The Case for a More Holistic Approach to Dry Eye Disease: Is It Time to Move beyond Antibiotics?
Abstract
:1. Introduction
2. Dry Eye Disease as an Inflammatory Disorder
2.1. The Anti-Inflammatory Role of Antibiotics in DED
2.2. The Case against Antibiotics for Dry Eye Disease
2.3. The Anti-Inflammatory Role of Probiotics, Prebiotics and Funcational Foods in DED
2.4. Potential Mechanism of Action of Prebiotics, Probiotics and Functional Foods in Addressing DED
3. Prebiotics
3.1. Definition
3.2. Prebiotics and Human Health and Disease
3.3. Prebiotics and Ophthalmic Related Diseases
3.3.1. Turmeric Extract and Curcumin
3.3.2. Fructo-Oligosaccharides
3.3.3. Colostrum
3.3.4. Quercetin
3.3.5. Resveratrol
4. Probiotics
4.1. Definition
4.2. Probiotics and Human Health and Disease
4.3. Probiotics and Ophthalmic Related Diseases
5. Other Functional Foods
5.1. Red Ginseng
5.2. Honey
5.3. Polyphenols
5.3.1. Bilberry Extract
5.3.2. Green Tea
5.3.3. Grape Polyphenols
5.4. Evening Primrose Oil
5.5. Glycerol Monolaurate
5.6. Combination Nutraceuticals
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Craig, J.P.; Nichols, K.K.; Akpek, E.K.; Caffery, B.; Dua, H.S.; Joo, C.-K.; Liu, Z.; Nelson, J.D.; Nichols, J.J.; Tsubota, K.; et al. TFOS DEWS II Definition and Classification Report. Ocul. Surf. 2017, 15, 276–283. [Google Scholar] [CrossRef]
- Lee, S.H.; Oh, D.H.; Jung, J.Y.; Kim, J.C.; Jeon, C.O. Comparative Ocular Microbial Communities in Humans with and without Blepharitis. Investig. Ophthalmol. Vis. Sci. 2012, 53, 5585–5593. [Google Scholar] [CrossRef] [Green Version]
- Baudouin, C.; Messmer, E.M.; Aragona, P.; Geerling, G.; Akova, Y.A.; Benítez-del-Castillo, J.; Boboridis, K.G.; Merayo-Lloves, J.; Rolando, M.; Labetoulle, M. Revisiting the Vicious Circle of Dry Eye Disease: A Focus on The Pathophysiology of Meibomian Gland Dysfunction. Br. J. Ophthalmol. 2016, 100, 300. [Google Scholar] [CrossRef]
- Messmer, E.M. The Pathophysiology, Diagnosis, and Treatment of Dry Eye Disease. Dtsch. Arztebl. Int. 2015, 112, 71–81. [Google Scholar] [CrossRef]
- Baudouin, C. The Pathology of Dry Eye. Surv. Ophthalmol. 2001, 45, S211–S220. [Google Scholar] [CrossRef]
- Bron, A.J.; de Paiva, C.S.; Chauhan, S.K.; Bonini, S.; Gabison, E.E.; Jain, S.; Knop, E.; Markoulli, M.; Ogawa, Y.; Perez, V.; et al. TFOS DEWS II Pathophysiology Report. Ocul. Surf. 2017, 15, 438–510. [Google Scholar] [CrossRef]
- Stern, M.E.; Schaumburg, C.S.; Pflugfelder, S.C. Dry Eye as a Mucosal Autoimmune Disease. Int. Rev. Immunol. 2013, 32, 19–41. [Google Scholar] [CrossRef]
- Guzman, M.; Keitelman, I.; Sabbione, F.; Trevani, A.S.; Giordano, M.N.; Galletti, J.G. Desiccating Stress-Induced Disruption of Ocular Surface Immune Tolerance Drives Dry Eye Disease. Clin. Exp. Immunol. 2016, 184, 248–256. [Google Scholar] [CrossRef]
- Pflugfelder, S.C. Antiinflammatory Therapy for Dry Eye. Am. J. Ophthalmol. 2004, 137, 337–342. [Google Scholar] [CrossRef]
- Milner, M.S.; Beckman, K.A.; Luchs, J.I.; Allen, Q.B.; Awdeh, R.M.; Berdahl, J.; Boland, T.S.; Buznego, C.; Gira, J.P.; Goldberg, D.F.; et al. Dysfunctional Tear Syndrome: Dry Eye Disease and Associated Tear Film Disorders-New Strategies for Diagnosis and Treatment. Curr. Opin. Ophthalmol. 2017, 27, 3–47. [Google Scholar] [CrossRef]
- Barnhorst, D.A.; Foster, J.A.; Chern, K.C.; Meisler, D.M. The Efficacy of Topical Metronidazole in the Treatment of Ocular Rosacea. Ophthalmology 1996, 103, 1880–1883. [Google Scholar] [CrossRef]
- Shine, W.E.; McCulley, J.P.; Pandya, A.G. Minocycline Effect on Meibomian Gland Lipids in Meibomianitis Patients. Exp. Eye Res. 2003, 76, 417–420. [Google Scholar] [CrossRef]
- Souchier, M.; Joffre, C.; Grégoire, S.; Brétillon, L.; Muselier, A.; Acar, N.; Beynat, J.; Bron, A.; D’Athis, P.; Creuzot-Garcher, C. Changes in Meibomian Fatty Acids and Clinical Signs in Patients with Meibomian Gland Dysfunction after Minocycline Treatment. Br. J. Ophthalmol. 2008, 92, 819–822. [Google Scholar] [CrossRef] [PubMed]
- Geerling, G.; Tauber, J.; Baudouin, C.; Goto, E.; Matsumoto, Y.; O’Brien, T.; Rolando, M.; Tsubota, K.; Nichols, K.K. The International Workshop on Meibomian Gland Dysfunction: Report of the Subcommittee on Management and Treatment of Meibomian Gland Dysfunction. Investig. Ophthalmol. Vis. Sci. 2011, 52, 2050–2064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wladis, E.J.; Bradley, E.A.; Bilyk, J.R.; Yen, M.T.; Mawn, L.A. Oral Antibiotics for Meibomian Gland-Related Ocular Surface Disease: A Report by the American Academy of Ophthalmology. Ophthalmology 2016, 123, 492–496. [Google Scholar] [CrossRef]
- De Paiva, C.S.; Jones, D.B.; Stern, M.E.; Bian, F.; Moore, Q.L.; Corbiere, S.; Streckfus, C.F.; Hutchinson, D.S.; Ajami, N.J.; Petrosino, J.F. Altered Mucosal Microbiome Diversity and Disease Severity in Sjögren Syndrome. Sci. Rep. 2016, 6, 23561. [Google Scholar] [CrossRef]
- Zaheer, M.; Wang, C.; Bian, F.; Yu, Z.; Hernandez, H.; de Souza, R.G.; Simmons, K.T.; Schady, D.; Swennes, A.G.; Pflugfelder, S.C.; et al. Protective Role of Commensal Bacteria in Sjogren Syndrome. J. Autoimmun. 2018, 93, 45–56. [Google Scholar] [CrossRef]
- Holland, E.J.; Darvish, M.; Nichols, K.K.; Jones, L.; Karpecki, P.M. Efficacy of Topical Ophthalmic Drugs in the Treatment of Dry Eye Disease: A Systematic Literature Review. Ocul. Surf. 2019. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Ohashi, Y.; Watanabe, H.; Tsubota, K.; Group, D.O.S.P.S. Efficacy and Safety of Diquafosol Ophthalmic Solution in Patients with Dry Eye Syndrome: A Japanese Phase 2 Clinical Trial. Ophthalmology 2012, 119, 1954–1960. [Google Scholar] [CrossRef]
- Takamura, E.; Tsubota, K.; Watanabe, H.; Ohashi, Y. A Randomised, Double-Masked Comparison Study of Diquafosol Versus Sodium Hyaluronate Ophthalmic Solutions in Dry Eye Patients. Br. J. Ophthalmol. 2012, 96, 1310. [Google Scholar] [CrossRef]
- Tauber, J.; Davitt, W.; Bokosky, J.; Nichols, K.; Yerxa, B.; Schaberg, A.; LaVange, L.; Mills-Wilson, M.; Kellerman, D. Double-Masked, Placebo-Controlled Safety and Efficacy Trial of Diquafosol Tetrasodium (Ins365) Ophthalmic Solution for the Treatment of Dry Eye. Cornea 2004, 23, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Markoulli, M.; Hui, A. Emerging Targets of Inflammation and Tear Secretion in Dry Eye Disease. Drug Discov. Today 2019. [Google Scholar] [CrossRef] [PubMed]
- Jackson, W.B. Blepharitis: Current Strategies for Diagnosis and Management. Can. J. Ophthalmol. 2008, 43, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Borchman, D. The Optimum Temperature for The Heat Therapy for Meibomian Gland Dysfunction. Ocul. Surf. 2019. [Google Scholar] [CrossRef] [PubMed]
- Ganesalingam, K.; Ismail, S.; Sherwin, T.; Craig, J.P. Molecular Evidence for The Role of Inflammation in Dry Eye Disease. Clin. Exp. Optom. 2019. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, M.; Sabbione, F.; Gabelloni, M.L.; Vanzulli, S.; Trevani, A.S.; Giordano, M.N.; Galletti, J.G. Restoring Conjunctival Tolerance by Topical Nuclear Factor–κB Inhibitors Reduces Preservative-Facilitated Allergic Conjunctivitis in Mice. Clin. Exp. Optom. 2014, 55, 6116–6126. [Google Scholar] [CrossRef]
- Stern, M.E.; Schaumburg, C.S.; Dana, R.; Calonge, M.; Niederkorn, J.Y.; Pflugfelder, S.C. Autoimmunity at the Ocular Surface: Pathogenesis and Regulation. Mucosal Immunol. 2010, 3, 425–442. [Google Scholar] [CrossRef]
- Galletti, J.G.; Gabelloni, M.L.; Morande, P.E.; Sabbione, F.; Vermeulen, M.E.; Trevani, A.S.; Giordano, M.N. Benzalkonium Chloride Breaks Down Conjunctival Immunological Tolerance in a Murine Model. Mucosal Immunol. 2013, 6, 24–34. [Google Scholar] [CrossRef]
- Farid, M.; Agrawal, A.; Fremgen, D.; Tao, J.; Chuyi, H.; Nesburn, A.B.; BenMohamed, L. Age-related Defects in Ocular and Nasal Mucosal Immune System and the Immunopathology of Dry Eye Disease. Ocul. Immunol. Inflamm. 2016, 24, 327–347. [Google Scholar] [CrossRef]
- Lallemand, F.; Schmitt, M.; Bourges, J.-L.; Gurny, R.; Benita, S.; Garrigue, J.-S. Cyclosporine A Delivery to the Eye: A Comprehensive Review of Academic and Industrial Efforts. Eur. J. Pharm. Biopharm. 2017, 117, 14–28. [Google Scholar] [CrossRef]
- Baudouin, C.; Figueiredo, F.C.; Messmer, E.M.; Ismail, D.; Amrane, M.; Garrigue, J.-S.; Bonini, S.; Leonardi, A. A Randomized Study of the Efficacy and Safety of 0.1% Cyclosporine A Cationic Emulsion in Treatment of Moderate to Severe Dry Eye. Eur. J. Ophthalmol. 2017, 27, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Novack, G.D. Why Aren’t There More Pharmacotherapies for Dry Eye? Ocul. Surf. 2014, 12, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Bron, A.J.; Tiffany, J.M. The Contribution of Meibomian Disease to Dry Eye. Ocul. Surf. 2004, 2, 149–165. [Google Scholar] [CrossRef]
- Barabino, S.; Chen, Y.; Chauhan, S.; Dana, R. Ocular Surface Immunity: Homeostatic Mechanisms and Their Disruption in Dry Eye Disease. Prog. Retin. Eye Res. 2012, 31, 271–285. [Google Scholar] [CrossRef] [PubMed]
- Miyachi, Y.; Yoshioka, A.; Imamura, S.; Niwa, Y. Effect of Antibiotics on the Generation of Reactive Oxygen Species. J. Investig. Dermatol. 1986, 86, 449–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foulks, G.N.; Borchman, D.; Yappert, M.; Kim, S.H.; Mckay, J.W. Topical Azithromycin Therapy for Meibomian Gland Dysfunction: Clinical Response and Lipid Alterations. Cornea 2010, 29, 781–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haque, R.M.; Torkildsen, G.L.; Brubaker, K.; Zink, R.C.; Kowalski, R.P.; Mah, F.S.; Pflugfelder, S.C. Multicenter Open-Label Study Evaluating the Efficacy of Azithromycin Ophthalmic Solution 1% on the Signs and Symptoms of Subjects with Blepharitis. Cornea 2010, 29, 871–877. [Google Scholar] [CrossRef]
- Moscovici, B.K.; Holzchuh, R.; Chiacchio, B.B.; Santo, R.M.; Shimazaki, J.; Hida, R.Y. Clinical Treatment of Dry Eye Using 0.03% Tacrolimus Eye Drops. Cornea 2012, 31, 945–949. [Google Scholar] [CrossRef]
- Liu, Y.; Kam, W.R.; Ding, J.; Sullivan, D.A. Effect of Azithromycin on Lipid Accumulation in Immortalized Human Meibomian Gland Epithelial Cells. JAMA Ophthalmol. 2014, 132, 226–228. [Google Scholar] [CrossRef]
- Flanagan, J.L.; Khandekar, N.; Zhu, H.; Watanabe, K.; Markoulli, M.; Flanagan, J.T.; Papas, E. Glycerol Monolaurate Inhibits Lipase Production by Clinical Ocular Isolates without Affecting Bacterial Cell Viability. Investig. Ophthalmol. Vis. Sci. 2016, 57, 544–550. [Google Scholar] [CrossRef]
- Hessen, M.; Akpek, E.K. Dry Eye: An Inflammatory Ocular Disease. J. Ophthalmic Vis. Res. 2014, 9, 240–250. [Google Scholar] [PubMed]
- Federici, T.J. The Non-Antibiotic Properties of Tetracyclines: Clinical Potential in Ophthalmic Disease. Pharmacol. Res. 2011, 64, 614–623. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.; Downie, L.E.; Korb, D.; Benitez-Del-Castillo, J.M.; Dana, R.; Deng, S.X.; Dong, P.N.; Geerling, G.; Hida, R.Y.; Liu, Y.; et al. TFOS DEWS II Management and Therapy Report. Ocul. Surf. 2017, 15, 575–628. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zaheer, M.; Bian, F.; Quach, D.; Swennes, G.A.; Britton, A.R.; Pflugfelder, C.S.; De Paiva, S.C. Sjögren-Like Lacrimal Keratoconjunctivitis in Germ-Free Mice. Int. J. Mol. Sci. 2018, 19, 565. [Google Scholar] [CrossRef] [PubMed]
- Kugadas, A.; Christiansen, S.H.; Sankaranarayanan, S.; Surana, N.K.; Gauguet, S.; Kunz, R.; Fichorova, R.; Vorup-Jensen, T.; Gadjeva, M. Impact of Microbiota on Resistance to Ocular Pseudomonas Aeruginosa-Induced Keratitis. PLoS Pathog. 2016, 12. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, J.; Willcox, M.D. The Ocular Microbiome: Molecular Characterisation of a Unique and Low Microbial Environment. Curr. Eye Res. 2019. [Google Scholar] [CrossRef] [PubMed]
- Vanderlaan, D.G.; Brown-Skrobot, S.K.; Schultz, C.L. Ophthalmic Lens with Anti-Toxin Agent. Google Patents: 1995. U.S. Patent No. 5472703, 5 December 1995. [Google Scholar]
- Goldstein, M.H.; Rao, N.K. Dry Eye Disease. In Ophthalmology, 5th ed.; Yanoff, M., Duker, J.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; p. 272. [Google Scholar]
- Manzel, A.; Muller, D.N.; Hafler, D.A.; Erdman, S.E.; Linker, R.A.; Kleinewietfeld, M. Role of “Western Diet” in Inflammatory Autoimmune Diseases. Curr. Allergy Asthma Rep. 2014, 14, 404. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, S.K.; El Annan, J.; Ecoiffier, T.; Goyal, S.; Zhang, Q.; Saban, D.R.; Dana, R. Autoimmunity in Dry Eye Is due to Resistance of Th17 to Treg Suppression. J. Immunol. 2009, 182, 1247–1252. [Google Scholar] [CrossRef]
- Niederkorn, J.Y.; Stern, M.E.; Pflugfelder, S.C.; De Paiva, C.S.; Corrales, R.M.; Gao, J.; Siemasko, K. Desiccating Stress Induces T Cell-Mediated Sjögren’s Syndrome-Like Lacrimal Keratoconjunctivitis. J. Immunol. 2006, 176, 3950. [Google Scholar] [CrossRef]
- Yagci, A.; Gurdal, C. The Role and Treatment of Inflammation in Dry Eye Disease. Int. Ophthalmol. 2014, 34, 1291–1301. [Google Scholar] [CrossRef]
- Hooper, L.V.; Littman, D.R.; Macpherson, A.J. Interactions between the Microbiota and the Immune System. Science 2012, 336, 1268. [Google Scholar] [CrossRef] [PubMed]
- Kau, A.L.; Ahern, P.P.; Griffin, N.W.; Goodman, A.L.; Gordon, J.I. Human Nutrition, the Gut Microbiome and the Immune System. Nature 2011, 474, 327. [Google Scholar] [CrossRef] [PubMed]
- Thorburn, A.N.; Macia, L.; Mackay, C.R. Diet, Metabolites, and “Western-Lifestyle” Inflammatory Diseases. Immunity 2014, 40, 833–842. [Google Scholar] [CrossRef] [PubMed]
- Ruff, W.E.; Kriegel, M.A. Autoimmune Host–Microbiota Interactions at Barrier Sites and Beyond. Trends Mol. Med. 2015, 21, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Yurkovetskiy, L.A.; Pickard, J.M.; Chervonsky, A.V. Microbiota and Autoimmunity: Exploring New Avenues. Cell Host Microbe 2015, 17, 548–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmody, R.N.; Gerber, G.K.; Luevano, J.M.; Gatti, D.M.; Somes, L.; Svenson, K.L.; Turnbaugh, P.J. Diet Dominates Host Genotype in Shaping the Murine Gut Microbiota. Cell Host Microbe 2015, 17, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Buffie, C.G.; Pamer, E.G. Microbiota-Mediated Colonization Resistance Against Intestinal Pathogens. Nat. Rev. Immunol. 2013, 13, 790. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.M.K.; Nair, L.; Alegre, M.-L. The Interplay Between the Intestinal Microbiota and the Immune System. Clin. Res. Hepatol. Gastroenterol. 2015, 39, 9–19. [Google Scholar] [CrossRef]
- Engevik, M.A.; Ganesh, B.P.; Visuthranukul, C.; Versalovic, J. Lactobacillus Reuteri Modulates Dendritic Cells and the Immune Response in Vitro and in Vivo. FASEB J. 2017, 31. [Google Scholar] [CrossRef]
- Zegarra-Ruiz, D.F.; El Beidaq, A.; Iñiguez, A.J.; Lubrano Di Ricco, M.; Manfredo Vieira, S.; Ruff, W.E.; Mubiru, D.; Fine, R.L.; Sterpka, J.; Greiling, T.M.; et al. A Diet-Sensitive Commensal Lactobacillus Strain Mediates TLR7-Dependent Systemic Autoimmunity. Cell Host Microbe 2019, 25, 113–127. [Google Scholar] [CrossRef]
- Creuzot, C.; Passemard, M.; Viau, S.; Joffre, C.; Pouliquen, P.; Elena, P.P.; Bron, A.; Brignole, F. Improvement of Dry Eye Symptoms with Polyunsaturated Fatty Acids. J. Fr. Ophtalmol. 2006, 29, 868–873. [Google Scholar] [CrossRef]
- Galor, A.; Covington, D.; Levitt, A.E.; McManus, K.T.; Seiden, B.; Felix, E.R.; Kalangara, J.; Feuer, W.; Patin, D.J.; Martin, E.R.; et al. Neuropathic Ocular Pain due to Dry Eye Is Associated with Multiple Comorbid Chronic Pain Syndromes. J. Pain 2016, 17, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Matossian, C.; McDonald, M.; Donaldson, K.E.; Nichols, K.K.; MacIver, S.; Gupta, P.K. Dry Eye Disease: Consideration for Women’s Health. J. Women’s Health 2019, 28, 502–514. [Google Scholar] [CrossRef] [PubMed]
- Vehof, J.; Kozareva, D.; Hysi, P.G.; Hammond, C.J. Prevalence and Risk Factors of Dry Eye Disease in a British Female Cohort. Br. J. Ophthalmol. 2014, 98, 1712. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.-L.; Lin, T.-L.; Chang, C.-J.; Wu, T.-R.; Lai, W.-F.; Lu, C.-C.; Lai, H.-C. Probiotics, Prebiotics and Amelioration of Diseases. J. Biomed. Sci. 2019, 26, 3. [Google Scholar] [CrossRef] [PubMed]
- Graham, J.E.; Moore, J.E.; Jiru, X.; Moore, J.E.; Goodall, E.A.; Dooley, J.S.G.; Hayes, V.E.A.; Dartt, D.A.; Downes, C.S.; Moore, T.C.B. Ocular Pathogen or Commensal: A PCR-Based Study of Surface Bacterial Flora in Normal and Dry Eyes. Investig. Ophthalmol. Vis. Sci. 2007, 48, 5616–5623. [Google Scholar] [CrossRef] [PubMed]
- Otto, M. Staphylococcus Epidermidis—The ‘Accidental’ Pathogen. Nat. Rev. Microbiol. 2009, 7, 555. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, K.; Sasaki, I.; Ogawa, H.; Naito, H.; Funayama, Y.; Matsuno, S. Colonization of Microflora in Mice: Mucosal Defense Against Luminal Bacteria. J. Gastroenterol. 1999, 34, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Koropatkin, N.M.; Cameron, E.A.; Martens, E.C. How Glycan Metabolism Shapes the Human Gut Microbiota. Nat. Rev. Microbiol. 2012, 10, 323. [Google Scholar] [CrossRef]
- Lu, L.J.; Liu, J. Human Microbiota and Ophthalmic Disease. Yale J. Biol. Med. 2016, 89, 325–330. [Google Scholar] [PubMed]
- Feher, J.; Pinter, E.; Kovács, I.; Helyes, Z.; Kemény, A.; Markovics, A.; Plateroti, R.; Librando, A.; Cruciani, F. Irritable Eye Syndrome: Neuroimmune Mechanisms and Benefits of Selected Nutrients. Ocul. Surf. 2014, 12, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Roberfroid, M.B. Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491. [Google Scholar] [CrossRef] [PubMed]
- Walter, J.; Ley, R. The Human Gut Microbiome: Ecology and Recent Evolutionary Changes. Annu. Rev. Microbiol. 2011, 65, 411–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costabile, A.; Kolida, S.; Klinder, A.; Gietl, E.; Bäuerlein, M.; Frohberg, C.; Landschütze, V.; Gibson, G.R. A Double-Blind, Placebo-Controlled, Cross-Over Study to Establish the Bifidogenic Effect of a Very-Long-Chain Inulin Extracted from Globe Artichoke (Cynara Scolymus) in Healthy Human Subjects. Br. J. Nutr. 2010, 104, 1007–1017. [Google Scholar] [CrossRef]
- Depeint, F.; Tzortzis, G.; Vulevic, J.; I’Anson, K.; Gibson, G.R. Prebiotic Evaluation of a Novel Galactooligosaccharide Mixture Produced by the Enzymatic Activity of Bifidobacterium Bifidum Ncimb 41171, in Healthy Humans: A Randomized, Double-Blind, Crossover, Placebo-Controlled Intervention Study. Am. J. Clin. Nutr. 2008, 87, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Roberfroid, M.; Gibson, G.R.; Hoyles, L.; McCartney, A.L.; Rastall, R.; Rowland, I.; Wolvers, D.; Watzl, B.; Szajewska, H.; Stahl, B.; et al. Prebiotic Effects: Metabolic and Health Benefits. Br. J. Nutr. 2010, 104, S1–S63. [Google Scholar] [CrossRef] [PubMed]
- Costantini, L.; Molinari, R.; Farinon, B.; Merendino, N. Impact of Omega-3 Fatty Acids on the Gut Microbiota. Int. J. Mol. Sci. 2017, 18, 2645. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Scott, K.P.; Rastall, R.A.; Tuohy, K.M.; Hotchkiss, A.; Dubert-Ferrandon, A.; Gareau, M.; Murphy, E.F.; Saulnier, D.; Loh, G. Dietary Prebiotics: Current Status and New Definition. Food Sci. Technol. Bull. Funct. Foods 2010, 7, 1–19. [Google Scholar] [CrossRef]
- Hutkins, R.W.; Krumbeck, J.A.; Bindels, L.B.; Cani, P.D.; Fahey, G.; Goh, Y.J.; Hamaker, B.; Martens, E.C.; Mills, D.A.; Rastal, R.A.; et al. Prebiotics: Why Definitions Matter. Curr. Opin. Biotechnol. 2016, 37, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Rastall, R.A.; Gibson, G.R. Recent Developments in Prebiotics to Selectively Impact Beneficial Microbes and Promote Intestinal Health. Curr. Opin. Biotechnol. 2015, 32, 42–46. [Google Scholar] [CrossRef]
- Louis, P.; Flint, H.J.; Michel, C. How to Manipulate the Microbiota: Prebiotics. In Microbiota of the Human Body: Implications in Health and Disease; Schwiertz, A., Ed.; Springer International Publishing: Berlin, Germany, 2016; pp. 119–142. [Google Scholar]
- Ashley, C.; Johnston, W.H.; Harris, C.L.; Stolz, S.I.; Wampler, J.L.; Berseth, C.L. Growth and Tolerance of Infants Fed Formula Supplemented with Polydextrose (Pdx) and/or Galactooligosaccharides (Gos): Double-Blind, Randomized, Controlled Trial. Nutr. J. 2012, 11, 38. [Google Scholar] [CrossRef]
- Tabbers, M.M.; Boluyt, N.; Berger, M.Y.; Benninga, M.A. Nonpharmacologic Treatments for Childhood Constipation: Systematic Review. Pediatrics 2011, 128, 753. [Google Scholar] [CrossRef] [PubMed]
- van den Heuvel, E.G.H.M.; Schoterman, M.H.C.; Muijs, T. Transgalactooligosaccharides Stimulate Calcium Absorption in Postmenopausal Women. J. Nutr. 2000, 130, 2938–2942. [Google Scholar] [CrossRef] [PubMed]
- Weaver, C.M.; Martin, B.R.; Nakatsu, C.H.; Armstrong, A.P.; Clavijo, A.; McCabe, L.D.; McCabe, G.P.; Duignan, S.; Schoterman, M.H.C.; van den Heuvel, E.G.H.M. Galactooligosaccharides Improve Mineral Absorption and Bone Properties in Growing Rats through Gut Fermentation. J. Agric. Food Chem. 2011, 59, 6501–6510. [Google Scholar] [CrossRef] [PubMed]
- Alliet, P.; Scholtens, P.; Raes, M.; Hensen, K.; Jongen, H.; Rummens, J.-L.; Boehm, G.; Vandenplas, Y. Effect of Prebiotic Galacto-Oligosaccharide, Long-Chain Fructo-Oligosaccharide Infant Formula on Serum Cholesterol and Triacylglycerol Levels. Nutrition 2007, 23, 719–723. [Google Scholar] [CrossRef] [PubMed]
- Jeurink, P.V.; van Esch, B.C.A.M.; Rijnierse, A.; Garssen, J.; Knippels, L.M.J. Mechanisms Underlying Immune Effects of Dietary Oligosaccharides. Am. J. Clin. Nutr. 2013, 98, 572S–577S. [Google Scholar] [CrossRef] [PubMed]
- Licht, T.R.; Ebersbach, T.; Frøkiær, H. Prebiotics for Prevention of Gut Infections. Trends Food Sci. Technol. 2012, 23, 70–82. [Google Scholar] [CrossRef]
- Volman, J.J.; Mensink, R.P.; Ramakers, J.D.; de Winther, M.P.; Carlsen, H.; Blomhoff, R.; Buurman, W.A.; Plat, J. Dietary (1→3), (1→4)-β-D-Glucans from Oat Activate Nuclear Factor-κB in Intestinal Leukocytes and Enterocytes from Mice. Nutr. Res. 2010, 30, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, K.; Sugiyama, Y.; Sakano, T.; Ohigashi, H. Flavonols Enhanced Production of Anti-Inflammatory Substance(s) by Bifidobacterium Adolescentis: Prebiotic Actions of Galangin, Quercetin, and Fisetin. Biofactors 2013, 39, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of Curcumin: Problems and Promises. Mol. Pharm. 2007, 4, 807–818. [Google Scholar] [CrossRef] [PubMed]
- Silk, D.B.A.; Davis, A.; Vulevic, J.; Tzortzis, G.; Gibson, G.R. Clinical Trial: The Effects of a Trans-Galactooligosaccharide Prebiotic on Faecal Microbiota and Symptoms in Irritable Bowel Syndrome. Aliment. Pharmacol. Ther. 2009, 29, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Ghouri, Y.A.; Richards, D.M.; Rahimi, E.F.; Krill, J.T.; Jelinek, K.A.; DuPont, A.W. Systematic Review of Randomized Controlled Trials of Probiotics, Prebiotics, and Synbiotics in Inflammatory Bowel Disease. Clin. Exp. Gastroenterol. 2014, 7, 473–487. [Google Scholar] [CrossRef] [PubMed]
- Dewulf, E.M.; Cani, P.D.; Claus, S.P.; Fuentes, S.; Puylaert, P.G.B.; Neyrinck, A.M.; Bindels, L.B.; de Vos, W.M.; Gibson, G.R.; Thissen, J.-P.; et al. Insight into the Prebiotic Concept: Lessons from an Exploratory, Double Blind Intervention Study with Inulin-Type Fructans in Obese Women. Gut 2013, 62, 1112. [Google Scholar] [CrossRef] [PubMed]
- Giannaccare, G.; Pellegrini, M.; Sebastiani, S.; Bernabei, F.; Roda, M.; Taroni, L.; Versura, P.; Campos, E.C. Efficacy of Omega-3 Fatty Acid Supplementation for Treatment of Dry Eye Disease: A Meta-Analysis of Randomized Clinical Trials. Cornea 2019. [Google Scholar] [CrossRef] [PubMed]
- Pusceddu, M.M.; El Aidy, S.; Crispie, F.; O’Sullivan, O.; Cotter, P.; Stanton, C.; Kelly, P.; Cryan, J.F.; Dinan, T.G. N-3 Polyunsaturated Fatty Acids (PUFAs) Reverse the Impact of Early-Life Stress on the Gut Microbiota. PLoS ONE 2015, 10, e0139721. [Google Scholar] [CrossRef]
- Watson, H.; Mitra, S.; Croden, F.C.; Taylor, M.; Wood, H.M.; Perry, S.L.; Spencer, J.A.; Quirke, P.; Toogood, G.J.; Lawton, C.L.; et al. A Randomised Trial of the Effect of Omega-3 Polyunsaturated Fatty Acid Supplements on the Human Intestinal Microbiota. Gut 2018, 67, 1974. [Google Scholar] [CrossRef]
- Chakravarthy, S.K.; Jayasudha, R.; Prashanthi, G.S.; Ali, M.H.; Sharma, S.; Tyagi, M.; Shivaji, S. Dysbiosis in the Gut Bacterial Microbiome of Patients with Uveitis, an Inflammatory Disease of the Eye. Indian J. Microbiol. 2018, 58, 457–469. [Google Scholar] [CrossRef]
- Tsigalou, C.; Stavropoulou, E.; Bezirtzoglou, E. Current Insights in Microbiome Shifts in Sjogren’s Syndrome and Possible Therapeutic Interventions. Front. Immunol. 2018, 9, 1106. [Google Scholar] [CrossRef]
- Weiss, E.; Katta, R. Diet and Rosacea: The Role of Dietary Change in the Management of Rosacea. Dermatol. Pract. Concept. 2017, 7, 31–37. [Google Scholar] [CrossRef]
- Miljanović, B.; Trivedi, K.A.; Dana, M.R.; Gilbard, J.P.; Buring, J.E.; Schaumberg, D.A. Relation Between Dietary n−3 and n−6 Fatty Acids and Clinically Diagnosed Dry Eye Syndrome in Women. Am. J. Clin. Nutr. 2005, 82, 887–893. [Google Scholar] [CrossRef] [PubMed]
- Maguire, M.G.; Pistilli, M.; Ying, G.S.; Szczotka-Flynn, L.B.; Hardten, D.R.; Lin, M.C.; Shtein, R.M. The Dry Eye Assessment and Management Study Research, n−3 Fatty Acid Supplementation for the Treatment of Dry Eye Disease. N. Engl. J. Med. 2018, 378, 1681–1690. [Google Scholar] [CrossRef]
- Yazdi, F.G.; Soleimanian-Zad, S.; van den Worm, E.; Folkerts, G. Turmeric Extract: Potential Use as a Prebiotic and Anti-Inflammatory Compound? Plant Foods Hum. Nutr. 2019. [Google Scholar] [CrossRef]
- Tan, Y.F.; Li, H.L.; Lai, W.Y.; Zhang, J.Q. Crude Dietary Polysaccharide Fraction Isolated from Jackfruit Enhances Immune System Activity in Mice. J. Med. Food 2013, 16, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Thornton, S.P.; Troyer, E. Treatment for Dry Eye Syndrome. Google Patents: 2006. U.S. Patent No. 7029712, 18 April 2006. [Google Scholar]
- Chen, M.; Hu, D.N.; Pan, Z.; Lu, C.W.; Xue, C.Y.; Aass, I. Curcumin Protects against Hyperosmoticity-Induced Il-1beta Elevation in Human Corneal Epithelial Cell Via MAPK Pathways. Exp. Eye Res. 2010, 90, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.-H.; Choi, S.H.; Choi, J.A.; Chuck, R.S.; Joo, C.-K. Curcumin Suppresses Ovalbumin-Induced Allergic Conjunctivitis. Mol. Vis. 2012, 18, 1966–1972. [Google Scholar] [PubMed]
- Chisari, G.; Chisari, E.M.; Francaviglia, A.; Chisari, C.G. The Mixture of Bifidobacterium Associated with Fructo-Oligosaccharides Reduces the Damage of the Ocular Surface. Clin. Ter. 2017. [Google Scholar] [CrossRef]
- Hann, K.; Lentz, L. Synergic Combination of Compositions Containing Aloe Vera Isolates and Their Therapeutic Application. Google Patents: 2006. U.S. Patent No. 11/281314, 18 May 2006. [Google Scholar]
- Bode, L. Human Milk Oligosaccharides: Every Baby Needs a Sugar Mama. Glycobiology 2012, 22, 1147–1162. [Google Scholar] [CrossRef] [PubMed]
- Chaumeil, C.; Liotet, S.; Kogbe, O. Treatment of Severe Eye Dryness and Problematic Eye Lesions with Enriched Bovine Colostrum Lactoserum. In Lacrimal Gland, Tear Film, and Dry Eye Syndromes: Basic Science and Clinical Relevance; Sullivan, D.A., Ed.; Springer: Boston, MA, USA, 1994; pp. 595–599. [Google Scholar]
- Bucolo, C.; Musumeci, M.; Salomone, S.; Romano, G.L.; Leggio, G.M.; Gagliano, C.; Reibaldi, M.; Avitabile, T.; Uva, M.G.; Musumeci, S.; et al. Effects of Topical Fucosyl-Lactose, a Milk Oligosaccharide, on Dry Eye Model: An Example of Nutraceutical Candidate. Front. Pharmacol. 2015, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diego, J.L.; Bidikov, L.; Pedler, M.G.; Kennedy, J.B.; Quiroz-Mercado, H.; Gregory, D.G.; Petrash, J.M.; McCourt, E.A. Effect of Human Milk as a Treatment for Dry Eye Syndrome in a Mouse Model. Mol. Vis. 2016, 22, 1095–1102. [Google Scholar]
- Lam, T.K.; Shao, S.; Zhao, Y.; Marincola, F.; Pesatori, A.; Bertazzi, P.A.; Caporaso, N.E.; Wang, E.; Landi, M.T. Influence of Quercetin-Rich Food Intake on Microrna Expression in Lung Cancer Tissues. Cancer Epidemiol. Biomark. Prev. 2012, 21, 2176–2184. [Google Scholar] [CrossRef] [PubMed]
- McKay, T.B.; Karamichos, D. Quercetin and the Ocular Surface: What We Know and Where We are Going. Exp. Biol. Med. 2017, 242, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Abengozar-Vela, A.; Calonge, M.; Stern, M.E.; Gonzalez-Garcia, M.J.; Enriquez-De-Salamanca, A. Quercetin and Resveratrol Decrease the Inflammatory and Oxidative Responses in Human Ocular Surface Epithelial Cells. Investig. Ophthalmol. Vis. Sci. 2015, 56, 2709–2719. [Google Scholar] [CrossRef] [PubMed]
- Abengozar-Vela, A.; Schaumburg, C.S.; Stern, M.E.; Calonge, M.; Enriquez-de-Salamanca, A.; Gonzalez-Garcia, M.J. Topical Quercetin and Resveratrol Protect the Ocular Surface in Experimental Dry Eye Disease. Ocul. Immunol. Inflamm. 2018. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.N.; Kim, C.E.; Lee, J.H.; Yang, J.W. Effects of Quercetin in a Mouse Model of Experimental Dry Eye. Cornea 2015, 34, 1130–1136. [Google Scholar] [CrossRef] [PubMed]
- Bindels, L.B.; Delzenne, N.M.; Cani, P.D.; Walter, J. Towards a More Comprehensive Concept for Prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Lilly, D.M.; Stillwell, R.H. Probiotics: Growth-Promoting Factors Produced by Microorganisms. Science 1965, 147, 747. [Google Scholar] [CrossRef] [PubMed]
- Mackowiak, P. Recycling Metchnikoff: Probiotics, the Intestinal Microbiome and the Quest for Long Life. Front. Public Health 2013, 1. [Google Scholar] [CrossRef]
- Bron, P.A.; van Baarlen, P.; Kleerebezem, M. Emerging Molecular Insights into the Interaction Between Probiotics and the Host Intestinal Mucosa. Nat. Rev. Microbiol. 2011, 10, 66. [Google Scholar] [CrossRef]
- Foligné, B.; Daniel, C.; Pot, B. Probiotics from Research to Market: The Possibilities, Risks and Challenges. Curr. Opin. Microbiol. 2013, 16, 284–292. [Google Scholar] [CrossRef]
- Gareau, M.G.; Sherman, P.M.; Walker, W.A. Probiotics and the Gut Microbiota in Intestinal Health and Disease. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 503. [Google Scholar] [CrossRef] [PubMed]
- Sokol, H.; Pigneur, B.; Watterlot, L.; Lakhdari, O.; Bermúdez-Humarán, L.G.; Gratadoux, J.-J.; Blugeon, S.; Bridonneau, C.; Furet, J.-P.; Corthier, G.; et al. Faecalibacterium Prausnitzii Is an Anti-Inflammatory Commensal Bacterium Identified by Gut Microbiota Analysis of Crohn Disease Patients. Proc. Natl. Acad. Sci. USA 2008, 105, 16731. [Google Scholar] [CrossRef] [PubMed]
- Yahfoufi, N.; Mallet, J.F.; Graham, E.; Matar, C. Role of Probiotics and Prebiotics in Immunomodulation. Curr. Opin. Food Sci. 2018, 20, 82–91. [Google Scholar] [CrossRef]
- Brenner, D.M.; Moeller, M.J.; Chey, W.D.; Schoenfeld, P.S. The Utility of Probiotics in the Treatment of Irritable Bowel Syndrome: A Systematic Review. Am. J. Gastroenterol. 2009, 104, 1033–1049, quiz 1050. [Google Scholar] [CrossRef] [PubMed]
- Hoveyda, N.; Heneghan, C.; Mahtani, K.R.; Perera, R.; Roberts, N.; Glasziou, P. A Systematic Review and Meta-Analysis: Probiotics in the Treatment of Irritable Bowel Syndrome. BMC Gastroenterol. 2009, 9, 15. [Google Scholar] [CrossRef] [PubMed]
- McFarland, L.V.; Dublin, S. Meta-Analysis of Probiotics for the Treatment of Irritable Bowel Syndrome. World J. Gastroenterol. 2008, 14, 2650–2661. [Google Scholar] [CrossRef] [PubMed]
- Moayyedi, P.; Ford, A.C.; Talley, N.J.; Cremonini, F.; Foxx-Orenstein, A.E.; Brandt, L.J.; Quigley, E.M.M. The Efficacy of Probiotics in the Treatment of Irritable Bowel Syndrome: A Systematic Review. Gut 2010, 59, 325. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.L.; Romanuk, T.N. A Meta-Analysis of Probiotic Efficacy for Gastrointestinal Diseases. PLoS ONE 2012, 7, e34938. [Google Scholar] [CrossRef]
- Whelan, K. Probiotics and Prebiotics in the Management of Irritable Bowel Syndrome: A Review of Recent Clinical Trials and Systematic Reviews. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Whelan, K.; Quigley, E.M. Probiotics in the Management of Irritable Bowel Syndrome and Inflammatory Bowel Disease. Curr. Opin. Gastroenterol. 2013, 29, 184–189. [Google Scholar] [CrossRef]
- Holubar, S.D.; Cima, R.R.; Sandborn, W.J.; Pardi, D.S. Treatment and Prevention of Pouchitis after Ileal Pouch-Anal Anastomosis for Chronic Ulcerative Colitis. Cochrane Database Syst. Rev. 2010. [Google Scholar] [CrossRef]
- Shen, J.; Zuo, Z.-X.; Mao, A.-P. Effect of Probiotics on Inducing Remission and Maintaining Therapy in Ulcerative Colitis, Crohn’s Disease, and Pouchitis: Meta-analysis of Randomized Controlled Trials. Inflamm. Bowel Dis. 2013, 20, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Reading, R. Probiotics in Primary Prevention of Atopic Disease: A Randomised Placebo-Controlled Trial. Ambul. Child Health 2001, 7, 334–335. [Google Scholar] [CrossRef]
- Ohland, C.L.; MacNaughton, W.K. Probiotic Bacteria and Intestinal Epithelial Barrier Function. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 298, G807–G819. [Google Scholar] [CrossRef]
- Ng, S.C.; Hart, A.L.; Kamm, M.A.; Stagg, A.J.; Knight, S.C. Mechanisms of Action of Probiotics: Recent Advances. Inflamm. Bowel Dis. 2008, 15, 300–310. [Google Scholar] [CrossRef]
- Lee, A.; Lee, Y.J.; Yoo, H.J.; Kim, M.; Chang, Y.; Lee, D.S.; Lee, J.H. Consumption of Dairy Yogurt Containing Lactobacillus paracasei ssp. paracasei, Bifidobacterium animalis ssp. lactis and Heat-Treated Lactobacillus plantarum Improves Immune Function Including Natural Killer Cell Activity. Nutrients 2017, 9, 558. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, S.; Hua, Z.; Zou, X. Long-Term Use of Bifidobacterium Longum Alleviates Colorectal Colitis in Rats by Regulating Inflammatory Cytokines and Treg Cells. Int. J. Clin. Exp. Med. 2017, 10, 7543–7552. [Google Scholar]
- Peng, G.-C.; Hsu, C.-H. The Efficacy and Safety of Heat-Killed Lactobacillus Paracasei for Treatment of Perennial Allergic Rhinitis Induced by House-Dust Mite. Pediatric Allergy Immunol. 2005, 16, 433–438. [Google Scholar] [CrossRef]
- Perdigon, G.; Fuller, R.; Raya, R. Lactic Acid Bacteria and Their Effect on the Immune System. Curr. Issues Intest. Microbiol. 2001, 2, 27–42. [Google Scholar]
- Tanabe, S. The Effect of Probiotics and Gut Microbiota on Th17 Cells. Int. Rev. Immunol. 2013, 32, 511–525. [Google Scholar] [CrossRef]
- Güvenç, I.A.; Muluk, N.B.; Mutlu, F.Ş.; Eşki, E.; Altıntoprak, N.; Oktemer, T.; Cingi, C. Do Probiotics Have a Role in the Treatment of Allergic Rhinitis? A Comprehensive Systematic Review and Metaanalysis. Am. J. Rhinol. Allergy 2016, 30, e157–e175. [Google Scholar] [CrossRef] [PubMed]
- Jayasudha, R.; Kalyana Chakravarthy, S.; Sai Prashanthi, G.; Sharma, S.; Garg, P.; Murthy, S.I.; Shivaji, S. Alterations in Gut Bacterial and Fungal Microbiomes Are Associated with Bacterial Keratitis, an Inflammatory Disease of the Human Eye. J. Biosci. 2018, 43, 835–856. [Google Scholar] [CrossRef] [PubMed]
- Szymula, A.; Rosenthal, J.; Szczerba, B.M.; Bagavant, H.; Fu, S.M.; Deshmukh, U.S. T Cell Epitope Mimicry Between Sjögren’s Syndrome Antigen A (SSA)/Ro60 and Oral, Gut, Skin and Vaginal Bacteria. Clin. Immunol. 2014, 152, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Choi, H.S.; Kim, J.Y.; Jeong, J.H.; Ryu, S.J.; Lee, J.H.; Kim, W.T.; Im, S.-H.; Oh, Y.J.; Kim, K.M. Clinical Effect of IRT-5 Probiotics on Immune Modulation of Autoimmunity or Alloimmunity in the Eye. Nutrients 2017, 9, 1166. [Google Scholar] [CrossRef] [PubMed]
- Poussier, P.; Ning, T.; Banerjee, D.; Julius, M. A Unique Subset of Self-specific Intraintestinal T Cells Maintains Gut Integrity. J. Exp. Med. 2002, 195, 1491. [Google Scholar] [CrossRef] [PubMed]
- Chisari, G.; Rampello, L.; Chisari, E.M.; Catania, V.E.; Greco, C.; Stagni, E.; Chisari, C.G. Microbiology Synergism Between Tear Substitutes and Symbiotic Treatment of Patients with Irritable Bowel Syndrome. Acta Med. Mediterr. 2016, 32, 463. [Google Scholar]
- Kawashima, M.; Nakamura, S.; Izuta, Y.; Inoue, S.; Tsubota, K. Dietary Supplementation with a Combination of Lactoferrin, Fish Oil, and Enterococcus faecium WB2000 for Treating Dry Eye: A Rat Model and Human Clinical Study. Ocul. Surf. 2016, 14, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Chisari, G.; Chisari, E.M.; Borzi, A.M.; Chisari, C.G. Aging Eye Microbiota in Dry Eye Syndrome in Patients Treated with Enterococcus faecium and Saccharomyces boulardii. Curr. Clin. Pharmacol. 2017, 12, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.H.; Anvari, S.; Anagnostou, K. The Role of Probiotics in Preventing Allergic Disease. Children 2019, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Fechtner, R.D.; Godfrey, D.G.; Budenz, D.; Stewart, J.A.; Stewart, W.C.; Jasek, M.C. Prevalence of Ocular Surface Complaints in Patients with Glaucoma Using Topical Intraocular Pressure-Lowering Medications. Cornea 2010, 29, 618–621. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Feijoo, J.; Sampaolesi, J.R. A Multicenter Evaluation of Ocular Surface Disease Prevalence in Patients with Glaucoma. Clin. Ophthalmol. 2012, 6, 441–446. [Google Scholar] [CrossRef]
- Bae, H.W.; Kim, J.H.; Kim, S.; Kim, M.; Lee, N.; Hong, S.; Seong, G.J.; Kim, C.Y. Effect of Korean Red Ginseng Supplementation on Dry Eye Syndrome in Glaucoma Patients–A randomized, Double-Blind, Placebo-Controlled Study. J. Ginseng Res. 2015, 39, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.-R.; Kim, J.-H.; Kim, C.-Y. Effect of Korean Red Ginseng Supplementation on Ocular Blood Flow in Patients with Glaucoma. J. Ginseng Res. 2010, 34, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Ramsay, E.I.; Rao, S.; Madathil, L.; Hegde, S.K.; Baliga-Rao, M.P.; George, T.; Baliga, M.S. Honey in Oral Health and Care: A Mini Review. J. Oral Biosci. 2019, 61, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Yaghoobi, R.; Kazerouni, A.; Kazerouni, O. Evidence for Clinical Use of Honey in Wound Healing as an Anti-bacterial, Anti-inflammatory Anti-oxidant and Anti-viral Agent: A Review. Jundishapur J. Nat. Pharm. Prod. 2013, 8, 100–104. [Google Scholar] [CrossRef] [Green Version]
- Fragiadakis, G.K.; Smits, S.A.; Sonnenburg, E.D.; Van Treuren, W.; Reid, G.; Knight, R.; Manjurano, A.; Changalucha, J.; Dominguez-Bello, M.G.; Leach, J.; et al. Links Between Environment, Diet, and the Hunter-Gatherer Microbiome. Gut Microbes 2019, 10, 216–227. [Google Scholar] [CrossRef] [PubMed]
- George Kerry, R.; Patra, J.K.; Gouda, S.; Park, Y.; Shin, H.-S.; Das, G. Benefaction of Probiotics for Human Health: A review. J. Food Drug Anal. 2018, 26, 927–939. [Google Scholar] [CrossRef]
- Mazruei Arani, N.; Emam-Djomeh, Z.; Tavakolipour, H.; Sharafati-Chaleshtori, R.; Soleimani, A.; Asemi, Z. The Effects of Probiotic Honey Consumption on Metabolic Status in Patients with Diabetic Nephropathy: A Randomized, Double-Blind, Controlled Trial. Probiotics Antimicrob. Proteins 2018. [Google Scholar] [CrossRef] [PubMed]
- Molan, P.C. Why Honey is Effective as a Medicine. 1. Its Use in Modern Medicine. Bee World 1999, 80, 80–92. [Google Scholar] [CrossRef]
- Ajibola, A. Novel Insights into the Health Importance of Natural Honey. Malays. J. Med. Sci. 2015, 22, 7–22. [Google Scholar]
- Cernak, M.; Majtanova, N.; Cernak, A.; Majtan, J. Honey Prophylaxis Reduces the Risk of Endophthalmitis During Perioperative Period of Eye Surgery. Phytother. Res. 2012, 26, 613–616. [Google Scholar] [CrossRef] [PubMed]
- Albietz, J.M.; Lenton, L.M. Standardised Antibacterial Manuka Honey in the Management of Persistent Post-Operative Corneal Oedema: A Case Series. Clin. Exp. Optom. 2015, 98, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Jankauskiene, J.; Jarushaitiene, D.; Cheksteryte, V.; Rachys, J. Using 20% Honey Solution Eye Drops in Patients with Dry Eye Syndrome. J. Apic. Res. 2007, 46, 232–235. [Google Scholar] [CrossRef]
- Albietz, J.M.; Schmid, K.L. Randomised Controlled Trial of Topical Antibacterial Manuka (Leptospermum Species) Honey for Evaporative Dry Eye due to Meibomian Gland Dysfunction. Clin. Exp. Optom. 2017, 100, 603–615. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.; Konishi, T. Anthocyanins and Anthocyanin-Rich Extracts: Role in Diabetes and Eye Function. Asia Pac. J. Clin. Nutr. 2007, 16, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Riva, A.; Togni, S.; Franceschi, F.; Kawada, S.; Inaba, Y.; Eggenhoffner, R.; Giacomelli, L. The Effect of a Natural, Standardized Bilberry Extract (Mirtoselect®) in Dry Eye: A Randomized, Double Blinded, Placebo-Controlled Trial. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 2518–2525. [Google Scholar]
- Masmali, A.M.; Alanazi, S.A.; Alotaibi, A.G.; Fagehi, R.; Abusharaha, A.; El-Hiti, G.A. The Acute Effect of a Single Dose of Green Tea on the Quality and Quantity of Tears in Normal Eye Subjects. Clin. Ophthalmol. 2019, 13, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Nejabat, M.; Reza, S.A.; Zadmehr, M.; Yasemi, M.; Sobhani, Z. Efficacy of Green Tea Extract for Treatment of Dry Eye and Meibomian Gland Dysfunction; A Double-blind Randomized Controlled Clinical Trial Study. J. Clin. Diagn. Res. 2017, 11, NC05–NC08. [Google Scholar] [CrossRef]
- Song, J.-M.; Lee, K.-H.; Seong, B.-L. Antiviral Effect of Catechins in Green Tea on Influenza Virus. Antivir. Res. 2005, 68, 66–74. [Google Scholar] [CrossRef]
- Forester, S.C.; Lambert, J.D. The Role of Antioxidant Versus Pro-Oxidant Effects of Green Tea Polyphenols in Cancer Prevention. Mol. Nutr. Food Res. 2011, 55, 844–854. [Google Scholar] [CrossRef]
- Rains, T.M.; Agarwal, S.; Maki, K.C. Antiobesity Effects of Green Tea Catechins: A Mechanistic Review. J. Nutr. Biochem. 2011, 22, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, S.B.; Hwang, J.-W.; Kim, Y.-S.; Kim, E.-K.; Park, P.-J. Ocular Promoting Activity of Grape Polyphenols—A Review. Environ. Toxicol. Pharmacol. 2017, 50, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Baydar, N.G.; Özkan, G.; Sağdiç, O. Total Phenolic Contents and Antibacterial Activities of Grape (Vitis vinifera L.) Extracts. Food Control 2004, 15, 335–339. [Google Scholar] [CrossRef]
- Kokke, K.H.; Morris, J.A.; Lawrenson, J.G. Oral Omega-6 Essential Fatty Acid Treatment in Contact Lens Associated Dry Eye. Contact Lens Anterior Eye 2008, 31, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, S.; Enig, M.G.; Preuss, H.G. A Review of Monolaurin and Lauric Acid: Natural Virucidal and Bactericidal Agents. Altern. Complement. Ther. 2006, 12, 310–314. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Schlievert, P.M.; Anderson, M.J.; Fair, C.L.; Schaefers, M.M.; Muthyala, R.; Peterson, M.L. Glycerol Monolaurate and Dodecylglycerol Effects on Staphylococcus aureus and Toxic Shock Syndrome Toxin-1 In Vitro and In Vivo. PLoS ONE 2009, 4, e7499. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Flanagan, J.L. Compositions, Methods and/or Devices for Prevention and/or Treatment of Dry Eye Disorders. Google Patents: 2019. U.S. Patent No.15/990228, 24 January 2019. [Google Scholar]
- Holland, K.T.; Taylor, D.; Farrell, A.M. The Effect of Glycerol Monolaurate on Growth of, and Production of Toxic Shock Syndrome Toxin-1 and Lipase by, Staphylococcus aureus. J. Antimicrob. Chemother. 1994, 33, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Peterson, M.L.; Schlievert, P.M. Glycerol Monolaurate Inhibits the Effects of Gram-Positive Select Agents on Eukaryotic Cells. Biochemistry 2006, 45, 2387–2397. [Google Scholar] [CrossRef] [Green Version]
- Palmieri, B.; Destefanis, S.; Giretto, D.; Muscolo, C.; Di Cerbo, A.; Guidetti, G.; Canello, S. An Intriguing Nutraceutical Approach in Dogs Affected by Keratoconjunctivitis Sicca. In Proceedings of the 4th International Conference on Clinical and Experimental Ophthalmology, Baltimore, MD, USA, 14–16 July 2014. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavakoli, A.; Flanagan, J.L. The Case for a More Holistic Approach to Dry Eye Disease: Is It Time to Move beyond Antibiotics? Antibiotics 2019, 8, 88. https://doi.org/10.3390/antibiotics8030088
Tavakoli A, Flanagan JL. The Case for a More Holistic Approach to Dry Eye Disease: Is It Time to Move beyond Antibiotics? Antibiotics. 2019; 8(3):88. https://doi.org/10.3390/antibiotics8030088
Chicago/Turabian StyleTavakoli, Azadeh, and Judith Louise Flanagan. 2019. "The Case for a More Holistic Approach to Dry Eye Disease: Is It Time to Move beyond Antibiotics?" Antibiotics 8, no. 3: 88. https://doi.org/10.3390/antibiotics8030088
APA StyleTavakoli, A., & Flanagan, J. L. (2019). The Case for a More Holistic Approach to Dry Eye Disease: Is It Time to Move beyond Antibiotics? Antibiotics, 8(3), 88. https://doi.org/10.3390/antibiotics8030088