Impact of BN Buffer Layer Thickness on Interfacial Structure and Band Alignment of a-BN/4H-SiC Heterojunctions
Abstract
1. Introduction
2. Experimental Procedure
2.1. Sample Preparation
2.2. Characterization Methods
3. Results and Discussion
3.1. Analysis of Surface Morphology and Structural Characteristics
3.2. Study of Band Alignment in BN/SiC Heterojunctions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kimoto, T. High-voltage SiC power devices for improved energy efficiency. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2022, 98, 161–189. [Google Scholar] [CrossRef]
- Cooper, J.J.; Melloch, M.; Singh, R.; Agarwal, A.; Palmour, J. Status and prospects for SiC power MOSFETs. IEEE Trans. Electron. Devices 2002, 49, 658–664. [Google Scholar] [CrossRef]
- Napoli, M. SiC detectors: A review on the use of silicon carbide as radiation detection material. Front. Phys. 2022, 10, 898833. [Google Scholar] [CrossRef]
- Jiang, S.; Zhang, M.; Meng, X.; Zheng, X.; Feng, S.; Zhang, Y. Trap Characterization of Trench-Gate SiC MOSFETs Based on Transient Drain Current. IEEE Trans. Power Electron. 2023, 38, 6555–6565. [Google Scholar] [CrossRef]
- Mao, W.; Cui, C.; Xiong, H.; Zhang, N.; Liu, S.; Dou, M.; Song, L.; Yang, D.; Pi, X. Surface defects in 4H-SiC: Properties, characterizations and passivation schemes. Semicond. Sci. Technol. 2023, 38, 073001. [Google Scholar] [CrossRef]
- Kimoto, T.; Watanabe, H. Defect engineering in SiC technology for high-voltage power devices. Appl. Phys. Express 2020, 13, 120101. [Google Scholar] [CrossRef]
- Tian, B.; He, F.; Liu, J.; Huang, X.; Jin, R. Advances in Inversion Channel Mobility Model for 4H-SiC MOS Devices. Silicon 2023, 15, 7669–7684. [Google Scholar] [CrossRef]
- Huang, Q.; Guo, Y.; Wang, A.; Gu, L.; Wang, Z.; Ding, C.; Shen, Y.; Ma, H.; Zhang, Q. High-Breakdown and Low-Leakage 4H-SiC MOS Capacitor Based on HfO2/SiO2 Stacked Gate Dielectric in Trench Structures. Nanomaterials 2025, 15, 343. [Google Scholar] [CrossRef]
- Wang, Z.; Bai, Z.; Guo, Y.; Ding, C.; Huang, Q.; Gu, L.; Shen, Y.; Zhang, Q.; Ma, H. Reduction of Interface State Density in 4H-SiC MOS Capacitors Modified by ALD-Deposited Interlayers. Nanomaterials 2025, 15, 555. [Google Scholar] [CrossRef]
- Kobayashi, T.; Okuda, T.; Tachiki, K.; Ito, K.; Matsushita, Y.; Kimoto, T. Design and formation of SiC (0001)/SiO2 interfaces via Si deposition followed by low-temperature oxidation and high-temperature nitridation. Appl. Phys. Express 2020, 13, 091003. [Google Scholar] [CrossRef]
- Liu, X.; Wu, T.; Zhao, J.; Zhu, J.; Chen, X.; Yu, H.; Gao, Y.; Zhou, J.; Chen, Z. High-Sensitivity Amorphous Boron Nitride Vacuum Ultraviolet Photodetectors. IEEE Electron. Device Lett. 2025, 46, 76–79. [Google Scholar] [CrossRef]
- Sattari-Esfahlan, S.M.; Mirzaei, S.; Josline, M.J.; Moon, J.-Y.; Hyun, S.-H.; Jang, H.; Lee, J.-H. Amorphous boron nitride: Synthesis, properties and device application. Nano Converg. 2025, 12, 22. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Wang, D.; Fu, K.; Mudiyanselage, D.; Fu, H.; Zhao, Y. A review of ultrawide bandgap materials: Properties, synthesis and devices. Oxf. Open Mater. Sci. 2022, 2, itac004. [Google Scholar] [CrossRef]
- Kim, J.; Moon, S.; Im, S.; Song, J.; Ji, C.; Pak, S.; Kim, J. The heterostructure of hexagonal boron nitride with wurtzite III-nitrides for optoelectronic and electronic applications. J. Appl. Phys. 2025, 137, 210902. [Google Scholar] [CrossRef]
- Feng, B.; Chen, J.; Yang, Y.; Yang, M.; Wang, H.; Zhong, C.; Hao, Y.; Yang, J.; Jiao, J.; Yao, Y. Fabrication of BN thin films by chemical vapor deposition on 4H-SiC (0001) single-crystalline surfaces. Vacuum 2024, 222, 113009. [Google Scholar] [CrossRef]
- Bo, M.; Li, H.; Deng, A.; Li, L.; Yao, C.; Huang, Z.; Peng, C. Bond states, moiré patterns, and bandgap modulation of two-dimensional BN/SiC van der Waals heterostructures. Mater. Adv. 2020, 1, 1186–1192. [Google Scholar] [CrossRef]
- Zhukovskii, Y.F.; Pugno, N.; Popov, A.I.; Balasubramanian, C.; Bellucci, S. Influence of F centres on structural and electronic properties of AlN single-walled nanotubes. J. Phys. Condens. Matter 2007, 19, 395021. [Google Scholar] [CrossRef]
- Li, Y.; Guo, J.; Zheng, W.; Huang, F. Amorphous boron nitride for vacuum-ultraviolet photodetection. Appl. Phys. Lett. 2020, 117, 023504. [Google Scholar] [CrossRef]
- Majety, S.; Li, J.; Zhao, W.; Huang, B.; Wei, S.; Lin, J.; Jiang, H. Hexagonal boron nitride and 6H-SiC heterostructures. Appl. Phys. Lett. 2013, 102, 213505. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, X.; Du, Y.; Ou, Y.; Song, Q.; Liu, T.; Wu, X.; Tan, S.; Wang, B. Overall fabrication of uniform BN interphase on 2.5D-SiC fabric via precursor-derived methods. Vacuum 2024, 230, 113727. [Google Scholar] [CrossRef]
- Penuelas, J.; Ouerghi, A.; Lucot, D.; David, C.; Gierak, J.; Estrade-Szwarckopf, H.; Andreazza-Vignolle, C. Surface morphology and characterization of thin graphene films on SiC vicinal substrate. Phys. Rev. B 2009, 79, 033408. [Google Scholar] [CrossRef]
- Wang, C.; Kurokawa, S.; Doi, T.; Yuan, J.; Fan, L.; Mitsuhara, M.; Lu, H.; Yao, W.; Zhang, Y.; Zhang, K. SEM, AFM and TEM Studies for Repeated Irradiation Effect of Femtosecond Laser on 4H-SiC Surface Morphology at Near Threshold Fluence. ECS J. Solid State Sci. Technol. 2018, 7, P29–P34. [Google Scholar] [CrossRef]
- Yang, X.; Ohkubo, Y.; Endo, K.; Yamamura, K. AFM observation of initial oxidation stage of 4H-SiC (0001) in electrochemical mechanical polishing. In Proceedings of the 19th CIRP Conference on Electro Physical and Chemical Machining, Bilbao, Spain, 23–27 April 2017; pp. 746–751. [Google Scholar]
- Stewart, D.; Lad, R. Enhanced Crystallinity of h-BN Films Induced by Substrate Bias During Magnetron Sputtering. Phys. Status Solidi B-Basic. Solid State Phys. 2018, 255, 1700458. [Google Scholar] [CrossRef]
- Ye, J.; Oechsner, H. On the nucleation of the cubic phase in boron nitride films. Thin Solid Film. 2006, 514, 138–144. [Google Scholar] [CrossRef]
- Zhang, W.J.; Chong, Y.M.; Bello, I.; Lee, S.T. Nucleation, growth and characterization of cubic boron nitride (cBN) films. J. Phys. D Appl. Phys. 2007, 40, 6159. [Google Scholar] [CrossRef]
- Yang, Z.; Craig, D. Monitoring film coalescence from aqueous polymeric dispersions using atomic force microscopy: Surface topographic and nano-adhesion studies. Asian J. Pharm. Sci. 2020, 15, 104–111. [Google Scholar] [CrossRef]
- Tay, R.; Wang, X.; Tsang, S.; Loh, G.; Singh, R.; Li, H.; Mallick, G.; Teo, E. A systematic study of the atmospheric pressure growth of large-area hexagonal crystalline boron nitride film. J. Mater. Chem. C 2014, 2, 1650–1657. [Google Scholar] [CrossRef]
- Börrnert, F. Thoughts about next-generation (S)TEM instruments in science. Micron 2016, 90, 1–5. [Google Scholar] [CrossRef]
- Chubarov, M.; Pedersen, H.; Högberg, H.; Czigany, Z.; Henry, A. Chemical vapour deposition of epitaxial rhombohedral BN thin films on SiC substrates. Crystengcomm 2014, 16, 5430–5436. [Google Scholar] [CrossRef]
- Park, J.-H.; Choi, S.H.; Zhao, J.; Song, S.; Yang, W.; Kim, S.M.; Kim, K.K.; Lee, Y.H. Thickness-controlled multilayer hexagonal boron nitride film prepared by plasma-enhanced chemical vapor deposition. Curr. Appl. Phys. 2016, 16, 1229–1235. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, R.; Guo, X.; Dai, J. A cross-sectional TEM sample preparation method for films deposited on metallic substrates. Mater. Charact. 2007, 58, 666–669. [Google Scholar] [CrossRef]
- Chen, J.; Tao, R.; Wang, G.; Yin, Z.; Zeng, L.; Yu, X.; Zhang, S.; Wu, Y.; Li, Z.; Zhang, X. The interface microstructure and band alignment of hexagonal boron nitride/diamond heterojunctions. J. Mater. Chem. C 2023, 11, 5324–5330. [Google Scholar] [CrossRef]
- Qu, Y.; Xu, H.; Hu, J.; Wang, F.; Liu, Y. Tuning the electronic properties and band offset of h-BN/diamond mixed-dimensional heterostructure by biaxial strain. Sci. Rep. 2024, 14, 9414. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Lu, Y.; Zhang, Z.; Shan, C.; Li, B.; Shen, D.; Yao, B.; Zhang, J.; Zhao, D.; Fan, X. Valence band offset of ZnO/Zn0.85Mg0.15O heterojunction measured by x-ray photoelectron spectroscopy. Appl. Phys. Lett. 2008, 93, 082108. [Google Scholar] [CrossRef]
- Nandee, R.; Chowdhury, M.; Rana, M.; Hossain, N.; Nondy, S. Bandgap design of fabricated BN/ZnO/Al2O3/TiO2 doped graphene using XPS approach. Appl. Eng. Sci. 2024, 17, 100166. [Google Scholar] [CrossRef]
- Lin, Y.-R.; Franke, M.; Parhizkar, S.; Raths, M.; Wen-zhe Yu, V.; Lee, T.-L.; Soubatch, S.; Blum, V.; Tautz, F.S.; Kumpf, C.; et al. Boron nitride on SiC(0001). Phys. Rev. Mater. 2022, 6, 064002. [Google Scholar] [CrossRef]
- Sattari-Esfahlan, S.; Kim, H.; Hyun, S.; Choi, J.; Hwang, H.; Kim, E.; Park, H.; Lee, J. Low-Temperature Direct Growth of Amorphous Boron Nitride Films for High-Performance Nanoelectronic Device Applications. Acs Appl. Mater. Interfaces 2023, 15, 7274–7281. [Google Scholar] [CrossRef]
- Lee, K.; Jacobson, N. Chemical-Stability of the Fiber Coating Matrix Interface in Silicon-Based Ceramic-Matrix Composites. J. Am. Ceram. Soc. 1995, 78, 711–715. [Google Scholar] [CrossRef]
- Jung, D.; Jang, Y.; Sultane, P.; Bielawski, C.; Oh, J. Energy band offsets of BeO dielectrics grown via atomic-layer deposition on β-Ga2O3 substrates. J. Alloys Compd. 2022, 922, 166197. [Google Scholar] [CrossRef]
- Wang, A.-F.; Ma, H.-P.; Huang, Q.-M.; Gu, L.; Shen, Y.; Ding, C.; Liu, Y.-C.; Xu, K.; Zhucheng, L.; Zhang, L.; et al. Band Alignment, Thermal Transport Property, and Electrical Performance of High-Quality β-Ga2O3/AlN Schottky Barrier Diode Grown via MOCVD. ACS Appl. Mater. Interfaces 2025, 17, 27517–27529. [Google Scholar] [CrossRef]
- Yang, R.; Cao, X.; Ma, H.; Wen, X.; Zhao, X.; Yang, L.; Shen, Y. Interface band alignment of amorphous Ga2O3/Ge heterojunctions fabricated by atomic layer deposition. Opt. Mater. 2024, 150, 115097. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, A.-F.; Ma, H.-P.; Qi, X.; Yuan, Q.; Yang, M.; Qiu, M.; Zhang, B.; Jiang, N.; Zhang, Q.J. Impact of an annealing atmosphere on band-alignment of a plasma-enhanced atomic layer deposition-grown Ga2O3/SiC heterojunction. Mater. Today Phys. 2024, 49, 101593. [Google Scholar] [CrossRef]
Sample | Eg | EV | ECL | ECL − EV |
---|---|---|---|---|
BN | 5.9 eV | 2.68 eV | 398.57 eV (N 1s) | 395.89 eV |
4H-SiC | 3.2 eV | 1.93 eV | 152.04 eV (Si 2s) | 150.11 eV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.-C.; Chen, W.-J.; Luo, M.; Zhou, Z.; Gu, L.; Shen, Y.; Qi, X.; Ma, H.-P.; Zhang, Q.-C. Impact of BN Buffer Layer Thickness on Interfacial Structure and Band Alignment of a-BN/4H-SiC Heterojunctions. Coatings 2025, 15, 1224. https://doi.org/10.3390/coatings15101224
Liu Y-C, Chen W-J, Luo M, Zhou Z, Gu L, Shen Y, Qi X, Ma H-P, Zhang Q-C. Impact of BN Buffer Layer Thickness on Interfacial Structure and Band Alignment of a-BN/4H-SiC Heterojunctions. Coatings. 2025; 15(10):1224. https://doi.org/10.3390/coatings15101224
Chicago/Turabian StyleLiu, Yang-Chao, Wen-Jie Chen, Man Luo, Zimo Zhou, Lin Gu, Yi Shen, Xin Qi, Hong-Ping Ma, and Qing-Chun Zhang. 2025. "Impact of BN Buffer Layer Thickness on Interfacial Structure and Band Alignment of a-BN/4H-SiC Heterojunctions" Coatings 15, no. 10: 1224. https://doi.org/10.3390/coatings15101224
APA StyleLiu, Y.-C., Chen, W.-J., Luo, M., Zhou, Z., Gu, L., Shen, Y., Qi, X., Ma, H.-P., & Zhang, Q.-C. (2025). Impact of BN Buffer Layer Thickness on Interfacial Structure and Band Alignment of a-BN/4H-SiC Heterojunctions. Coatings, 15(10), 1224. https://doi.org/10.3390/coatings15101224