Highly Conductive Co-Doped Ga2O3:Si-In Grown by MOCVD
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roy, R.; Hill, V.G.; Osborn, E.F. Polymorphism of Ga2O3 and the system Ga2O3—H2O. J. Am. Chem. Soc. 1952, 74, 719–722. [Google Scholar] [CrossRef]
- Razeghi, M.; Park, J.H.; McClintock, R.; Pavlidis, D.; Teherani, F.H.; Rogers, D.J.; Magill, B.A.; Khodaparast, G.A.; Xu, Y.; Wu, J.; et al. A Review of the growth, doping, and applications of β-Ga2O3 thin films. Proc. SPIE 2018, 10533, 105330R1-24. [Google Scholar]
- Anhar Uddin Bhuiyan, A.F.M.; Feng, Z.; Johnson, J.M.; Huang, H.L.; Hwang, J.; Zhao, H. MOCVD Epitaxy of ultrawide bandgap β-(AlxGa1−x)2O3 with high-Al composition on (100) β-Ga2O3 substrates. Cryst. Growth Des. 2020, 20, 6722–6730. [Google Scholar] [CrossRef]
- Hatipoglu, I.; Mukhopadhyay, P.; Alema, F.; Sakthivel, T.S.; Seal, S.; Osinsky, A.; Schoenfeld, W.V. Tuning the responsivity of monoclinic solar-blind photodetectors grown by metal organic chemical vapor deposition. J. Phys. D Appl. Phys 2020, 53, 454001. [Google Scholar] [CrossRef]
- Bi, X.; Wu, Z.; Huang, Y.; Tang, W. Stabilization and enhanced energy gap by Mg doping in ε-phase Ga2O3 thin films. AIP Adv. 2018, 8, 025008. [Google Scholar] [CrossRef]
- Teherani, F.H.; Rogers, D.J.; Sandana, V.E.; Bove, P.; Ton-That, C.; Lem, L.L.C.; Chikoidze, E.; Neumann-Spallart, M.; Dumont, Y.; Huynh, T.; et al. Investigations on the substrate dependence of the properties in nominally-undoped beta-Ga2O3 thin films grown by PLD. Proc. SPIE 2017, 10105, 101051R. [Google Scholar]
- Shinohara, D.; Fujita, S. Heteroepitaxy of corundum-structured α-Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition. Jpn. J. Appl. Phys. 2008, 47, 7311–7313. [Google Scholar] [CrossRef]
- Kawaharamura, T.; Dang, G.T.; Furuta, M. Successful growth of conductive highly crystalline Sn-doped α-Ga2O3 thin films by fine-channel mist chemical vapor deposition. Jpn. J. Appl. Phys. 2012, 51, 040207. [Google Scholar] [CrossRef]
- Sun, H.; Li, K.H.; Castanedo, C.T.; Okur, S.; Tompa, G.S.; Salagaj, T.; Lopatin, S.; Genovese, A.; Li, X. HCl flow-induced phase change of α-, β-, and ε-Ga2O3 films grown by MOCVD. Cryst. Growth Des. 2018, 18, 2370–2376. [Google Scholar] [CrossRef]
- Boschi, F.; Bosi, M.; Berzina, T.; Buffagni, E.; Ferrari, C.; Fornari, R. Hetero-epitaxy of ε-Ga2O3 layers by MOCVD and ALD. J. Cryst. Growth 2016, 443, 25–30. [Google Scholar] [CrossRef]
- Yao, Y.; Okur, S.; Lyle, L.A.; Tompa, G.S.; Salagaj, T.; Sbrockey, N.; Davis, R.F.; Porter, L.M. Growth and characterization of α-, β-, and ϵ-phases of Ga2O3 using MOCVD and HVPE techniques. Mater. Res. Lett. 2018, 6, 268–275. [Google Scholar] [CrossRef]
- Park, J.H.; McClintock, R.; Razeghi, M. Ga2O3 metal-oxide-semiconductor field effect transistors on sapphire substrate by MOCVD. Semicond. Sci. Technol. 2019, 34, 08LT01. [Google Scholar] [CrossRef]
- McClintock, R.; Jaud, A.; Gautam, L.; Razeghi, M. Solar-blind photodetectors based on Ga2O3 and III-nitrides. Proc. SPIE 2020, 11288, 1128803. [Google Scholar]
- Kim, J.; Tahara, D.; Miura, Y.; Kim, B.G. First-principle calculations of electronic structures and polar properties of (κ, ε)-Ga2O3. Appl. Phys. Express 2018, 11, 061101. [Google Scholar] [CrossRef]
- Xu, Y.; Park, J.H.; Yao, Z.; Wolverton, C.; Razeghi, M.; Wu, J.; Dravid, V.P. Strain-induced metastable phase stabilization in Ga2O3 thin films. ACS Appl. Mater. Interfaces 2019, 11, 5536–5543. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.; Gautam, L.; He, K.; Hu, X.; Dravid, V.P.; Razeghi, M. Study of phase transition in MOCVD grown Ga2O3 from κ to β phase by ex situ and in situ annealing. Photonics 2021, 8, 17. [Google Scholar] [CrossRef]
- Wong, M.H.; Sasaki, K.; Kuramata, A.; Yamakoshi, S.; Higashiwaki, M. Anomalous Fe diffusion in Si-ion-implanted β–Ga2O3 and its suppression in Ga2O3 transistor structures through highly resistive buffer layers. Appl. Phys. Lett. 2015, 106, 032105. [Google Scholar] [CrossRef]
- Joishi, C.; Xia, Z.; McGlone, J.; Zhang, Y.; Arehart, A.R.; Ringel, S.; Lodha, S.; Rajan, S. Effect of buffer iron doping on delta-doped β-Ga2O3 metal semiconductor field effect transistors. Appl. Phys. Lett. 2018, 113, 123501. [Google Scholar] [CrossRef]
- Parisini, A.; Bosio, A.; Montedoro, V.; Gorreri, A.; Lamperti, A.; Bosi, M.; Garulli, G.; Vantaggio, S.; Fornari, R. Si and Sn doping of ε-Ga2O3 layers. APL Mater. 2019, 7, 031114. [Google Scholar] [CrossRef]
- Moser, N.; McCandless, J.; Crespo, A.; Leedy, K.; Green, A.; Neal, A.; Mou, S.; Ahmadi, E.; Speck, J.; Chabak, K.; et al. Ge-doped β-Ga2O3 MOSFETs. IEEE Electron Device Lett. 2017, 38, 775–778. [Google Scholar] [CrossRef]
- Zhang, Y.; Alema, F.; Mauze, A.; Koksaldi, O.S.; Miller, R.; Osinsky, A.; Speck, J.S. MOCVD grown epitaxial β-Ga2O3 thin film with an electron mobility of 176 cm2/V s at room temperature. APL Mater. 2019, 7, 022506. [Google Scholar] [CrossRef]
- McClintock, R.; Yasan, A.; Mayes, K.; Shiell, D.; Darvish, S.R.; Kung, P.; Razeghi, M. High quantum efficiency AlGaN solar-blind p-i-n photodiodes. Appl. Phys. Lett. 2004, 84, 1248–1250. [Google Scholar] [CrossRef]
- Razeghi, M.; Yasan, A.; McClintock, R.; Mayes, K.; Shiell, D.; Darvish, S.R.; Kung, P. Review of III-nitride optoelectronic materials for light emission and detection. Phys. Status Solidi (c) 2004, 1, S141–S148. [Google Scholar] [CrossRef]
- Keller, S.; Heikman, S.; Ben-Yaacov, I.; Shen, L.; DenBaars, S.P.; Mishra, U.K. Indium-surfactant-assisted growth of high-mobility AlN/GaN multilayer structures by metalorganic chemical vapor deposition. Appl. Phys. Lett. 2001, 79, 3449–3451. [Google Scholar] [CrossRef]
- Kyle, E.C.H.; Kaun, S.W.; Young, E.C.; Speck, J.S. Increased p-type conductivity through use of an indium surfactant in the growth of Mg-doped GaN. Appl. Phys. Lett. 2015, 106, 222103. [Google Scholar] [CrossRef]
- Aisaka, T.; Tanikawa, T.; Kimura, T.; Shojiki, K.; Hanada, T.; Katayama, R.; Matsuoka, T. Improvement of surface morphology of nitrogen-polar GaN by introducing indium surfactant during MOVPE growth. Jpn. J. Appl. Phys. 2014, 53, 085501. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, H.; Han, E.; Yue, G.; Chen, Z.; Wu, Z.; Wang, G.; Jiang, H. High hole concentration in p-type AlGaN by indium-surfactant-assisted Mg-delta doping. Appl. Phys. Lett. 2015, 106, 162102. [Google Scholar] [CrossRef]
Structure | Type of Superlattice | Ga | In | H2O | Si |
---|---|---|---|---|---|
Structure 1 | Ga2O3 (Reference) | 5 sccm | 0 sccm | 1600 sccm | 20 sccm |
Structure 2 | Ga2O3 (30 s)/In2O3 (1 min) | 5 sccm | 50 sccm | 1600 sccm | 20 sccm |
Structure 3 | Ga2O3 (30 s)/In2O3 (1 min) | 5 sccm | 70 sccm | 1600 sccm | 20 sccm |
Structure 4 | Ga2O3 (1 min)/(InxGa1−x)2O3 (1 min) | 5 sccm | 70 sccm | 1600 sccm | 20 sccm |
Structure | Before Annealing Process | After Annealing Process | ||
---|---|---|---|---|
Hall Mobility | Carrier Concentration | Hall Mobility | Carrier Concentration | |
Structure 1 | Not measurable | Not measurable | 14 cm2/V·s | cm−3 |
Structure 2 | 30 cm2/V·s | cm−3 | 27.6 cm2/V·s | cm−3 |
Structure 3 | 150 cm2/V·s | cm−3 | 13.8 cm2/V·s | cm−3 |
Structure 4 | 10 cm2/V·s | cm−3 | 29 cm2/V·s | cm−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Kim, H.; Gautam, L.; Razeghi, M. Highly Conductive Co-Doped Ga2O3:Si-In Grown by MOCVD. Coatings 2021, 11, 287. https://doi.org/10.3390/coatings11030287
Lee J, Kim H, Gautam L, Razeghi M. Highly Conductive Co-Doped Ga2O3:Si-In Grown by MOCVD. Coatings. 2021; 11(3):287. https://doi.org/10.3390/coatings11030287
Chicago/Turabian StyleLee, Junhee, Honghyuk Kim, Lakshay Gautam, and Manijeh Razeghi. 2021. "Highly Conductive Co-Doped Ga2O3:Si-In Grown by MOCVD" Coatings 11, no. 3: 287. https://doi.org/10.3390/coatings11030287
APA StyleLee, J., Kim, H., Gautam, L., & Razeghi, M. (2021). Highly Conductive Co-Doped Ga2O3:Si-In Grown by MOCVD. Coatings, 11(3), 287. https://doi.org/10.3390/coatings11030287