Wear Behavior of Monolithic Zirconia after Staining, Glazing, and Polishing Opposing Dental Restorative Materials: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- Polishing is recommended to reduce the wear rates of microhybrid composite resin used as the antagonist and allow the dental clinician to finish the restoration chairside without the need for an expensive firing furnace or glazing cycles.
- When staining is necessary to characterize restorations, polishing improved staining durability opposing microhybrid composite resin, leucite-reinforced ceramic, and lithium disilicate;
- Glazing increased wear rates opposing lithium disilicate;
- Among restorative materials used as antagonists, 5Y-TZP presented the highest wear resistance; leucite-reinforced ceramic and lithium disilicate presented similar wear behavior with intermediate wear rates, and microhybrid composite resin presented the lowest wear resistance.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stawarczyk, B.; Keul, C.; Eichberger, M.; Figge, D.; Edelhoff, D.; Lümkemann, N. Three generations of zirconia: From veneered to monolithic. Part I. Quintessence Int. 2017, 48, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lawn, B.R. Novel Zirconia Materials in Dentistry. J. Dent. Res. 2018, 97, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Carrabba, M.; Keeling, A.J.; Aziz, A.; Vichi, A.; Fonzar, R.F.; Wood, D.; Ferrari, M. Translucent zirconia in the ceramic scenario for monolithic restorations: A flexural strength and translucency comparison test. J. Dent. 2017, 60, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabatabaian, F. Color in Zirconia-Based Restorations and Related Factors: A Literature Review. J. Prosthodont. 2019, 27, 201–211. [Google Scholar] [CrossRef]
- Farzin, M.; Ansarifard, E.; Taghva, M.; Imanpour, R. Effect of external staining on the optical properties and surface roughness of monolithic zirconia of different thicknesses. J. Prosthet. Dent. 2021, 126, 687.e1–687.e8. [Google Scholar] [CrossRef]
- Silva, A.O.; Fiorin, L.; Faria, A.C.L.; Ribeiro, R.F.; Rodrigues, R.C.S. Translucency and mechanical behavior of partially stabilized monolithic zirconia after staining, finishing procedures and artificial aging. Sci. Rep. 2022, 12, 16094. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, T.A.; Abdulmajeed, A.A.; Donovan, T.E.; Vallittu, P.K.; Närhi, T.O.; Lassila, L.V. The effect of staining and vacuum sintering on optical and mechanical properties of partially and fully stabilized monolithic zirconia. Dent. Mater. J. 2015, 34, 605–610. [Google Scholar] [CrossRef] [Green Version]
- Souza, L.F.B.; Soares, P.M.; Chiapinotto, G.F.; Ribeiro, V.F.; Daudt, N.F.; Valandro, L.F.; Pereira, G.K.R. Effect of pigmentation techniques on the fatigue mechanical behavior of a translucent zirconia for monolithic restorations. J. Mech. Behav. Biomed. Mater. 2022, 134, 105362. [Google Scholar] [CrossRef] [PubMed]
- Garza, L.A.; Thompson, G.; Cho, S.H.; Berzins, D.W. Effect of toothbrushing on shade and surface roughness of extrinsically stained pressable ceramics. J. Prosthet. Dent. 2016, 115, 489–494. [Google Scholar] [CrossRef] [Green Version]
- Kanat-Ertürk, B. Color stability of CAD/CAM ceramics prepared with different surface finishing procedures. J. Prosthodont. 2020, 29, 166–172. [Google Scholar] [CrossRef]
- Aljomard, Y.R.M.; Altunok, E.Ç.; Kara, H.B. Enamel wear against monolithic zirconia restorations: A meta-analysis and systematic review of in vitro studies. J. Esthet. Restor. Dent. 2022, 34, 473–489. [Google Scholar] [CrossRef]
- Kruzic, J.J.; Arsecularatne, J.A.; Tanaka, C.B.; Hoffman, M.J.; Cesar, P.F. Recent advances in understanding the fatigue and wear behavior of dental composites and ceramics. J. Mech. Behav. Biomed. Mater. 2018, 88, 504–533. [Google Scholar] [CrossRef] [PubMed]
- Kruzic, J.J.; Hoffman, M.; Arsecularatne, J.A. Fatigue and wear of human tooth enamel: A review. J. Mech. Behav. Biomed. Mater. 2023, 138, 105574. [Google Scholar] [CrossRef]
- Mörmann, W.H.; Stawarczyk, B.; Ender, A.; Sener, B.; Attin, T.; Mehl, A. Wear characteristics of current aesthetic dental restorative CAD/CAM materials: Two-body wear, gloss retention, roughness and Martens hardness. J. Mech. Behav. Biomed. Mater. 2013, 20, 113–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, G.K.R.; Dutra, D.M.; Werner, A.; Prochnow, C.; Valandro, L.F.; Kleverlaan, C.J. Effect of zirconia polycrystal and stainless steel on the wear of resin composites, dentin and enamel. J. Mech. Behav. Biomed. Mater. 2019, 91, 287–293. [Google Scholar] [CrossRef]
- Dal Piva, A.M.O.; Tribst, J.P.M.; Werner, A.; Anami, L.C.; Bottino, M.A.; Kleverlaan, C.J. Three-body wear effect on different CAD/CAM ceramics staining durability. J. Mech. Behav. Biomed. Mater. 2020, 103, 103579. [Google Scholar] [CrossRef]
- Oh, W.S.; Delong, R.; Anusavice, K.J. Factors affecting enamel and ceramic wear: A literature review. J. Prosthet. Dent. 2002, 87, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Mitov, G.; Heintze, S.D.; Walz, S.; Woll, K.; Muecklich, F.; Pospiech, P. Wear behavior of dental Y-TZP ceramic against natural enamel after different finishing procedures. Dent. Mater. 2012, 28, 909–918. [Google Scholar] [CrossRef]
- Preis, V.; Behr, M.; Handel, G.; Schneider-Feyrer, S.; Hahnel, S.; Rosentritt, M. Wear performance of dental ceramics after grinding and polishing treatments. J. Mech. Behav. Biomed. Mater. 2012, 10, 13–22. [Google Scholar] [CrossRef]
- Janyavula, S.; Lawson, N.; Cakir, D.; Beck, P.; Ramp, L.C.; Burgess, J.O. The wear of polished and glazed zirconia against enamel. J. Prosthet. Dent. 2013, 109, 22–29. [Google Scholar] [CrossRef]
- Lawson, N.C.; Janyavula, S.; Syklawer, S.; McLaren, E.A.; Burgess, J.O. Wear of enamel opposing zirconia and lithium disilicate after adjustment, polishing and glazing. J. Dent. 2014, 42, 1586–1591. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Park, S.; Lee, K.; Yun, K.D.; Lim, H.P. Antagonist wear of three CAD/CAM anatomic contour zirconia ceramics. J. Prosthet. Dent. 2014, 111, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Spies, B.C.; Vleugels, J.; Reveron, H.; Wesemann, C.; Müller, W.D.; van Meerbeek, B.; Chevalier, J. High-translucent yttria-stabilized zirconia ceramics are wear-resistant and antagonist-friendly. Dent. Mater. 2019, 35, 1776–1790. [Google Scholar] [CrossRef] [PubMed]
- Rosentritt, M.; Preis, V.; Behr, M.; Strasser, T. Fatigue and wear behavior of zirconia materials. J. Mech. Behav. Biomed. Mater. 2020, 110, 103970. [Google Scholar] [CrossRef] [PubMed]
- Çakmak, G.; Subaşı, M.G.; Sert, M.; Yilmaz, B. Effect of surface treatments on wear and surface properties of different CAD-CAM materials and their enamel antagonists. J. Prosthet. Dent. 2021, 20, S0022-3913(21)00340-1. [Google Scholar] [CrossRef] [PubMed]
- Ozkir, S.E.; Bicer, M.; Deste, G.; Karakus, E.; Yilmaz, B. Wear of monolithic zirconia against different CAD-CAM and indirect restorative materials. J. Prosthet. Dent. 2021, 28, S0022-3913(21)00198-0. [Google Scholar] [CrossRef] [PubMed]
- Albashaireh, Z.S.; Ghazal, M.; Kern, M. Two-body wear of different ceramic materials opposed to zirconia ceramic. J. Prosthet. Dent. 2010, 104, 105–113. [Google Scholar] [CrossRef]
- Hatanaka, A.; Sawada, T.; Sen, K.; Saito, T.; Sasaki, K.; Someya, T.; Hattori, M.; Takemoto, S. Wear behavior between aesthetic restorative materials and bovine tooth enamel. Materials 2022, 15, 5234. [Google Scholar] [CrossRef] [PubMed]
- Fouda, A.M.; Atta, O.; Kassem, A.S.; Desoky, M.; Bourauel, C. Wear behavior and abrasiveness of monolithic CAD/CAM ceramics after simulated mastication. Clin. Oral Investig. 2022, 26, 6593–6605. [Google Scholar] [CrossRef]
- Jia-Mahasap, W.; Jitwirachot, K.; Holloway, J.A.; Rangsri, W.; Rungsiyakull, P. Wear of various restorative materials against 5Y-ZP zirconia. J. Prosthet. Dent. 2022, 128, 814.e1–814.e10. [Google Scholar] [CrossRef]
- Maier, E.; Grottschreiber, C.; Knepper, I.; Opdam, N.; Petschelt, A.; Loomans, B.; Lohbauer, U. Evaluation of wear behavior of dental restorative materials against zirconia in vitro. Dent. Mater. 2022, 38, 778–788. [Google Scholar] [CrossRef] [PubMed]
- Khayat, W.; Chebib, N.; Finkelman, M.; Khayat, S.; Ali, A. Effect of grinding and polishing on roughness and strength of zirconia. J. Prosthet. Dent. 2018, 119, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Incesu, E.; Yanikoglu, N. Evaluation of the effect of different polishing systems on the surface roughness of dental ceramics. J. Prosthet. Dent. 2020, 124, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Ozen, F.; Demirkol, N.; Parlar, O.O. Effect of surface finishing treatments on the color stability of CAD/CAM materials. J. Adv. Prosthodont. 2020, 12, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Theodoro, G.T.; Fiorin, L.; Moris, I.C.M.; Rodrigues, R.C.S.; Ribeiro, R.F.; Faria, A.C.L. Wear resistance and compression strength of ceramics tested in fluoride environments. J. Mech. Behav. Biomed. Mater. 2017, 65, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Kern, M.; Strub, J.R.; Lu, X.Y. Wear of composite resin veneering materials in a dual axis chewing simulator. J. Oral Rehabil. 1999, 26, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Ghazal, M.; Kern, M. The influence of antagonistic surface roughness on the wear of human enamel and nanofilled composite resin artificial teeth. J. Prosthet. Dent. 2009, 101, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.J.; Lawson, N.C.; McLaren, E.E.; Nejat, A.H.; Burgess, J.O. Comparison of the mechanical properties of translucent zirconia and lithium disilicate. J. Prosthet. Dent. 2018, 120, 132–137. [Google Scholar] [CrossRef]
- Badarneh, A.; Eun Choi, J.J.; Lyons, K.; Porter, G.; Waddell, N.; Chun Li, K. The effect of aging on the wear performance of monolithic zirconia. Dent. Mater. 2022, 38, e136–e146. [Google Scholar] [CrossRef] [PubMed]
- Aboushelib, M.N.; Kleverlaan, C.J.; Feilzer, A.J. Effect of zirconia type on its bond strength with different veneer ceramics. J. Prosthodont. 2008, 17, 401–408. [Google Scholar] [CrossRef]
- Yamamoto, L.T.; Rodrigues, V.A.; Dornelles, L.S.; Bottino, M.A.; Valandro, L.F.; Melo, R.M. Low-Fusing Porcelain Glaze Application on 3Y-TZP Surfaces can Enhance Zirconia-Porcelain Adhesion. Braz. Dent. J. 2016, 27, 543–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aboushelib, M.N.; Wang, H. Effect of surface treatment on flexural strength of zirconia bars. J. Prosthet. Dent. 2010, 104, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Kaizer, M.R.; Moraes, R.R.; Cava, S.S.; Zhang, Y. The progressive wear and abrasiveness of novel graded glass/zirconia materials relative to their dental ceramic counterparts. Dent. Mater. 2019, 35, 763–771. [Google Scholar] [CrossRef]
- Heintze, S.D.; Reichl, F.X.; Hickel, R. Wear of dental materials: Clinical significance and laboratory wear simulation methods. A review. Dent. Mater. J. 2019, 38, 343–353. [Google Scholar] [CrossRef] [Green Version]
- Lambrechts, P.; Debels, E.; Van Landuyt, K.; Peumans, M.; Van Meerbeek, B. How to simulate wear? Overview of existing methods. Dent. Mater. 2006, 22, 693–701. [Google Scholar] [CrossRef] [PubMed]
Brand | Composition | Lot | Manufacturer |
---|---|---|---|
Ceramill Zolid FX Preshade | ZrO2 + HfO2 + Y2O3: ≥99.0, Y2O3: 8.5–9.5, HfO2: ≤5, Al2O3: ≤0.5 | 1707000 | Amann Girrbach, Koblach, Austria |
IPS E.max CAD | SiO2: 57.0–80.0, Li2O: 11.0–19.0, P2O5: 0–11.0, K2O: 0–13.0, MgO: 0–5.0, Al2O3: 0–5.0 | Z00ZGP | Ivoclar Vivadent, Barueri, Brazil |
IPS Inline POM | SiO2: 50.0–65.0, Al2O3: 8–20.0, Na2O: 4.0–12.0, K2O: 7.0–13.0 | S15651 | Ivoclar Vivadent, Barueri, Brazil |
Filtek Z250 XT | Bis-GMA, UDMA, Bis-EMA, zirconia, silica | 2104700325 | 3M Espe, Sumare, Brazil |
Group | Restorative Materials | |||
---|---|---|---|---|
5Y-TZP | Lithium Disilicate | Leucite-Reinforced Ceramic | Microhybrid Composite Resin | |
C | 506.1 (139.0) A a α | 227.9 (48.2) A b α | 227.4 (48.9) A b α | 215.9 (24.8) A b α |
G | 440.5 (60.5) A a α | 332.4 (118.4) B b α | 212.4 (38.1) A c α | 189.9 (59.0) A c α |
P | 361.2 (67.5) B a α | 83.4 (59.8) C b α | 10.7 (33.8) B b α | 0.0 (-) B b α |
S | 441.9 (85.0) A a α | 160.4 (28.4) A b α | 79.4 (55.6) A b β | 94.3 (24.4) A b β |
SG | 394.6 (61.7) A a α | 194.1 (48.7) A b β | 0.0 (-) A c β | 60.8 (67.7) A c β |
SP | 286.8 (64.8) B a α | 27.3 (58.3) B b α | 0.0 (-) A b α | 0.0 (-) A b α |
Group | Restorative Materials | |||
---|---|---|---|---|
5Y-TZP | Lithium Disilicate | Leucite-Reinforced Ceramic | Microhybrid Composite Resin | |
C | 127.5 (22.0) A a α | 467.9 (115.0) A b α | 655.6 (85.6) A b α | 1248.4 (169.0) A c α |
G | 112.98 (28.5) A a α | 693.0 (153.6) B b α | 662.9 (128.7) A b α | 1085.3 (387.0) A c α |
P | 97.5 (37.2) A a α | 498.1 (88.5) A b α | 541.0 (114.1) A b α | 709.1 (114.8) B b α |
S | 143.6 (18.9) A a α | 526.9 (85.4) A b α | 562.0 (66.5) A b α | 932.2 (157.7) A c β |
SG | 181.4 (75.7) A a α | 523.3 (117.8) A b α | 730.4 (140.2) A b α | 1514.6 (129.2) B c β |
SP | 159.8 (39.2) A a α | 472.7 (93.7) A b α | 616.6 (137.9) A b α | 947.4 (110.4) A c β |
Source | VHL | WD | ||||
---|---|---|---|---|---|---|
Wald Chi-Square | DF | P | Wald Chi-Square | DF | P | |
(Intercept) | 2387.674 | 1 | 0.000 | 4920.898 | 1 | 0.000 |
Restorative material | 1102.728 | 3 | 0.000 | 1555.076 | 3 | 0.000 |
Finishing procedure | 292.335 | 2 | 0.000 | 78.643 | 2 | 0.000 |
Staining | 131.751 | 1 | 0.000 | 4.131 | 1 | 0.042 |
Restorative material X Finishing procedure | 34.055 | 6 | 0.000 | 71.696 | 6 | 0.000 |
Restorative material X Staining | 8.283 | 3 | 0.041 | 12.041 | 3 | 0.007 |
Finishing procedure X Staining | 26.669 | 2 | 0.000 | 24.490 | 2 | 0.000 |
Restorative material X Finishing procedure X Staining | 23.370 | 6 | 0.001 | 76.821 | 6 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiorin, L.; Oliveira, P.E.B.S.; Silva, A.O.d.; Faria, A.C.L.; Macedo, A.P.; Ribeiro, R.F.; Rodrigues, R.C.S. Wear Behavior of Monolithic Zirconia after Staining, Glazing, and Polishing Opposing Dental Restorative Materials: An In Vitro Study. Coatings 2023, 13, 466. https://doi.org/10.3390/coatings13020466
Fiorin L, Oliveira PEBS, Silva AOd, Faria ACL, Macedo AP, Ribeiro RF, Rodrigues RCS. Wear Behavior of Monolithic Zirconia after Staining, Glazing, and Polishing Opposing Dental Restorative Materials: An In Vitro Study. Coatings. 2023; 13(2):466. https://doi.org/10.3390/coatings13020466
Chicago/Turabian StyleFiorin, Lívia, Paulo Eduardo Barros Souza Oliveira, Allan Oliveira da Silva, Adriana Cláudia Lapria Faria, Ana Paula Macedo, Ricardo Faria Ribeiro, and Renata Cristina Silveira Rodrigues. 2023. "Wear Behavior of Monolithic Zirconia after Staining, Glazing, and Polishing Opposing Dental Restorative Materials: An In Vitro Study" Coatings 13, no. 2: 466. https://doi.org/10.3390/coatings13020466
APA StyleFiorin, L., Oliveira, P. E. B. S., Silva, A. O. d., Faria, A. C. L., Macedo, A. P., Ribeiro, R. F., & Rodrigues, R. C. S. (2023). Wear Behavior of Monolithic Zirconia after Staining, Glazing, and Polishing Opposing Dental Restorative Materials: An In Vitro Study. Coatings, 13(2), 466. https://doi.org/10.3390/coatings13020466