15.59 | 13.09 | −14.36 | 8.11 | −1.01 | 3.78 | −1.30 | 1.75 | −3.32 | 3.21 |
3 | −26.73 | 3.66 | −13.96 | 0.89 | −28.46 | 7.12 | −28.21 | 5.25 | −26.98 | 9.09 | |
7 | −8.90 | 12.83 | −1.79 | 1.25 | −7.45 | 4.19 | −2.51 | 1.12 | −10.36 | 9.88 | |
21 | −3.34 | 3.46 | −3.90 | 1.34 | −6.67 | 5.54 | −3.73 | 0.69 | −3.67 | 2.44 | |
1:16 | 1 | −19.11 | 13.99 | −22.66 | 9.45 | −6.61 | 4.74 | −14.13 | 3.10 | −30.65 | 3.10 |
3 | −10.41 | 2.55 | −9.41 | 8.48 | −20.10 | 4.51 | −20.15 | 5.53 | −10.48 | 5.53 | |
7 | −7.16 | 6.61 | −5.00 | 5.02 | −20.48 | 3.72 | −5.06 | 6.04 | −12.87 | 6.04 | |
21 | −9.33 | 5.70 | −6.30 | 0.44 | −6.41 | 2.14 | −5.43 | 7.77 | −11.97 | 7.77 | |
1:128 | 1 | −4.75 | 3.02 | −15.21 | 6.88 | −11.91 | 7.11 | −17.57 | 0.21 | −26.07 | 5.79 |
3 | 3.52 | 3.25 | −2.21 | 4.84 | −6.51 | 4.85 | −1.90 | 3.17 | −5.27 | 1.75 | |
7 | −11.91 | 2.01 | −13.20 | 6.38 | −6.57 | 6.35 | −8.82 | 2.77 | −12.49 | 4.97 | |
21 | −6.55 | 4.40 | −3.02 | 1.89 | −12.99 | 7.15 | −7.57 | 8.04 | −5.19 | 2.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrera Gutiérrez, K.; Morales Morales, O.O.; Leal-Berumen, I.; Berumen Nafarrate, E.; Poblano-Salas, C.A.; Castro Beltrán, A.; Gómez Batres, R.; Orozco Carmona, V.M. Piezodynamic Behavior of HA-BT Osteoconductive Coatings Under LIPUS Stimulation in Lab-on-a-Chip Model: A Promising Strategy for Bone Regeneration. Coatings 2025, 15, 765. https://doi.org/10.3390/coatings15070765
Carrera Gutiérrez K, Morales Morales OO, Leal-Berumen I, Berumen Nafarrate E, Poblano-Salas CA, Castro Beltrán A, Gómez Batres R, Orozco Carmona VM. Piezodynamic Behavior of HA-BT Osteoconductive Coatings Under LIPUS Stimulation in Lab-on-a-Chip Model: A Promising Strategy for Bone Regeneration. Coatings. 2025; 15(7):765. https://doi.org/10.3390/coatings15070765
Chicago/Turabian StyleCarrera Gutiérrez, Karime, Oscar Omar Morales Morales, Irene Leal-Berumen, Edmundo Berumen Nafarrate, Carlos A. Poblano-Salas, Andrés Castro Beltrán, Roberto Gómez Batres, and Víctor M. Orozco Carmona. 2025. "Piezodynamic Behavior of HA-BT Osteoconductive Coatings Under LIPUS Stimulation in Lab-on-a-Chip Model: A Promising Strategy for Bone Regeneration" Coatings 15, no. 7: 765. https://doi.org/10.3390/coatings15070765
APA StyleCarrera Gutiérrez, K., Morales Morales, O. O., Leal-Berumen, I., Berumen Nafarrate, E., Poblano-Salas, C. A., Castro Beltrán, A., Gómez Batres, R., & Orozco Carmona, V. M. (2025). Piezodynamic Behavior of HA-BT Osteoconductive Coatings Under LIPUS Stimulation in Lab-on-a-Chip Model: A Promising Strategy for Bone Regeneration. Coatings, 15(7), 765. https://doi.org/10.3390/coatings15070765