Switchable Dual-Functional Metasurface for THz Absorption and Electromagnetically Induced Transparency
Abstract
1. Introduction
2. Methods
2.1. Structure Design
2.2. Characterization
3. Results and Discussions
3.1. Electromagnetically Induced Transparency with VO2 in the Insulating State
3.2. Narrow-Band Absorption with VO2 in the Metallic State
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, Q.; Sun, S.; Xiao, S.; Zhou, L. High-Efficiency Metasurfaces: Principles, Realizations, and Applications. Adv. Opt. Mater. 2018, 6, 1800415. [Google Scholar] [CrossRef]
- Nong, J.; Tang, L.; Lan, G.; Luo, P.; Li, Z.; Huang, D.; Yi, J.; Shi, H.; Wei, W. Enhanced Graphene Plasmonic Mode Energy for Highly Sensitive Molecular Fingerprint Retrieval. Laser Photonics Rev. 2020, 15, 2000300. [Google Scholar] [CrossRef]
- Kotov, O.V.; Lozovik, Y.E. Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films. Phys. Rev. B 2016, 93, 235417. [Google Scholar] [CrossRef][Green Version]
- Beruete, M.; Jáuregui-López, I. Terahertz Sensing Based on Metasurfaces. Adv. Opt. Mater. 2019, 8, 1900721. [Google Scholar] [CrossRef][Green Version]
- Amin, M.; Khan, A.D. Polarization selective electromagnetic-induced transparency in the disordered plasmonic quasicrystal structure. J. Phys. Chem. C 2015, 119, 21633–21638. [Google Scholar] [CrossRef]
- Li, J.; Li, J.T.; Yue, Z.; Zheng, C.L.; Wang, G.C.; Liu, J.Y.; Xu, H.; Song, C.Y.; Yang, F.; Li, H.; et al. Structured Vector Field Manipulation of Terahertz Wave along the Propagation Direction Based on Dielectric Metasurfaces. Laser Photonics Rev. 2022, 16, 2200325. [Google Scholar] [CrossRef]
- Aimal, D.K.; Qandeel, R.; Adnan, D.K.; Fazal, E.S.; Muhammad, N.; Salman, A.; Haseeb, A.K. Broadband Solar Energy Absorption in Plasmonic Thin-Film Amorphous Silicon Solar Cell. Coatings 2019, 9, 638. [Google Scholar]
- Jepsen, P.U.; Fischer, B.M.; Thoman, A.; Helm, H.; Suh, J.Y.; Lopez, R.; Haglund, R.F. Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy. Phys. Rev. B 2006, 74, 205103.1–205103.9. [Google Scholar] [CrossRef][Green Version]
- Nakajima, M.; Takubo, N.; Hiroi, Z.; Ueda, Y.; Suemoto, T.J.A.P.L. Photoinduced metallic state in VO2 proved by the terahertz pump-probe spectroscopy. Appl. Phys. Lett. 2008, 92, 6853. [Google Scholar] [CrossRef]
- Qi-Ye, W.; Huai-Wu, Z.; Qing-Hui, Y.; Yun-Song, X.; Kang, C. Terahertz metamaterials with VO2 cut-wires for thermal tunability. Appl. Phys. Lett. 2010, 97, 597. [Google Scholar]
- Lei, L.; Lou, F.; Tao, K.; Huang, H.; Cheng, X.; Xu, P. Tunable and scalable broadband metamaterial absorber involving VO2-based phase transition. Phot. Res. 2019, 7, 734–741. [Google Scholar] [CrossRef]
- Song, Z.; Zhang, J. Achieving broadband absorption and polarization conversion with a vanadium dioxide metasurface in the same terahertz frequencies. Opt. Express 2020, 28, 12487–12497. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Song, Z. Simultaneous realizations of absorber and transparent conducting metal in a single metamaterial. Opt. Express 2020, 28, 6565–6571. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Chen, A.; Zhang, J.; Wang, J. Integrated metamaterial with functionalities of absorption and electromagnetically induced transparency. Opt. Express 2019, 27, 25196–25204. [Google Scholar] [CrossRef]
- Holsteen, A.; Kim, I.S.; Lauhon, L.J.J. Extraordinary Dynamic Mechanical Response of Vanadium Dioxide Nanowires around the Insulator to Metal Phase Transition. Nano Lett. 2016, 14, 1898–1902. [Google Scholar] [CrossRef]
- Bai, J.; Zhang, S.; Fan, F.; Wang, S.; Chang, S.J. Tunable broadband THz absorber using vanadium dioxide metamaterials. Opt. Commun. 2019, 452, 292–295. [Google Scholar] [CrossRef]
- Zhang, Y.; Qiao, S.; Sun, L.; Shi, Q.W.; Huang, W.; Li, L.; Yang, Z.J. Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method. Opt. Express 2014, 22, 11070–11078. [Google Scholar] [CrossRef]
- Driscoll, T.; Palit, S.; Qazilbash, M.M.; Brehm, M.; Keilmann, F.; Chae, B.G.; Yun, S.J.; Kim, H.T.; Cho, S.Y.; Jokerst, N.M. Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide. Appl. Phys. Lett. 2008, 93, 18. [Google Scholar] [CrossRef]
- Park, D.J.; Shin, J.H.; Park, K.H.; Ryu, H.C. Electrically controllable THz asymmetric split-loop resonator with an outer square loop based on VO2. Opt. Express 2018, 26, 17397–17406. [Google Scholar] [CrossRef]
- Shin, J.H.; Park, K.H.; Ryu, H.C. Electrically controllable terahertz square-loop metamaterial based on VO2 thin film. Nanotechnology 2016, 27, 195202. [Google Scholar] [CrossRef]
- Chang, T.; Cao, X.; Li, N.; Long, S.; Zhu, Y.; Huang, J.; Luo, H.; Jin, P. Mitigating Deterioration of Vanadium Dioxide Thermochromic Films by Interfacial Encapsulation. Matter 2019, 1, 734–744. [Google Scholar] [CrossRef][Green Version]
- Xu, G.; Jin, P.; Tazawa, M.; Yoshimura, K. Optimization of antireflection coating for VO2-based energy efficient window. Sol. Energy Mater. Sol. Cells 2004, 83, 29–37. [Google Scholar] [CrossRef]
- Huang, J.; Li, J.; Yang, Y.; Li, J.; Zhang, Y.; Yao, J. Active controllable dual broadband terahertz absorber based on hybrid metamaterials with vanadium dioxide. Opt. Express 2020, 28, 7018. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Plum, E.; Li, H.; Duan, S.; Li, S.; Xu, Q.; Zhang, X.; Zhang, C.; Zou, C.; Jin, B.; et al. Switchable Chiral Mirrors. Adv. Opt. Mater. 2020, 8, 2000247. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, J.; Han, Y.; He, X.; Zhang, J.; Huang, J.; Chen, D.; Xu, S.; Xie, W. Actively tunable terahertz electromagnetically induced transparency analogue based on vanadium-oxide-assisted metamaterials. Appl. Phys. A 2020, 126, 199. [Google Scholar] [CrossRef][Green Version]
- Xiao, S.; Wang, T.; Liu, T.; Zhou, C.; Jiang, X.; Zhang, J. Active metamaterials and metadevices: A review. J. Phys. D Appl. Phys. 2020, 53, 503002. [Google Scholar] [CrossRef]
- Ding, F.; Zhong, S.; Bozhevolnyi, S.I. Vanadium Dioxide Integrated Metasurfaces with Switchable Functionalities at Terahertz Frequencies. Adv. Opt. Mater. 2018, 6, 1701204. [Google Scholar] [CrossRef]
- Wang, D.; Sun, S.; Feng, Z.; Tan, W. Enabling switchable and multifunctional terahertz metasurfaces with phase-change material. Opt. Mater. Express 2020, 10, 2054–2065. [Google Scholar] [CrossRef]
- Agarwal, S.; Srivastava, G.; Prajapati, Y.K. Dual band Vis-IR absorber using bismuth based helical metamaterial surface. Opt. Quant. Electron. 2022, 54, 772. [Google Scholar] [CrossRef]
- Agarwal, S.; Prajapati, Y.K. Design of broadband absorber using 2D materials for thermo-photovoltaic cell application. Opt. Commun. 2018, 413, 39–43. [Google Scholar] [CrossRef]
- Agarwal, S.; Prajapati, Y.K. Metamaterial based sucrose detection sensor using transmission spectroscopy. Optik 2020, 205, 164276. [Google Scholar] [CrossRef]
- Agarwal, S. Multifunctional metamaterial surface for absorbing and sensing applications. Opt. Commun. 2019, 439, 304–307. [Google Scholar] [CrossRef]
- Mpa, B.; Glc, D.; Ab, A.; Ms, E. Photochemical degradation of the environmental pollutants over the worm-like Nd2CuO4Nd2O3 nanostructures. Nano-Struct. Nano-Objects 2019, 18, 100258. [Google Scholar]
- Padervand, B. One-pot synthesis of novel ternary Fe3N/Fe2O3/C3N4 photocatalyst for efficient removal of rhodamine B and CO2 reduction. J. Alloy. Compd. 2021, 852, 156955. [Google Scholar] [CrossRef]
- Gao, T.; Lin, J.; Zhang, K.; Padervand, M.; Zhang, Y.; Zhang, W.; Shi, M.; Wang, C. Porous Defective Bi/Bi3NbO7 Nanosheets for Efficient Photocatalytic NO Removal under Visible Light. Processes 2023, 11, 115. [Google Scholar] [CrossRef]
- Montaser, A.M. Design of metamaterial absorber for all bands from microwave to terahertz ranges. Int. J. Adv. Res. Electron. Commun. Eng. 2016, 5, 1475–1481. [Google Scholar]
- Jang, T.; Youn, H.; Shin, Y.J.; Guo, L.J. Transparent and flexible polarization-independent microwave broadband absorber. ACS Photonics 2014, 1, 279–284. [Google Scholar] [CrossRef]
- Wu, B.; Tuncer, H.M.; Naeem, M.; Yang, B.; Cole, M.T.; Milne, W.I.; Hao, Y. Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz. Sci. Rep. 2014, 4, 4130. [Google Scholar] [CrossRef][Green Version]
- Batrakov, K.; Kuzhir, P.; Maksimenko, S.; Paddubskaya, A.; Voronovich, S.; Lambin, P.; Kaplas, T.; Svirko, Y. Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption. Sci. Rep. 2014, 4, 7191. [Google Scholar] [CrossRef][Green Version]
- Jung, H.; Jo, H.; Lee, W.; Kim, B.; Choi, H.; Kang, M.S.; Lee, H. Electrical control of electromagnetically induced transparency by terahertz metamaterial funneling. Adv. Opt. Mater. 2019, 7, 1801205. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhao, H.; Ako, R.T.; Zhang, J.; Zhao, H.; Sriram, S. Demonstration of group delay above 40 ps at terahertz plasmon-induced transparency windows. Opt. Express 2019, 27, 26459. [Google Scholar] [CrossRef] [PubMed]
- Yahiaoui, R.; Burrow, J.A.; Mekonen, S.M.; Sarangan, A.; Mathews, J.; Agha, I.; Searles, T.A. Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling. Phys. Rev. B 2018, 97, 155403. [Google Scholar] [CrossRef][Green Version]
- Hu, J.; Lang, T.; Hong, Z.; Shen, C.; Shi, G. Comparison of electromagnetically induced transparency performance in metallic and all-dielectric metamaterials. J. Light. Technol. 2018, 36, 2083–2093. [Google Scholar] [CrossRef]
- Wang, S.; Cai, C.; You, M.; Liu, F.; Werner, D.H. Vanadium dioxide based broadband THz metamaterial absorbers with high tunability: Simulation study. Opt. Express 2019, 27, 19436. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Chen, A.; Zhang, J. Terahertz switching between broadband absorption and narrowband absorption. Opt. Express 2020, 28, 2037–2044. [Google Scholar] [CrossRef] [PubMed]
- Bochkova, E.; Burokur, S.N.; De Lustrac, A.; Lupu, A. Direct dark modes excitation in bi-layered enantiomeric atoms-based metasurface through symmetry matching. Opt. Lett. 2016, 41, 412–415. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Li, J.; Yang, Y.; Li, J.; Li, J.; Zhang, Y.; Yao, J. Broadband terahertz absorber with a flexible, reconfigurable performance based on hybrid-patterned vanadium dioxide metasurfaces. Opt. Express 2020, 28, 17832–17840. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, H.; Yang, Y.; Zi, J.; Mao, L.; Li, J. Switchable Dual-Functional Metasurface for THz Absorption and Electromagnetically Induced Transparency. Coatings 2023, 13, 816. https://doi.org/10.3390/coatings13050816
Cai H, Yang Y, Zi J, Mao L, Li J. Switchable Dual-Functional Metasurface for THz Absorption and Electromagnetically Induced Transparency. Coatings. 2023; 13(5):816. https://doi.org/10.3390/coatings13050816
Chicago/Turabian StyleCai, Haocheng, Yue Yang, Jianchen Zi, Luhong Mao, and Jining Li. 2023. "Switchable Dual-Functional Metasurface for THz Absorption and Electromagnetically Induced Transparency" Coatings 13, no. 5: 816. https://doi.org/10.3390/coatings13050816
APA StyleCai, H., Yang, Y., Zi, J., Mao, L., & Li, J. (2023). Switchable Dual-Functional Metasurface for THz Absorption and Electromagnetically Induced Transparency. Coatings, 13(5), 816. https://doi.org/10.3390/coatings13050816