Transformations in CrFeCoNiCu High Entropy Alloy Thin Films during In-Situ Annealing in TEM
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Morphology and Diffraction Analysis of the Film during Heating
3.2. Microstructure Analysis of the Film Annealed at 700 °C
4. Discussion
5. Conclusions
- A new phase with a large unit cell, epitaxial to the already formed BCC phase started growing. The cell parameters correspond to 2 × 2 × 4 units of the BCC cell. The crystals possessed a planar disorder of atomic planes in one of the <001> directions, though the BCC lattice was preserved as an internal skeleton of their structure.
- Formation of voids occurred in the metallic part of the film. These voids were, however, still containing a nano-crystalline phase of the composition close to CrO and having an FCC lattice of about 0.42 nm period. This must be the part of a surface chromium oxide layer, possibly contributing to corrosion resistance of these films.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375, 213–218. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Gao, M.C. Progress in High-Entropy Alloys. JOM 2013, 65, 1749–1750. [Google Scholar] [CrossRef]
- Lu, Y.P.; Gao, X.Z.; Jiang, L.; Chen, Z.N.; Wang, T.; Jie, J.C.; Li, T.J. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 2017, 124, 143. [Google Scholar] [CrossRef]
- Kao, Y.F.; Chen, T.J.; Chen, S.K.; Yeh, J.W. Microstructure and mechanical property of as-cast,-homogenized, and-deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. J. Alloy. Compd. 2009, 488, 57. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- Xu, X.D.; Liu, P.; Guo, S.; Hirata, A.; Fujita, T.; Nieh, T.G.; Liub, C.T.; Chena, M.W. Nanoscale phase separation in a fcc-based CoCrCuFeNiAl0.5 high-entropy alloy. Acta Mater. 2015, 84, 145–152. [Google Scholar] [CrossRef]
- Shun, T.T.; Hung, C.H.; Lee, C.F. Formation of ordered/disordered nanoparticles in FCC high entropy alloys. J. Alloy. Compd. 2010, 493, 105–109. [Google Scholar] [CrossRef]
- Wang, J.; Niu, S.; Guo, T.; Kou, H.; Li, L. The FCC to BCC phase transformation kinetics in an Al0.5CoCrFeNi high entropy alloy. J. Alloy. Compd. 2017, 710, 144–150. [Google Scholar] [CrossRef]
- Wang, W.R.; Wang, W.L.; Wang, S.C.; Tsai, Y.C.; Lai, C.H.; Yeh, J.W. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 2012, 26, 44–51. [Google Scholar] [CrossRef]
- Pickering, E.J.; Muñoz-Moreno, R.; Stone, H.J.; Jones, N.J. Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scr. Mater. 2016, 113, 106–109. [Google Scholar] [CrossRef]
- Otto, F.; Dlouhý, A.; Pradeep, K.G.; Kubenov, M.; Raabe, D.; Eggeler, G.; George, E.P. Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater. 2016, 112, 40–52. [Google Scholar] [CrossRef]
- He, F.; Wang, Z.; Wu, Q.; Li, J.; Wang, J.; Liu, C.T. Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures. Scr. Mater. 2017, 126, 15–19. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.J.; Lin, J.P.; Chen, G.L.; Liaw, P.K. Solid Solution Phase Formation Rules for Multi-Component Alloys. Adv. Eng. Mater. 2008, 10, 534–538. [Google Scholar] [CrossRef]
- An, Z.; Jia, H.; Wu, Y.; Rack, P.D.; Patchen, A.D.; Liu, Y.; Ren, Y.; Li, N.; Liaw, P.K. Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition. Mater. Res. Lett. 2015, 3, 203–209. [Google Scholar] [CrossRef]
- Zhang, L.J.; Fan, J.T.; Liu, D.J.; Zhang, M.D.; Yu, P.F.; Jing, Q.; Ma, M.Z.; Liaw, P.K.; Li, G.; Liu, R.P. The microstructural evolution and hardness of the equiatomic CoCrCuFeNi high-entropy alloy in the semi-solid state. J. Alloy. Compd. 2018, 745, 75–83. [Google Scholar] [CrossRef]
- Park, N.; Watanabe, I.; Terada, D.; Yokohama, Y.; Liaw, P.K.; Tsuji, N. Recrystallization Behavior of CoCrCuFeNi high-entropy alloy. Metall. Mater. Trans. A 2015, 46, 1481–1487. [Google Scholar] [CrossRef]
- Oh, S.M.; Hong, S.I. Microstructural stability and mechanical properties of equiatomicCoCrCuFeNi, CrCuFeMnNi, CoCrCuFeMn alloys. Mater. Chem. Phys. 2018, 210, 120–125. [Google Scholar] [CrossRef]
- Chen, T.K.; Shun, T.T.; Yeh, J.W.; Wong, M.S. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf. Coat. Technol. 2004, 188, 193–200. [Google Scholar] [CrossRef]
- Braeckman, B.R.; Misják, F.; Radnóczi, G.; Depla, D. The influence of Ge and in addition on the phase formation of CoCrCuFeNi high-entropy alloy thin films. Thin Solid Film. 2016, 616, 703–710. [Google Scholar] [CrossRef]
- Dolique, V.; Thomann, A.L.; Brault, P.; Tessier, Y.; Gillon, P. Thermal stability of AlCoCrCuFeNi high entropy alloy thin films studied by in-situ XRD analysis. Surf. Coat. Technol. 2010, 204, 1989–1992. [Google Scholar] [CrossRef]
- Rao, J.C.; Diao, H.Y.; Ocelík, V.; Vainchtein, D.; Zhang, C.; Kuo, C.; Tang, Z.; Guo, W.; Poplawsky, J.D.; Zhou, Y.; et al. Secondary phases in AlxCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal. Acta Mater. 2017, 131, 206–220. [Google Scholar] [CrossRef]
- Nagase, T.; Rack, P.D.; Noh, J.H.; Egami, T. In-situ TEM observation of structural changes in nano-crystalline CoCrCuFeNi multicomponent high-entropy alloy (HEA) under fast electron irradiation by high voltage electron microscopy (HVEM). Intermetallics 2015, 59, 32–42. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Tunes, M.A.; Crespillo, M.L.; Zhang, F.X.; Boldman, W.L.; Rack, P.D.; Jiang, L.; Xu, C.; Greaves, G.; Donnelly, S.E.; et al. Thermal stability and irradiation response of nanocrystalline CoCrCuFeNi high-entropy alloy. Nanotechnology 2019, 30, 15. [Google Scholar] [CrossRef]
- Lux, H.; Illmann, G. ZurKenntnis der Chrom (II) Salze und des Chrom (II) oxyds, II. Chem. Ber. 1959, 92, 9. [Google Scholar] [CrossRef]
- Dedoncker, R.; Radnóczi, G.; Abadias, G.; Depla, D. Reactive sputter deposition of CoCrCuFeNi in oxygen/argon mixtures. Surf. Coat. Technol. 2019, 378, 124–362. [Google Scholar] [CrossRef]
- Sandoval, L.; Urbassek, H.M.; Entel, P. The Bain versus Nishiyama–Wassermann path in the martensitic transformation of Fe. New J. Phys. 2009, 11, 103027. [Google Scholar] [CrossRef]
- Jette, E.R.; Foote, F. The Fe-Cr alloy system. Met. Alloy. 1936, 7, 207. [Google Scholar]
- Bergman, B.G.; Shoemaker, D.P. The space group of sigma-FeCr crystal structure. J. Chem.Phys. 1951, 19, 515. [Google Scholar] [CrossRef]
- Okamoto, H.; Schlesinger, M.E.; Mueller, E.M. Alloy Phase Diagram; ASM International: Materials Park, OH, USA, 1992. [Google Scholar]
- Shivam, V.; Basu, J.; Pandey, V.K.; Shadangi, Y.; Mukhopadhyay, N.K. Alloying behaviour, thermal stability and phase evolution in quinary AlCoCrFeNi high entropy alloy. Adv. Powder Technol. 2018, 29, 2221–2230. [Google Scholar] [CrossRef]
- Nagy, K.H.; Misják, F. In-situ transmission electron microscopy study of thermal stability and carbide formation in amorphous Cu-Mn/C films for interconnect applications. J. Phys. Chem. Solids 2018, 121, 312–318. [Google Scholar] [CrossRef]
- Prokoshkina, D.; Rodin, A.; Esin, V. About Fe Diffusion in Cu. Defect Diffus. Forum 2012, 323, 171–176. [Google Scholar] [CrossRef]
Measured d-Values (nm) | Possible Phases | |||||||
---|---|---|---|---|---|---|---|---|
L12 (a = 0.360) | BCC (a = 0.294) | FCC-Oxide (a = 0.420) | HEA FCC (a = 0.360) | |||||
d-Value | hkl | d-Value | hkl | d-Value | hkl | d-Value | hkl | |
0.360 | 0.360 | 100 | ||||||
0.248 | 0.255 | 110 | 0.242 | 111 | ||||
0.209 | 0.208 | 111 | 0.208 | 110 | 0.210 | 200 | 0.208 | 111 |
0.180 | 0.180 | 200 | 0.180 | 220 | ||||
0.161 | 210 | |||||||
0.150 | 0.147 | 211 | 0.147 | 200 | 0.148 | 220 | ||
0.126 | 0.127 | 220 | 0.127 | 311 | 0.127 | 220 | ||
0.12 | 221 | 0.12 | 211 | 0.121 | 222 | |||
0.110 | 0.109 | 311 | 0.105 | 400 | 0.109 | 311 | ||
0.100 | 0.104 | 222 | 0.104 | 220 | 0.096 | 331 | 0.104 | 222 |
Z | Element | Family | Area in Figure 4 | |||
---|---|---|---|---|---|---|
A1 | A2 | M1 | M2 | |||
Atomic Fraction (%) | ||||||
24 | Cr | K | 62.39 | 63.29 | 15.06 | 10.27 |
26 | Fe | K | 12.93 | 13.86 | 17.63 | 19.11 |
27 | Co | K | 6.46 | 9.09 | 18.57 | 18.18 |
28 | Ni | K | 4.10 | 1.28 | 19.28 | 24.22 |
29 | Cu | K | 14.12 | 12.47 | 29.47 | 28.22 |
Z | Element | Family | Atomic Fraction (%) | |||
---|---|---|---|---|---|---|
Area #1 | Area #2 | Area #3 | The Whole Area | |||
24 | Cr | K | 83.62 | 8.20 | 29.04 | 21.00 |
26 | Fe | K | 1.86 | 22.09 | 21.96 | 21.37 |
27 | Co | K | 1.56 | 18.84 | 19.61 | 19.95 |
28 | Ni | K | 0.66 | 20.93 | 17.28 | 19.44 |
29 | Cu | K | 12.29 | 29.94 | 12.10 | 18.24 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arfaoui, M.; Radnóczi, G.; Kovács Kis, V. Transformations in CrFeCoNiCu High Entropy Alloy Thin Films during In-Situ Annealing in TEM. Coatings 2020, 10, 60. https://doi.org/10.3390/coatings10010060
Arfaoui M, Radnóczi G, Kovács Kis V. Transformations in CrFeCoNiCu High Entropy Alloy Thin Films during In-Situ Annealing in TEM. Coatings. 2020; 10(1):60. https://doi.org/10.3390/coatings10010060
Chicago/Turabian StyleArfaoui, Mohamed, György Radnóczi, and Viktória Kovács Kis. 2020. "Transformations in CrFeCoNiCu High Entropy Alloy Thin Films during In-Situ Annealing in TEM" Coatings 10, no. 1: 60. https://doi.org/10.3390/coatings10010060
APA StyleArfaoui, M., Radnóczi, G., & Kovács Kis, V. (2020). Transformations in CrFeCoNiCu High Entropy Alloy Thin Films during In-Situ Annealing in TEM. Coatings, 10(1), 60. https://doi.org/10.3390/coatings10010060