Preparation and Characterization of Sustained-Release Naringin Coating on Magnesium Surface
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of the Coating
2.2. Coating Characterization
2.2.1. Phase Structure of the Coating
2.2.2. Immersion Tests
2.2.3. Electrochemical Tests
2.2.4. Slow-Release Drug Measurement
3. Results and Discussion
3.1. Characterization of the Different Coatings
3.2. Coating Surface Morphology
3.3. XPS Analysis
3.4. SBF Immersion Test
3.5. Corrosion Resistance
3.6. Slow-Release Drug Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meseguer-Olmo, L.; Vicente-Ortega, V.; Alcaraz-Baños, M.; Calvo-Guirado, J.L.; Vallet-Regí, M.; Arcos, D.; Baeza, A. In vivo behavior of Si-hydroxyapatite/polycaprolactone/DMB scaffolds fabricated by 3D printing. J. Biomed. Mater. Res. Part A 2013, 101, 2038–2048. [Google Scholar] [CrossRef] [PubMed]
- Mu, L.T.; Ma, Z.; Wang, J.Y.; Yuan, S.D.; Li, M.Q. Corrosion behavior and biological activity of micro arc oxidation coatings with berberine on a pure magnesium surface. Coatings 2020, 10, 837. [Google Scholar] [CrossRef]
- Hu, Y.L.; Wang, Z.Q.; Ai, J.Y.; Bu, S.C.; Liu, H.W. Preparation of coating on the titanium surface by micro-arc oxidation to improve corrosion resistance. Coatings 2021, 11, 230. [Google Scholar] [CrossRef]
- Nurettin, S.Z.; Zafer, E.V.; Said, M.K. Review of magnesium-based biomaterials and their applications. J. Magnes. Alloy. 2018, 6, 23–43. [Google Scholar]
- Bakhsheshi, H.R.; Hamzah, E.; Ismaii, A.F. In vitro degradation behavior, antibacterial activity and cyto-toxicity of TiO2-MAO/ZnHA composite coating on Mg alloy for orthopedic implants. Surf. Coat. Technol. 2018, 334, 450–460. [Google Scholar] [CrossRef]
- Gill, P.; Munroe, N. Review on magnesium alloys as biodegradable implant materials. Int. J. Biomed. Eng. Technol. 2012, 10, 383. [Google Scholar] [CrossRef]
- Fierascu, I.; Fierascu, I.C.; Dinu-Pirvu, C.E.; Fierascu, R.C.; Anuta, V.; Velescu, B.S.; Jinga, M.; Jinga, V. A Short Overview of Recent Developments on Antimicrobial Coatings Based on Phytosynthesized Metal Nanoparticles. Coatings 2019, 9, 787. [Google Scholar] [CrossRef]
- Janning, C.; Willbold, E.; Vogt, C.; Nellesen, J.; Lindenberg, A.M.; Windhagen, H.; Thorey, F.; Witte, F. Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling Acta Biomater. Acta Biomater. 2010, 6, 1861–1868,. [Google Scholar] [CrossRef]
- Zhang, R.F.; Zhang, Z.Y.; Zhu, Y.Y.; Zhao, R.F.; Hang, Z.; Shi, F. Degradation resistance and in vitro cytocompatibility of iron-containing coatings developed on WE43 magnesium alloy by micro-arc oxidation. Coatings 2020, 10, 1138. [Google Scholar] [CrossRef]
- Draxler, J.; Martinelli, E.; Weinberg, A.; Zitek, A.; Irrgeher, J.; Meischel, M.; Stanzl, S.E.; Mingler, B. The potential of isotopically enriched Magnesium to study bone implant degradation in vivo. Acta Biomater. 2017, 51, 526–536. [Google Scholar] [CrossRef] [PubMed]
- Sealy, M.P.; Guo, Y.B.; Caslaru, R.C.; Sharkins, J.; Feldmanet, D. Fatigue performance of biodegradable magnesium-calcium alloy processed by laser shock peening for orthopedic implants. Int. J. Fatigue 2016, 82, 428–436. [Google Scholar] [CrossRef]
- Alessandro, M.; Lorella, C.; Carla, M.; Alessandro, B. Influence of plasma electrolytic oxidation on fatigue behaviour of ZK60A-T5 magnesium alloy. Coatings 2020, 10, 1180–1191. [Google Scholar]
- Razavi, M.; Fathi, M.; Savabi, O.; Vashaee, D.; Tayebi, L. Regenerative influence of nanostructured bredigite (Ca7MgSi4O16)/anodic spark coating on biodegradable AZ91 magnesium alloy implants for bone healing. Mater. Lett. 2015, 155, 97–101. [Google Scholar] [CrossRef]
- Rzychon, T.; Kiełbus, A. Microstructure of WE43 casting magnesium alloy. J. Achiev. Mater. Manuf. Eng. 2007, 21, 31–34. [Google Scholar]
- Yan, T.; Tan, L.; Xiong, D.; Liu, X.; Ke, Y. Fluoride treatment and in vitro corrosion behavior of an AZ31B magnesium alloy. Mater. Sci. Eng. C 2010, 30, 740–748. [Google Scholar] [CrossRef]
- Yan, T.; Tan, L.; Xiong, D.; Zhang, B.; Yang, K. A manganese oxide contained coating forbiodegradable AZ31B magnesium alloy. Surf. Rev. Lett. 2009, 16, 533–538. [Google Scholar] [CrossRef]
- Lu, Y.; Wan, P.; Tan, L.; Yang, K.; Lin, J. Preliminary study on a bioactive Sr containing Ca-P coating on pure magnesium by a two-step procedure. Surf. Coat. Technol. 2014, 252, 79–86. [Google Scholar] [CrossRef]
- Hoehlinger, M.; Heise, S.; Wagener, V.; Boccaccini, A.R.; Virtanen, S. Developing surface pre-treatments for electrophoretic deposition of biofunctional chitosan-bioactive glass coatings on a WE43 magnesium alloy. Appl. Surf. Sci. 2017, 405, 441–448. [Google Scholar] [CrossRef]
- Golshirazi, A.; Kharaziha, M.; Golozar, M.A. Polyethylenimine/kappa carrageenan: Micro-arc oxidation coating for passivation of magnesium alloy. Carbohydr. Polym. 2017, 167, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Li, M.Q.; Zhang, D.Q.; Peng, S.H. Corrosion resistance and cell compatibility in vitro of Chinese herbal extract coating on magnesium. Results Phys. 2019, 12, 1465–1474. [Google Scholar] [CrossRef]
- He, F.P.; Chen, Y.; Li, J.Y.; Lin, B.M.; Yi, O. Improving bone repair of femoral and radial defects in rabbit by incorporating PRP into PLGA/CPC composite scaffold with unidirectional pore structure. J. Biomed. Mater. Res. Part A 2015, 103, 1312–1324. [Google Scholar] [CrossRef] [PubMed]
- Dan, M.; Dong, L.; Ying, W. Effects of adding resorbable chitosan microspheres to calcium phosphate cements for bone re-generation. Mater. Sci. Eng. C 2015, 47, 266–276. [Google Scholar]
- Huang, J.G.; Pang, L.; Chen, Z.R.; Tan, X.P. Dual-delivery of vancomycin and icariin from an injectable calcium phosphate cement-release system for controlling infection and improving bone healing. Mol. Med. Rep. 2013, 8, 1221–1227. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Li, J.N.; Cao, P.; Zhang, X.N. In vitro degradation and cell attachment of a PLGA coated biodegradable Mg–6Zn based alloy. J. Mater. Sci. 2010, 45, 6038–6045. [Google Scholar] [CrossRef]
- Zeng, X.; Xiong, S.; Zhuo, S.; Liu, C.; Miao, J.; Liu, D.; Wang, H.; Zhang, Y.; Zheng, Z.; Ting, K.; et al. Nanosilver/poly (dl-lactic-co-glycolic acid) on titanium implant surfaces for the enhancement of antibacterial properties and oste-oinductivity. Int. J. Nanomed. 2019, 14, 1849–1863. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.L.; Zhang, X.C. Protective effect of Rhizoma drynariae extract on osteoporosis in ovariectomized rat model. Trop. J. Pharm. Res. 2016, 15, 1447. [Google Scholar] [CrossRef]
- NilamberLal Das, R.; Muruhan, S.; Nagarajan, R.P. Naringin prevents ultraviolet-Bradiation-induced oxidative damage and inflammation through activation of peroxisome proliferator-activated receptor γ in mouseembryonic fibroblast (NIH-3T3) cells. J. Biochem. Mol. Toxicol. 2019, 33, 2263–2273. [Google Scholar] [CrossRef]
- Cui, L.Y.; Gao, S.D.; Li, P.P.; Zeng, R.C.; Zhang, F.; Li, S.Q. Corrosion resistance of a self-healing micro-arc oxidation/poly methyltrimeth oxysilane composite coating on magnesium alloy az31. Corros. Sci. 2017, 118, 84–95. [Google Scholar] [CrossRef]
- Batra, U.; Kapoor, S.; Sharma, S. Influence of Magnesium Ion Substitution on Structura land Thermal Behavior of Nanodi-mensional Hydroxyapatite. J. Mater. Eng. Perform. 2013, 22, 1798–1806. [Google Scholar] [CrossRef]
- Diana, M.V.; Ionut, C.I.; Elena, U. Magnesium doped hydroxyapatite-based coatings obtained by pulsed galvanostatic electrochemical deposition with adjustable electrochemical behavior. Coatings 2020, 10, 2–17. [Google Scholar]
- Hofmeister, A.M.; Keppel, E.; Speck, A.K. Absorption and reflection infrared spectra of MgO and other diatomic compounds. Mon. Not. R. Astron. Soc. 2003, 345, 16–38. [Google Scholar] [CrossRef]
- Kharaziha, M.; Fathi, M.H. Synthesis and characterization of bioactive forsterite nanopowder. Ceram. Int. 2009, 35, 2449–2454. [Google Scholar] [CrossRef]
- Liu, J.; Lu, J.F.; Kan, J.; Jin, C.H. Preparation, characterization and antioxidant activity of phenolic acids grafted carboxyme-thyl chitosan. Int. J. Biol. Macromol. 2013, 62, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Wei, D.Q.; Zhou, Y. Mechanical and corrosion resistance of hydrophilicsphene/titania composite coatings on titanium and deposition and release of cefa-zolin sodium/chitosan films. Appl. Surf. Sci. 2011, 257, 2657–2664. [Google Scholar] [CrossRef]
- Prabhu, K.; Karar, P.K.; Hemalatha, S. Isolation of chlorogenic acid from the stems of Viburnum coriaceum Blume. Pharm. Sin. 2011, 2, 87–92. [Google Scholar]
- Cheng, Z.J.; Zhang, L.; Zhao, H.M. Spectroscopic Investigation of the Interactions of Cryptotanshinone and Icariin with Two Serum Albumins. J. Solut. Chem. 2013, 42, 1238–1262. [Google Scholar] [CrossRef]
- Lin, X.; Tan, L.; Wan, P.; Yu, X.; Yang, K.; Hu, Z.; Li, Y.; Li, W. Characterization of micro-arc oxidation coating post-treated by hydrofluoric acid on biodegradable ZK60 magnesium alloy. Surf. Coat. Technol. 2013, 232, 899–905. [Google Scholar] [CrossRef]
- Taheri, M.; Kish, J.R.; Birbilis, N. Towards a physical description for the origin of enhanced catalytic activity of corroding magnesium surfaces. Electrochim. Acta 2014, 116, 396–403. [Google Scholar] [CrossRef]
- Liu, H.; Li, W.L.; Luo, B.H.; Chen, X.; Wei, W.; Zhou, C. Icariin immobilized electrospinning poly(L-lactide) fibrous membranes via polydopamine adhesive coating with enhanced cytocompatibility and osteogenic activity. Mater. Sci. Eng. C 2017, 79, 399–409. [Google Scholar] [CrossRef]
- Pozzo, L.Y.; Conceição, T.F.; Spinelli, A. Chitosan coatings crosslinked with genipin for corrosion protection of AZ31 magne-sium alloy sheets. Carbohydr. Polym. 2018, 181, 71–77. [Google Scholar] [CrossRef]
- Vaz, J.M.; Taketa, T.B.; Hernandez, M.J. Antibacterial properties of chitosan-based coatings are affected by spacer-length and molecular weight. Appl. Surf. Sci. 2018, 445, 478–487. [Google Scholar] [CrossRef]
- Mousa, H.M.; Lee, D.H.; Park, C.H. A novel simple strategy for in situ deposition of apatite layer on AZ31B magnesium alloy for bone tissue regeneration. Appl. Surf. Sci. 2015, 351, 55–65. [Google Scholar] [CrossRef]
- Peng, S.H.; Li, M.Q.; Wang, J. Corrosion behavior and biological activity of micro-arc oxidation coating with puerarin on pure magnesium surface. Results Phys. 2019, 12, 1481–1489. [Google Scholar] [CrossRef]
No. | Chemical Formula | Amount | Reagent Grade | Purity | Manufacturer |
---|---|---|---|---|---|
1 | NaCl | 8.035 g/L | ACS reagent | ≥99.9% | Comeo Co., Ltd., Tianjin, China |
2 | NaHCO3 | 0.355 g/L | Bio Reagent | ≥99.5% | |
3 | KCl | 0.225 g/L | ACS reagent | ≥99.5% | |
4 | K2HPO4 3H2O | 0.231 g/L | ACS reagent | ≥99.9% | |
5 | MgCl2 6H2O | 0.311 g/L | ACS reagent | ≥98.0% | |
6 | 1.0 M-HCl | 39 mL | ACS reagent | ≥37.0% | |
7 | CaCl2 | 0.292 g/L | ACS reagent | ≥99.9% | |
8 | Na2SO4 | 0.072 g/L | ACS reagent | ≥99.9% | |
9 | (CH2OH)3CNH2 | 6.118 g/L | Standard and Buffer | ≥99.9% |
Days | O (%) | Mg (%) | C (%) | Si (%) | Ca (%) | P (%) | Ca/P |
---|---|---|---|---|---|---|---|
0 | 47.8 | 23.8 | 23.8 | 4.0 | 0 | 0 | 0 |
3 | 37.4 | 24.5 | 12.2 | 5.6 | 10.5 | 9.0 | 1.17 |
7 | 45.2 | 3.9 | 15.5 | 0.4 | 20.4 | 13.9 | 1.47 |
14 | 44.7 | 2.7 | 5.7 | 0.2 | 31.5 | 15.0 | 2.1 |
Sample | UMAO | UMAO/PLGA | UMAO/PLGA/NG |
---|---|---|---|
Open Ecorr(V) | −1.827 | −1.546 | −1.565 |
Ecorr(V) | −1.829 | −1.513 | −1.573 |
Icorr (A/cm2) | 2.53 × 10−6 | 1.74 × 10−7 | 3.6 × 10−8 |
Sample | Rs (Ω·cm2) | CPE1 (F·cm2) | R1 (Ω·cm2) | CPE2 (F·cm2) | R2 (Ω·cm2) |
---|---|---|---|---|---|
UMAO | 257.6 | 5.40 × 10−7 | 5.28 × 104 | 1.20 × 10−7 | 7.96 × 105 |
UMAO/PLGA | 160.6 | 8.79 × 10−8 | 1.52 × 106 | 6.02 × 10−8 | 4.49 × 106 |
UMAO/PLGA/NG | 124.6 | 1.23 × 10−8 | 1.26 × 106 | 1.39 × 10−9 | 1.69 × 107 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, L.; Sun, Q.; Cui, G.; Yuan, S.; Wang, J.; Ma, Z.; Li, M. Preparation and Characterization of Sustained-Release Naringin Coating on Magnesium Surface. Coatings 2021, 11, 288. https://doi.org/10.3390/coatings11030288
Mu L, Sun Q, Cui G, Yuan S, Wang J, Ma Z, Li M. Preparation and Characterization of Sustained-Release Naringin Coating on Magnesium Surface. Coatings. 2021; 11(3):288. https://doi.org/10.3390/coatings11030288
Chicago/Turabian StyleMu, Liting, Quan Sun, Gang Cui, Shidan Yuan, Jingyan Wang, Zhen Ma, and Muqin Li. 2021. "Preparation and Characterization of Sustained-Release Naringin Coating on Magnesium Surface" Coatings 11, no. 3: 288. https://doi.org/10.3390/coatings11030288
APA StyleMu, L., Sun, Q., Cui, G., Yuan, S., Wang, J., Ma, Z., & Li, M. (2021). Preparation and Characterization of Sustained-Release Naringin Coating on Magnesium Surface. Coatings, 11(3), 288. https://doi.org/10.3390/coatings11030288