Water-Developable PFAS-Free Glycan-Derived Positive Photoresist Materials for Environmentally Friendly Lithography
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Synthesis of Positive-Type Water-Developable Resist
2.2.1. Synthesis of Dextrin Based Resist, 80% Protection Rate
2.2.2. Synthesis of Dextrin Based Resist, 100% Protection Rate
2.2.3. Synthesis of Indigestible Dextrin Based Resist, 80% Protection Rate
2.2.4. Synthesis of Indigestible Dextrin Based Resist, 100% Protection Rate
2.3. Chemical Analysis of Materials
2.4. Material Property Measurement
2.4.1. Measurement of Affinity Between Resist and Substrate
2.4.2. Exposure Sensitivity Measurement
2.4.3. Measurement of Film Thickness Variation with Development Time
2.5. Spin-Coating, Water Developable Processes in Eco-Friendly Photolithography and Microfabrication Methods
3. Results and Discussions
3.1. Chemical Characterization of Materials
3.2. Material Property Evaluation
3.2.1. Evaluation of Affinity Between Resist and Substrate
3.2.2. Exposure Sensitivity Evaluation
3.2.3. Evaluation of Film Thickness Variation with Development Time
3.3. Photolithography and Microfabrication Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. A New Circular Economy Action Plan. EUR-Lex. Available online: https://edz.bib.uni-mannheim.de/edz/doku/wsa/2020/ces-2020-1189-en.pdf (accessed on 24 September 2025).
- Mubayi, V.; Ahern, C.B.; Calusinska, M.; O’Malley, M.A. Toward a Circular Bioeconomy: Designing Microbes and Polymers for Biodegradation. ACS Synth. Biol. 2024, 13, 1978–1993. [Google Scholar] [CrossRef]
- Langer, R.; Tirrell, D.A. Designing Materials for Biology and Medicine. Nature 2004, 428, 487–492. [Google Scholar] [CrossRef]
- Semenok, D.V.; Kruglov, I.A.; Savkin, I.A.; Kvashnin, A.G.; Oganov, A.R. On Distribution of Superconductivity in Metal Hydrides. Curr. Opin. Solid State Mater. Sci. 2020, 24, 100808. [Google Scholar] [CrossRef]
- Castro-Dominguez, B.; Gröls, J.R.; Alkandari, S.; Perge, L.; Sierra-Avila, C.; Ramirez, H.Z.; de Lima Fontes, M.; Yamada, C.; Lazarini, S.C.; Silva, J.M.; et al. Biopolymers and biocomposites: A comprehensive review of feedstocks, functionalities, and advanced manufacturing techniques for sustainable applications. Biotechnol. Sustain. Mater. 2025, 2, 8. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Mathers, R.T. How well can renewable resources mimic commodity monomers and polymers? J. Polym. Sci. Part A Polym. Chem. 2012, 50, 1–15. [Google Scholar] [CrossRef]
- Wang, X.L.; Yang, K.K.; Wang, Y.Z. Properties of starch blends with biodegradable polymers. J. Macromol. Sci. C Polym. Rev. 2003, 43, 385–409. [Google Scholar] [CrossRef]
- Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A new family of nature-based materials. Angew. Chem. Int. Ed. 2011, 50, 5438–5466. [Google Scholar] [CrossRef] [PubMed]
- Parthasarathy, V.; Kumar, P.S.; Albert, A.A.; Krishnasamy, S.; Chandrasekar, M. Recent progress in nanocellulose-based biocomposites for bone tissue engineering and wound healing applications. Carbohydr. Polym. 2025, 357, 123455. [Google Scholar] [CrossRef] [PubMed]
- Altyar, A.E.; El-Sayed, A.; Abdeen, A.; Piscopo, M.; Mousa, S.A.; Najda, A.; Abdel-Daim, M.M. Abdel-Daim, Future regenerative medicine developments and their therapeutic applications. Biomed. Pharmacother. 2023, 158, 114131. [Google Scholar] [CrossRef] [PubMed]
- Bettinger, C.J.; Langer, R.; Borenstein, J.T. Engineering substrate topography at the micro- and nanoscale to control cell function. Angew. Chem. Int. Ed. 2009, 48, 5406–5415. [Google Scholar] [CrossRef]
- Discher, D.E.; Janmey, P.; Wang, Y.L. Tissue cells feel and respond to the stiffness of their substrate. Science 2005, 310, 1139–1143. [Google Scholar] [CrossRef] [PubMed]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Fruncillo, S.; Su, X.; Liu, H.; Wong, L.S. Lithographic processes for the scalable fabrication of micro- and nanostructures for biochips and biosensors. ACS Sens. 2021, 6, 2002–2024. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Lee, S.Y.; Yoon, H.; Noh, I. Biological evaluation of micro-patterned hyaluronic acid hydrogel for bone tissue engineering. Pure Appl. Chem. 2014, 86, 1911–1922. [Google Scholar] [CrossRef]
- Zhu, S.; Zeng, W.; Meng, Z.; Luo, W.; Ma, L.; Li, Y.; Lin, C.; Huang, Q.; Lin, Y.; Liu, X.Y. Using wool keratin as a basic resist material to fabricate precise protein patterns. Adv. Mater. 2019, 31, 1900870. [Google Scholar] [CrossRef]
- Bhatia, S.N.; Chen, C.S. Tissue engineering at the micro-scale. Biomed. Microdevices 1999, 2, 131–144. [Google Scholar] [CrossRef]
- Edmondson, R.; Broglie, J.J.; Adcock, A.F.; Yang, L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. ASSAY Drug Dev. Technol. 2014, 12, 207–218. [Google Scholar] [CrossRef]
- Engler, A.J.; Sen, S.; Sweeney, H.L.; Discher, D.E. Matrix elasticity directs stem cell lineage specification. Cell 2006, 126, 677–689. [Google Scholar] [CrossRef]
- Xia, Y.; Whitesides, G.M. Soft lithography. Angew. Chem. Int. Ed. 1998, 37, 550–575. [Google Scholar] [CrossRef]
- Qin, D.; Xia, Y.; Whitesides, G.M. Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 2010, 5, 491–502. [Google Scholar] [CrossRef]
- Lee, C.H.; Wang, C.L.; Lin, H.F.; Chai, C.Y.; Hong, M.Y.; Ho, C.K. Toxicity of tetramethylammonium hydroxide: Review of two fatal cases of dermal exposure and development of an animal model. Toxicol. Ind. Health 2011, 27, 497–503. [Google Scholar] [CrossRef]
- Morikawa, J.; Ryu, M.; Maximova, K.; Balčytis, A.; Seniutinas, G.; Fan, L.; Mizeikis, V.; Li, J.; Wang, X.; Zamengo, M.; et al. Silk fibroin as a water-soluble bio-resist and its thermal properties. RSC Adv. 2016, 6, 11863–11869. [Google Scholar] [CrossRef]
- Park, J.; Lee, S.G.; Marelli, B.; Lee, M.; Kim, T.; Oh, H.K.; Jeon, H.; Omenetto, F.G.; Kim, S. Eco-friendly photolithography using water-developable pure silk fibroin. RSC Adv. 2016, 6, 39330–39334. [Google Scholar] [CrossRef]
- Servin, I.; Teolis, A.; Bazin, A.; Durin, P.; Sysova, O.; Gablin, C.; Saudet, B.; Leonard, D.; Soppera, O.; Leclercq, J.-L.; et al. Water-soluble bio-sourced resists for DUV lithography in a 200/300 mm pilot line environment. Micro Nano Eng. 2023, 19, 100202. [Google Scholar] [CrossRef]
- Kotthoff, M.; Müller, J.; Jürling, H.; Schlummer, M.; Fiedler, D. Perfluoroalkyl and polyfluoroalkyl substances in consumer products. Environ. Sci. Pollut. Res. 2015, 22, 14546–14559. [Google Scholar] [CrossRef]
- Cousins, I.T.; DeWitt, J.C.; Glüge, J.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C.A.; Scheringer, M.; Wang, Z. The high persistence of PFAS is sufficient for their management as a chemical class. Environ. Sci. Process. Impacts 2020, 22, 2307–2312. [Google Scholar] [CrossRef] [PubMed]
- Henry, B.J.; Carlin, J.P.; Hammerschmidt, J.A.; Buck, R.C.; Buxton, L.W.; Fiedler, H.; Seed, J.; Hernandez, O. A critical review of the application of polymer of low concern and regulatory criteria to fluoropolymers. Integr. Environ. Assess. Manag. 2018, 14, 316–334. [Google Scholar] [CrossRef]
- Zhu, S.; Tang, Y.; Lin, C.; Liu, X.Y.; Lin, Y. Recent advances in patterning natural polymers: From nanofabrication techniques to applications. Small Methods 2021, 5, 2001060. [Google Scholar] [CrossRef]
- Chung, S.C.; Park, J.S.; Jha, R.K.; Kim, J.; Kim, J.; Kim, M.; Choi, J.; Kim, H.; Park, D.-H.; Gogurla, N.; et al. Engineering silk protein to modulate polymorphic transitions for green lithography resists. ACS Appl. Mater. Interfaces 2022, 14, 56623–56634. [Google Scholar] [CrossRef] [PubMed]
- Amano, T.; Kobayasi, M.; Takei, S. Micropatterning performance and physical characteristics of water-soluble high molecular weight polysaccharide photoresist materials. J. Photopolym. Sci. Technol. 2021, 34, 181–186. [Google Scholar] [CrossRef]
- Hachikubo, Y.; Miura, S.; Yamagishi, R.; Ando, M.; Kobayashi, M.; Ota, T.; Amano, T.; Takei, S. Amylopectin-based eco-friendly photoresist material in water-developable lithography processes for surface micropatterns on polymer substrates. J. Photopolym. Sci. Technol. 2023, 36, 197–204. [Google Scholar]
- von Schreeb, A.; Sjöstrand, B.; Ek, M.; Henriksson, G. Drying and hornification of swollen cellulose. Cellulose 2025, 32, 5179–5189. [Google Scholar] [CrossRef]
- Basma, N.S.; Headen, T.F.; Shaffer, M.S.; Skipper, N.T.; Howard, C.A. Local structure and polar order in liquid N-methyl-2-pyrrolidone (NMP). J. Phys. Chem. B 2018, 122, 8963–8971. [Google Scholar] [CrossRef]
- Sen Gupta, S.K. Proton transfer reactions in apolar aprotic solvents. J. Phys. Org. Chem. 2016, 29, 251–264. [Google Scholar]
- Chew, A.K.; Walker, T.W.; Shen, Z.; Demir, B.; Witteman, L.; Euclide, J.; Van Lehn, R.C. Effect of mixed-solvent environments on the selectivity of acid-catalyzed dehydration reactions. ACS Catal. 2019, 10, 1679–1691. [Google Scholar]
- Smith, B.C. An IR spectral interpretation potpourri: Carbohydrates and alkynes. Spectrscopy 2017, 32, 18–24. [Google Scholar]
- Gafour, H.M.; Bouterfas, M.; Bekhti, N.; Derrar, S.N.; Rahal, M.S. Harmonic Dynamics of αD-Lactose in the Crystalline State. J. Mol. Imaging Dyn. 2011, 1, 1000102. [Google Scholar]
- Amano, T.; Hirata, D.; Hasegawa, Y.; Takei, S. Evaluation of Nano-Patterning Performance of Water-Soluble Material for Photoresist Using Sugar Chain. J. Photopolym. Sci. Technol. 2020, 33, 445–450. [Google Scholar] [CrossRef]
- Liu, J.; Kang, W. New Chemically Amplified Positive Photoresist with Phenolic Resin Modified by GMA and BOC Protection. Polymers 2023, 15, 1598. [Google Scholar] [CrossRef] [PubMed]
Samples | Resist Backbone | Protective Group Addition Amount (%) | PAG Addition Amount (%) | Quencher Addition Amount (%) | |
---|---|---|---|---|---|
D80 | D80-5 | Dextrin | 80 | 5 | 0.5 |
D80-10 | 10 | 1 | |||
D100 | D100-5 | 100 | 5 | 0.5 | |
D100-10 | 10 | 1 | |||
IDex80 | IDex80-5 | Indigestible dextrin | 80 | 5 | 0.5 |
IDex80-10 | 10 | 1 | |||
IDex100 | IDex100-5 | 100 | 5 | 0.5 | |
IDex100-10 | 10 | 1 |
Samples | Protective Group Addition Amount (%) | Protection Rate (%) | Mw | Average Film Thickness (nm) | |
---|---|---|---|---|---|
D80 | D80-5 | 80 | 72.5 | 19,700 | 612 |
D80-10 | 632 | ||||
D100 | D100-5 | 100 | 93.6 | 22,500 | 1052 |
D100-10 | 1071 | ||||
IDex80 | IDex80-5 | 80 | 73.5 | 2600 | 598 |
IDex80-10 | 589 | ||||
IDex100 | IDex100-5 | 100 | 90.8 | 3600 | 905 |
IDex100-10 | 915 |
Samples | Mw | Exposure Sensitivity (mJ/cm2) |
---|---|---|
D80-5 | 19,700 | 300 |
D80-10 | 140 | |
D100-5 | 22,500 | 1000 |
D100-10 | 510 | |
IDex80-5 | 2600 | 300 |
IDex80-10 | 130 | |
IDex100-5 | 3600 | 540 |
IDex100-10 | 400 |
Samples | D80-10 | IDex80-10 | |
---|---|---|---|
initial thickness (nm) | 632 | 589 | |
Film thickness after development (nm) | 3 s later | 138.7 | 9.1 |
5 s later | 27.0 | 7.1 | |
15 s later | 5.7 | 0 | |
30 s later | 0 | 0 |
Material | Protection Rate (%) | Exposure Dose (mJ/cm2) | Resolution (µm) (Mask Size: 3.5 µm) | Mw | Remarks |
---|---|---|---|---|---|
D80-10 | 72.5 | 150 | 3.6 | 19,700 | Good resolution, low sensitivity |
IDex80-10 | 73.5 | 130 | 3.7 | 2600 | Low resolution, high sensitivity |
D100-10 | 93.6 | 510 | 2.9 | 22,500 | Incomplete pattern formation |
IDex100-10 | 90.8 | 400 | 4.4 | 3600 | Pattern broadening |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hachikubo, Y.; Hayashi, H.; Ando, M.; Morita, M.; Oshima, M.; Hashim, A.M.; Azhan, N.H.; Ota, T.; Takei, S. Water-Developable PFAS-Free Glycan-Derived Positive Photoresist Materials for Environmentally Friendly Lithography. Coatings 2025, 15, 1228. https://doi.org/10.3390/coatings15101228
Hachikubo Y, Hayashi H, Ando M, Morita M, Oshima M, Hashim AM, Azhan NH, Ota T, Takei S. Water-Developable PFAS-Free Glycan-Derived Positive Photoresist Materials for Environmentally Friendly Lithography. Coatings. 2025; 15(10):1228. https://doi.org/10.3390/coatings15101228
Chicago/Turabian StyleHachikubo, Yuna, Hiryu Hayashi, Mano Ando, Mayu Morita, Misaki Oshima, Abdul Manaf Hashim, Nurul Hanis Azhan, Takayuki Ota, and Satoshi Takei. 2025. "Water-Developable PFAS-Free Glycan-Derived Positive Photoresist Materials for Environmentally Friendly Lithography" Coatings 15, no. 10: 1228. https://doi.org/10.3390/coatings15101228
APA StyleHachikubo, Y., Hayashi, H., Ando, M., Morita, M., Oshima, M., Hashim, A. M., Azhan, N. H., Ota, T., & Takei, S. (2025). Water-Developable PFAS-Free Glycan-Derived Positive Photoresist Materials for Environmentally Friendly Lithography. Coatings, 15(10), 1228. https://doi.org/10.3390/coatings15101228