Effects of 3D Printing Parameters on the Coating Performance of Chinese Lacquer on PLA Substrates
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Equipment
2.2. Three-Dimensional Printing Process
2.3. Lacquering Process
2.4. Evaluation of PLA Surface Properties
2.4.1. Surface Roughness
2.4.2. Glossiness
2.4.3. Adhesion
2.4.4. Abrasion Resistance
2.4.5. Scanning Electron Microscopy (SEM)
2.5. Statistical Analysis
3. Results
3.1. Analysis of Surface Roughness of PLA Specimens
3.2. Surface Gloss, Adhesion, and Wear Resistance of Chinese Lacquer on PLA Substrates
3.3. Microstructure of Chinese Lacquer on PLA Substrates
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shahrubudin, N.; Lee, T.C.; Ramlan, R. An overview on 3D printing technology: Technological, materials, and applications. Procedia Manuf. 2019, 35, 1286–1296. [Google Scholar] [CrossRef]
- Bozkurt, Y.; Karayel, E. 3D printing technology; methods, biomedical applications, future opportunities and trends. J. Mater. Res. Technol. 2021, 14, 1430–1450. [Google Scholar] [CrossRef]
- Tofail, S.A.M.; Koumoulos, E.P.; Bandyopadhyay, A.; Bose, S.; O’Donoghue, L.; Charitidis, C. Additive manufacturing: Scientific and technological challenges, market uptake and opportunities. Mater. Today 2018, 21, 22–37. [Google Scholar] [CrossRef]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef]
- Tümer, E.H.; Erbil, H.Y. Extrusion-based 3D printing applications of PLA composites: A review. Coatings 2021, 11, 390. [Google Scholar] [CrossRef]
- Taib, N.-A.A.B.; Rahman, M.R.; Huda, D.; Kuok, K.K.; Hamdan, S.; Bakri, M.K.B.; Julaihi, M.R.M.B. A review on poly lactic acid (PLA) as a biodegradable polymer. Polym. Bull. 2023, 80, 1179–1213. [Google Scholar] [CrossRef]
- Akhoundi, B.; Nabipour, M.; Kordi, O.; Hajami, F. Calculating printing speed in order to correctly print PLA/continuous glass fiber composites via fused filament fabrication 3D printer. J. Thermoplast. Compos. Mater. 2023, 36, 162–181. [Google Scholar] [CrossRef]
- Baran, E.H.; Erbil, H.Y. Surface modification of 3D printed PLA objects by fused deposition modeling: A review. Colloids Interfaces 2019, 3, 43. [Google Scholar] [CrossRef]
- Jordá-Vilaplana, A.; Fombuena, V.; García-García, D.; Samper, M.D.; Sánchez-Nácher, L. Surface modification of polylactic acid (PLA) by air atmospheric plasma treatment. Eur. Polym. J. 2014, 58, 23–33. [Google Scholar] [CrossRef]
- Li, J.; Lu, X.L.; Zheng, Y.F. Effect of surface modified hydroxyapatite on the tensile property improvement of HA/PLA composite. Appl. Surf. Sci. 2008, 255, 494–497. [Google Scholar] [CrossRef]
- Vicente, C.; Fernandes, J.; Deus, A.; Vaz, M.; Leite, M.; Reis, L. Effect of protective coatings on the water absorption and mechanical properties of 3D printed PLA. Frat. Integrità Strutt. 2019, 13, 748–756. [Google Scholar] [CrossRef]
- Aziz, R.; Haq, M.I.U.; Raina, A. Effect of surface texturing on friction behaviour of 3D printed polylactic acid (PLA). Polym. Test. 2020, 85, 106434. [Google Scholar] [CrossRef]
- Pušnik Črešnar, K.; Aulova, A.; Bikiaris, D.N.; Lambropoulou, D.; Kuzmič, K.; Fras Zemljič, L. Incorporation of metal-based nanoadditives into the PLA matrix: Effect of surface properties on antibacterial activity and mechanical performance of PLA nanoadditive films. Molecules 2021, 26, 4161. [Google Scholar] [CrossRef]
- Zhou, Y.; Long, C.; Huang, J.; Deng, Z.; Cao, T. Effect of surface treatments on properties of lacquer seed shell fiber-reinforced poly (lactic acid) composites. J. Reinf. Plast. Compos. 2013, 32, 1348–1358. [Google Scholar] [CrossRef]
- Lu, R.; Yoshida, T.; Miyakoshi, T. Oriental lacquer: A natural polymer. Polym. Rev. 2013, 53, 153–191. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, B.; Jiang, L.; Wu, J.; Sun, G. Natural lacquer was used as a coating and an adhesive 8000 years ago, by early humans at Kuahuqiao, determined by ELISA. J. Archaeol. Sci. 2018, 100, 80–87. [Google Scholar] [CrossRef]
- Kanehashi, S.; Oyagi, H.; Lu, R.; Miyakoshi, T. Development of bio-based hybrid resin, from natural lacquer. Prog. Org. Coat. 2014, 77, 24–29. [Google Scholar] [CrossRef]
- Li, D.; Li, K.; Fang, J. Research progress on modification and application of raw lacquer. ChemistrySelect 2022, 7, e202200943. [Google Scholar] [CrossRef]
- Song, X.; Yang, Y.; Yang, R.; Shafi, M. Keeping watch on intangible cultural heritage: Live transmission and sustainable development of Chinese lacquer art. Sustainability 2019, 11, 3868. [Google Scholar] [CrossRef]
- Lu, R.; Wan, Y.Y.; Honda, T.; Ishimura, T.; Kamiya, Y.; Miyakoshi, T. Design and characterization of modified urethane lacquer coating. Prog. Org. Coat. 2006, 57, 215–222. [Google Scholar] [CrossRef]
- Lu, R.; Harigaya, S.; Ishimura, T.; Nagase, K.; Miyakoshi, T. Development of a fast drying lacquer based on raw lacquer sap. Prog. Org. Coat. 2004, 51, 238–243. [Google Scholar]
- Li, Y.; Yuan, J.; Wang, H.; Li, S.; Liu, Z.; Lu, Y.; Zhang, J.; Yi, Y.; Shi, J.; Wu, H.; et al. Enhanced wood protection and sustainability via nano-modified raw lacquer coatings: Preparation, properties, and performance evaluation. Ind. Crops Prod. 2025, 233, 121417. [Google Scholar] [CrossRef]
- Wu, T.; Xu, W. Preparation of tung oil-modified raw lacquer films and application for mechanical carving technique. Coatings 2024, 14, 1264. [Google Scholar] [CrossRef]
- Kovan, V.; Tezel, T.; Topal, E.S.; Camurlu, H.E. Printing parameters effect on surface characteristics of 3D printed PLA materials. Mach. Technol. Mater. 2018, 12, 266–269. [Google Scholar]
- Arnold, C.; Monsees, D.; Hey, J.; Schweyen, R. Surface quality of 3D-printed models as a function of various printing parameters. Materials 2019, 12, 1970. [Google Scholar] [CrossRef]
- Kristiawan, R.B.; Imaduddin, F.; Ariawan, D.; Ubaidillah; Arifin, Z. A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters. Open Eng. 2021, 11, 639–649. [Google Scholar] [CrossRef]
- Almeida, J.H.S., Jr.; Jayaprakash, S.; Kolari, K.; Kuva, J.; Kukko, K.; Partanen, J. The role of printing parameters on the short beam strength of 3D-printed continuous carbon fibre reinforced epoxy-PETG composites. Compos. Struct. 2024, 337, 118034. [Google Scholar] [CrossRef]
- Wu, H.C.; Chen, T.C.T. Quality control issues in 3D-printing manufacturing: A review. Rapid Prototyp. J. 2018, 24, 607–614. [Google Scholar] [CrossRef]
- Pereira, T.; Potgieter, J.; Kennedy, J.V. A fundamental study of 3D printing testing methods for the development of new quality management strategies. In Proceedings of the 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Auckland, New Zealand, 21–23 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar]
- Santana, L.; Alves, J.L.; Netto, A.C.S. A study of parametric calibration for low cost 3D printing: Seeking improvement in dimensional quality. Mater. Des. 2017, 135, 159–172. [Google Scholar] [CrossRef]
- Pandey, P.M.; Reddy, N.V.; Dhande, S.G. Improvement of surface finish by staircase machining in fused deposition modeling. J. Mater. Process. Technol. 2003, 132, 323–331. [Google Scholar] [CrossRef]
- Wenbin, H.; Yong, T.L.; Haiqing, G. A study of the staircase effect induced by material shrinkage in rapid prototyping. Rapid Prototyp. J. 2005, 11, 82–89. [Google Scholar] [CrossRef]
- Bonilla-Cruz, J.; Sy, J.A.C.; Lara-Ceniceros, T.E.; Gaxiola-López, J.C.; García, V.; Basilia, B.A.; Advincula, R.C. Superhydrophobic μ-pillars via simple and scalable SLA 3D-printing: The staircase effect and their wetting models. Soft Matter 2021, 17, 7524–7533. [Google Scholar]
- Järnström, J.; Ihalainen, P.; Backfolk, K.; Peltonen, J. Roughness of pigment coatings and its influence on gloss. Appl. Surf. Sci. 2008, 254, 5741–5749. [Google Scholar] [CrossRef]
- Thumsorn, S.; Prasong, W.; Kurose, T.; Ishigami, A.; Kobayashi, Y.; Ito, H. Rheological behavior and dynamic mechanical properties for interpretation of layer adhesion in FDM 3D printing. Polymers 2022, 14, 2721. [Google Scholar] [CrossRef]
- Günther, N.; Griese, M.; Stammen, E.; Dilger, K. Modeling of adhesive layers with temperature-dependent cohesive zone elements for predicting adhesive failure during the drying process of cathodic dip painting. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2019, 233, 485–494. [Google Scholar]
- Zhiani Hervan, S.; Altınkaynak, A.; Parlar, Z. Hardness, friction and wear characteristics of 3D-printed PLA polymer. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2021, 235, 1590–1598. [Google Scholar]
- Liao, Y.; Liu, C.; Coppola, B.; Barra, G.; Di Maio, L.; Incarnato, L.; Lafdi, K. Effect of porosity and crystallinity on 3D printed PLA properties. Polymers 2019, 11, 1487. [Google Scholar] [CrossRef] [PubMed]
- Von Windheim, N.; Collinson, D.W.; Lau, T.; Brinson, L.C.; Gall, K. The influence of porosity, crystallinity and interlayer adhesion on the tensile strength of 3D printed polylactic acid (PLA). Rapid Prototyp. J. 2021, 27, 1327–1336. [Google Scholar] [CrossRef]
- Zhou, X.; Gao, Z.; Wang, X.; Wang, F. Mathematical model for characterizing the full process of volatile organic compound emissions from paint film coating on porous substrates. Build. Environ. 2020, 182, 107062. [Google Scholar] [CrossRef]
- Hou, J.; Wang, Y.; Wang, T.; Xu, G.; Feng, X.; Liu, X. The Effects of Repeated Kurome Treatment on Chinese Lacquer and Its Film Propertie. Polymers 2025, 17, 1481. [Google Scholar] [CrossRef]
- Han, J.; Webb, M.; Hao, X.; Khanjian, H.; Schilling, M.R. Surface appearance and morphology changes of Asian lacquer due to artificial aging: Impacts of traditional additives. J. Cult. Herit. 2023, 63, 249–262. [Google Scholar] [CrossRef]
Factor | Without Chinese Lacquer Coating | With Chinese Lacquer Coating | ||||
---|---|---|---|---|---|---|
Ra (μm) | Rq (μm) | Rt (μm) | Ra (μm) | Rq (μm) | Rt (μm) | |
Print speed (mm/s) | ||||||
60 | 9.83 ± 1.89 c | 10.32 ± 2.01 c | 35.98 ± 3.12 a | 2.01 ± 0.45 c | 2.02 ± 0.51 c | 10.02 ± 2.89 c |
80 | 10.38 ± 1.92 b | 10.50 ± 2.11 b | 35.48 ± 3.01 b | 2.11 ± 0.48 b | 2.11 ± 0.53 b | 10.48 ± 3.01 b |
100 | 11.00 ± 1.95 a | 11.00 ± 2.15 a | 35.02 ± 2.89 c | 2.20 ± 0.52 a | 2.20 ± 0.55 a | 10.98 ± 3.12 a |
Layer height (mm) | ||||||
0.1 | 7.01 ± 0.89 c | 7.02 ± 0.92 c | 31.02 ± 1.89 c | 1.01 ± 0.25 c | 1.02 ± 0.28 c | 5.02 ± 1.89 c |
0.2 | 10.52 ± 1.12 b | 10.53 ± 1.15 b | 37.03 ± 2.12 b | 2.03 ± 0.32 b | 2.03 ± 0.35 b | 10.03 ± 2.12 b |
0.3 | 13.03 ± 1.25 a | 13.04 ± 1.28 a | 39.04 ± 2.25 a | 3.04 ± 0.38 a | 3.04 ± 0.41 a | 15.04 ± 2.25 a |
Infill density (%) | ||||||
10 | 10.51 ± 2.89 a | 10.52 ± 2.91 a | 35.53 ± 3.45 a | 2.04 ± 0.89 a | 2.02 ± 0.93 a | 10.51 ± 3.45 a |
40 | 10.49 ± 2.47 a | 10.50 ± 2.67 a | 35.49 ± 3.25 a | 2.00 ± 0.88 a | 2.05 ± 0.90 a | 10.46 ± 3.34 a |
70 | 10.53 ± 2.68 a | 10.57 ± 2.89 a | 35.50 ± 3.34 a | 2.01 ± 0.87 a | 2.01 ± 0.69 a | 10.50 ± 3.24 a |
p Values | ||||||
Print speed | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Layer height | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Infill density | 0.856 | 0.842 | 0.891 | 0.823 | 0.835 | 0.879 |
Print speed × Layer height | 0.078 | 0.092 | 0.015 | 0.071 | 0.087 | 0.024 |
Print speed × Infill density | 0.234 | 0.251 | 0.198 | 0.267 | 0.242 | 0.213 |
Layer height × Infill density | 0.543 | 0.561 | 0.598 | 0.578 | 0.552 | 0.612 |
Print speed × Layer height × Infill density | 0.789 | 0.801 | 0.823 | 0.812 | 0.795 | 0.834 |
Factor | Gloss (GU) | Adhesion (MPa) | Wear Resistance (g) |
---|---|---|---|
Print speed (mm/s) | |||
60 | 43.02 ± 14.46 | 7.51 ± 0.56 | 0.053 ± 0.009 |
80 | 42.97 ± 14.41 | 7.98 ± 0.59 | 0.052 ± 0.015 |
100 | 42.91 ± 14.39 | 8.31 ± 0.62 | 0.050 ± 0.014 |
Layer height (mm) | |||
0.1 | 53.86 ± 0.26 | 7.23 ± 0.36 | 0.062 ± 0.011 |
0.2 | 49.75 ± 0.08 | 7.92 ± 0.11 | 0.046 ± 0.008 |
0.3 | 25.29 ± 0.17 | 8.65 ± 0.46 | 0.036 ± 0.007 |
Infill density (%) | |||
10 | 42.95 ± 14.37 | 7.63 ± 0.34 | 0.059 ± 0.012 |
40 | 42.97 ± 14.43 | 7.46 ± 0.27 | 0.044 ± 0.006 |
70 | 42.98 ± 14.41 | 7.56 ± 0.53 | 0.039 ± 0.013 |
Print speed | 0.874 | <0.001 | 0.923 |
Layer height | <0.001 | <0.001 | <0.001 |
Infill density | 0.956 | 0.891 | <0.001 |
Print speed × Layer height | 0.912 | 0.023 | 0.867 |
Print speed × Infill density | 0.845 | 0.781 | 0.912 |
Layer height × Infill density | 0.893 | 0.634 | <0.001 |
Print speed × Layer height × Infill density | 0.921 | 0.723 | 0.894 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Feng, Y.; Olarescu, A.; Chen, Y.; Liu, X. Effects of 3D Printing Parameters on the Coating Performance of Chinese Lacquer on PLA Substrates. Coatings 2025, 15, 1222. https://doi.org/10.3390/coatings15101222
Xie Y, Feng Y, Olarescu A, Chen Y, Liu X. Effects of 3D Printing Parameters on the Coating Performance of Chinese Lacquer on PLA Substrates. Coatings. 2025; 15(10):1222. https://doi.org/10.3390/coatings15101222
Chicago/Turabian StyleXie, Yi, Yuemin Feng, Alin Olarescu, Yushu Chen, and Xinyou Liu. 2025. "Effects of 3D Printing Parameters on the Coating Performance of Chinese Lacquer on PLA Substrates" Coatings 15, no. 10: 1222. https://doi.org/10.3390/coatings15101222
APA StyleXie, Y., Feng, Y., Olarescu, A., Chen, Y., & Liu, X. (2025). Effects of 3D Printing Parameters on the Coating Performance of Chinese Lacquer on PLA Substrates. Coatings, 15(10), 1222. https://doi.org/10.3390/coatings15101222