Effects of Anti-Pseudomonal Agents, Individually and in Combination, With or Without Clarithromycin, on Growth and Biofilm Formation by Antibiotic-Susceptible and -Resistant Strains of Pseudomonas aeruginosa, and the Impact of Exposure to Cigarette Smoke Condensate
Abstract
:1. Introduction
2. Results
2.1. Bacterial Inoculum
2.2. Bacterial Growth Rates
2.3. Minimum Inhibitory Concentration (MIC) Determinations for the Pseudomonas aeruginosa Strains
2.4. Effects of Combinations of the Anti-Pseudomonal Agents and Clarithromycin Against Planktonic [and Biofilm-Forming] Cultures and Preformed Biofilm Cultures [Biofilm Degradation]
2.5. Effect of Cigarette Smoke Condensate (CSC) on Bacterial Growth and Biofilm Formation
2.6. MIC Determination in the Presence of CSC
2.7. Effect of CSC on Antibiotic Combinations
3. Discussion
4. Materials and Methods
4.1. Strains and Growth Media
4.2. Antibiotics, CSC, and Chemicals
4.3. Preparation of Bacterial Inoculum
4.4. Preparation of Planktonic and Biofilm-Forming Cultures
4.5. Biofilm Quantification
4.6. Determination of Bacterial Growth Rates
4.7. Antibiotic Activities Using MIC Determination
4.8. FICI Determination of Synergy
4.9. Effects of CSC
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Otani, S.; Hiramatsu, K.; Hashinaga, K.; Komiya, K.; Umeki, K.; Kishi, K.; Kadota, J.I. Sub-minimum inhibitory concentrations of ceftazidime inhibit Pseudomonas aeruginosa biofilm formation. J. Infect. Chemother. 2018, 24, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Maurice, N.M.; Bedi, B.; Sadikot, R.T. Pseudomonas aeruginosa Biofilms: Host response and clinical implications in lung infections. Am. J. Respir. Cell Mol. Biol. 2018, 58, 428–439. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Jurado-Martín, I.; Sainz-Mejías, M.; McClean, S. Pseudomonas aeruginosa: An audacious pathogen with an adaptable arsenal of virulence factors. Int. J. Mol. Sci. 2021, 22, 3128. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Laborda, P.; Hernando-Amado, S.; Martínez, J.L.; Sanz-García, F. Antibiotic resistance in Pseudomonas. Adv. Exp. Med. Biol. 2022, 1386, 117–143. [Google Scholar] [CrossRef] [PubMed]
- Nassar, O.; Desouky, S.E.; El-Sherbiny, G.M.; Abu-Elghait, M. Correlation between phenotypic virulence traits and antibiotic resistance in Pseudomonas aeruginosa clinical isolates. Microb. Pathog. 2022, 162, 105339. [Google Scholar] [CrossRef] [PubMed]
- Gajdács, M.; Baráth, Z.; Kárpáti, K.; Szabó, D.; Usai, D.; Zanetti, S.; Donadu, M.G. No correlation between biofilm formation, virulence factors, and antibiotic resistance in Pseudomonas aeruginosa: Results from a laboratory-based in vitro study. Antibiotics 2021, 10, 1134. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Behzadi, P.; Gajdács, M.; Pallós, P.; Ónodi, B.; Stájer, A.; Matusovits, D.; Kárpáti, K.; Burián, K.; Battah, B.; Ferrari, M.; et al. relationship between biofilm-formation, phenotypic virulence factors and antibiotic resistance in environmental Pseudomonas aeruginosa. Pathogens 2022, 11, 1015. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van den Bergh, B.; Fauvart, M.; Michiels, J. Formation, physiology, ecology, evolution and clinical importance of bacterial persisters. FEMS Microbiol. Rev. 2017, 41, 219–251. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Kádár, B.; Szász, M.; Kristóf, K.; Pesti, N.; Krizsán, G.; Szentandrássy, J.; Rókusz, L.; Nagy, K.; Szabó, D. In vitro activity of clarithromycin in combination with other antimicrobial agents against biofilm-forming Pseudomonas aeruginosa strains. Acta Microbiol. Immunol. Hung. 2010, 57, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Vena, A.; Croxatto, A.; Righi, E.; Guery, B. How to manage Pseudomonas aeruginosa infections. Drugs Context 2018, 7, 212527. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Southern, K.W.; Solis-Moya, A.; Kurz, D.; Smith, S. Macrolide antibiotics (including azithromycin) for cystic fibrosis. Cochrane Database Syst. Rev. 2024, 2, CD002203. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thellin, O.; Zorzi, W.; Jolois, O.; Elmoualij, B.; Duysens, G.; Cahay, B.; Streel, B.; Charif, M.; Bastin, R.; Heinen, E.; et al. In vitro approach to study the synergistic effects of tobramycin and clarithromycin against Pseudomonas aeruginosa biofilms using prokaryotic or eukaryotic culture media. Int. J. Antimicrob. Agents 2015, 46, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, H.; Memar, M.Y.; Sefidan, F.Y.; Yekani, M.; Ghotaslou, R. In vitro synergy of antibiotic combinations against planktonic and biofilm Pseudomonas aeruginosa. GMS Hyg. Infect. Control 2017, 12, Doc17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sandri, A.; Ortombina, A.; Boschi, F.; Cremonini, E.; Boaretti, M.; Sorio, C.; Melotti, P.; Bergamini, G.; Lleo, M. Inhibition of Pseudomonas aeruginosa secreted virulence factors reduces lung inflammation in CF mice. Virulence 2018, 9, 1008–1018. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Köhler, T.; Curty, L.K.; Barja, F.; van Delden, C.; Pechère, J.C. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J. Bacteriol. 2000, 182, 5990–5996. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tateda, K.; Comte, R.; Pechere, J.C.; Köhler, T.; Yamaguchi, K.; Van Delden, C. Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2001, 45, 1930–1933. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Elkhatib, W.; Noreddin, A. Efficacy of ciprofloxacin-clarithromycin combination against drug-resistant Pseudomonas aeruginosa mature biofilm using in vitro experimental model. Microb. Drug Resist. 2014, 20, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Tsovolou, E.C.; Tzepi, I.M.; Spyridaki, A.; Tsaganos, T.; Karagianni, V.; Menenakos, E.; Liakou, P.; Sabracos, L.; Zografos, G.; Giamarellos-Bourboulis, E.J. Effect of clarithromycin in experimental empyema by multidrug-resistant Pseudomonas aeruginosa. Apmis 2014, 122, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Ozbek, B.; Mataraci-Kara, E. Comparative in vitro efficacies of various anti-pseudomonal antibiotics based catheter lock solutions on eradication of Pseudomonas aeruginosa biofilms. J. Chemother. 2016, 28, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Abdelaziz, A.A.; Kamer, A.M.A.; Al-Monofy, K.B.; Al-Madboly, L.A. Pseudomonas aeruginosa’s greenish-blue pigment pyocyanin: Its production and biological activities. Microb. Cell Fact. 2023, 22, 110. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kandemir, O.; Oztuna, V.; Milcan, A.; Bayramoğlu, A.; Celik, H.H.; Bayarslan, C.; Kaya, A. Clarithromycin destroys biofilms and enhances bactericidal agents in the treatment of Pseudomonas aeruginosa osteomyelitis. Clin. Orthop. Relat. Res. 2005, 430, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Juarez-Colunga, E.; Rosenfeld, M.; Zemanick, E.T.; Wagner, B. Application of multiple event analysis as an alternative approach to studying pulmonary exacerbations as an outcome measure. J. Cyst. Fibros. 2020, 19, 114–118. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chien, J.; Hwang, J.H.; Nilaad, S.; Masso-Silva, J.A.; Jeong Ahn, S.; McEachern, E.K.; Moshensky, A.; Byun, M.K.; Crotty Alexander, L.E. Cigarette smoke exposure promotes virulence of Pseudomonas aeruginosa and induces resistance to neutrophil killing. Infect. Immun. 2020, 88, e00527-20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, T.; Long, C.; Fanning, K.V.; Zou, C. Studying effects of cigarette smoke on Pseudomonas infection in lung epithelial cells. J. Vis. Exp. 2020, 159, e61163. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Drannik, A.G.; Pouladi, M.A.; Robbins, C.S.; Goncharova, S.I.; Kianpour, S.; Stämpfli, M.R. Impact of cigarette smoke on clearance and inflammation after Pseudomonas aeruginosa infection. Am. J. Respir. Crit. Care Med. 2004, 170, 1164–1171. [Google Scholar] [CrossRef] [PubMed]
- Bagale, K.; Kulkarni, R. A systematic review of the literature examining the effects of cigarette smoke and e-cigarette vapor on the virulence of human pathogenic bacteria. Int. J. Environ. Res. Public Health 2022, 19, 12518. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Goldstein-Daruech, N.; Cope, E.K.; Zhao, K.Q.; Vukovic, K.; Kofonow, J.M.; Doghramji, L.; González, B.; Chiu, A.G.; Kennedy, D.W.; Palmer, J.N.; et al. Tobacco smoke mediated induction of sinonasal microbial biofilms. PLoS ONE 2011, 6, e15700. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, M.; Zhang, H.; Yu, N.; Dong, Y.; Wang, W.; Chen, Y.; Kang, J. Cigarette smoke extract induces the Pseudomonas aeruginosa nfxC drug-resistant phenotype. J. Infect. Chemother. 2020, 26, 1278–1282. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Liu, Q.; Pan, X.; Lv, C.; Bai, Y.; Bai, F.; Cheng, Z.; Wu, W.; Ha, U.H.; Jin, Y. MvaT binds to the PexsC promoter to repress the type III secretion system in Pseudomonas aeruginosa. Front. Cell Infect. Microbiol. 2023, 13, 1267748. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fukuda, H.; Hosaka, M.; Iyobe, S.; Gotoh, N.; Nishino, T.; Hirai, K. nfxC-type quinolone resistance in a clinical isolate of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 1995, 39, 790–792. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mashele, S.A.; Steel, H.C.; Matjokotja, M.T.; Rasehlo, S.S.M.; Anderson, R.; Cholo, M.C. Assessment of the efficacy of clofazimine alone and in combination with primary agents against Mycobacterium tuberculosis in vitro. J. Glob. Antimicrob. Resist. 2022, 29, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Loewe, S. The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 1953, 3, 285–290. [Google Scholar] [PubMed]
- Berenbaum, M.C. A method for testing for synergy with any number of agents. J. Infect. Dis. 1978, 137, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Vakil, V.; Trappe, W. Drug combinations: Mathematical modeling and networking methods. Pharmaceutics 2019, 11, 208. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mutepe, N.D.; Cockeran, R.; Steel, H.C.; Theron, A.J.; Mitchell, T.J.; Feldman, C.; Anderson, R. Effects of cigarette smoke condensate on pneumococcal biofilm formation and pneumolysin. Eur. Respir. J. 2013, 41, 392–395. [Google Scholar] [CrossRef] [PubMed]
- Cockeran, R.; Herbert, J.A.; Mitchell, T.J.; Dix-Peek, T.; Dickens, C.; Anderson, R.; Feldman, C. Exposure of a 23F serotype strain of Streptococcus pneumoniae to cigarette smoke condensate is associated with selective upregulation of genes encoding the two-component regulatory system 11 (TCS11). Biomed. Res. Int. 2014, 2014, 976347. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, J.; Wei, T.; Sun, S.; Zhao, A.; Xu, C. Effects of cigarette smoke condensate on the production and characterization of exopolysaccharides by Bifidobacterium. An. Acad. Bras. Cienc. 2015, 87, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Hutcherson, J.A.; Scott, D.A.; Bagaitkar, J. Scratching the surface—Tobacco-induced bacterial biofilms. Tob. Induc. Dis. 2015, 13, 1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cholo, M.C.; Rasehlo, S.S.M.; Venter, E.; Venter, C.; Anderson, R. Effects of cigarette smoke condensate on growth and biofilm formation by Mycobacterium tuberculosis. Biomed. Res. Int. 2020, 2020, 8237402. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, S.K.; Li, X.H.; Hwang, H.J.; Lee, J.H. Antibiofilm effect of biofilm-dispersing agents on clinical isolates of Pseudomonas aeruginosa with various biofilm structures. J. Microbiol. 2018, 56, 902–909. [Google Scholar] [CrossRef] [PubMed]
- van Duuren, J.B.J.H.; Müsken, M.; Karge, B.; Tomasch, J.; Wittmann, C.; Häussler, S.; Brönstrup, M. Use of Single-Frequency Impedance Spectroscopy to characterize the growth dynamics of biofilm formation in Pseudomonas aeruginosa. Sci. Rep. 2017, 7, 5223. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mothiba, M.T.; Anderson, R.; Fourie, B.; Germishuizen, W.A.; Cholo, M.C. Effects of clofazimine on planktonic and biofilm growth of Mycobacterium tuberculosis and Mycobacterium smegmatis. J. Glob. Antimicrob. Resist. 2015, 3, 13–18. [Google Scholar] [CrossRef] [PubMed]
(a) | (b) | |||||
---|---|---|---|---|---|---|
MIC | MIC in mg/L (% Inhibition) in Planktonic Growth [and Biofilm-Forming Cultures] in the Absence of CSC | MIC in mg/L (% Decrease in Density of Biofilm) in Preformed Biofilm Cultures in the Absence of CSC | ||||
Strain | WT | DS | MDR | WT | DS | MDR |
Clarithromycin | 125 (51%) | 125 (54%) | 125 (58%) | 125 (21%) | >250 (no inhibition) | >250 (no inhibition) |
Amikacin | 1 (59%) | 1 (72%) | 64 (62%) | 32 (53%) | 64 (52%) | 64 (62%) |
Cefepime | 0.5 (63%) | 1 (77%) | 32 (71%) | 64 (24%) | 64 (32%) | 64 (14%) |
Ciprofloxacin | 0.25 (60%) | 0.125 (61%) | 16 (70%) | 64 (33%) | 64 (42%) | 64 (38%) |
(a) | (b) | |||||
---|---|---|---|---|---|---|
FICI | FICI (% Inhibition) in Planktonic Growth [and Biofilm-Forming Cultures] in the Absence of CSC | FICI (% Decrease in Density of Biofilm) in the Preformed Biofilm Cultures in the Absence of CSC | ||||
Strains | WT | DS | MDR | WT | DS | MDR |
CLA + AMI | 0.5 (85%) | 1 (70%) | 1 (67%) | 1 (9%) | 1 (60%) | 1 (9%) |
CLA + CEF | 0.25 (69%) | 0.5 (92%) | 0.5 (76%) | >1 (no inhibition) | >1 (no inhibition) | >1 (no inhibition) |
CLA + CIP | 0.5 (66%) | 0.5 (91%) | 0.5 (82%) | 0.5 (25%) | 0.015 (56%) | 0.25 (15%) |
AMI + CEF | 0.25 (76%) | 0.25 (89%) | 0.5 (92%) | 1 (12%) | >1 | 1 (18%) |
AMI + CIP | 0.5 (75%) | 0.25 (69%) | 1 (89%) | 0.5 (32%) | 0.5 (24%) | 1 (20%) |
CEF + CIP | 0.5 (68%) | 0.25 (91%) | 1 (92%) | 0.5 (28%) | 1 (50%) | 1 (8%) |
CLA + AMI + CEF | 0.25 (74%) | 0.5 (91%) | 1 (90%) | 1 (5%) | 0.125 (31%) | >1 (no inhibition) |
CLA + AMI + CIP | 0.5 (73%) | 0.5 (92%) | 0.5 (67%) | 1 (25%) | 0.015 (50%) | 0.25 (14%) |
CLA + CEF + CIP | 0.25 (71%) | 0.5 (92%) | 0.5 (76%) | >1 (no inhibition) | 1 (35%) | >1 (no inhibition) |
AMI + CEF + CIP | 0.25 (77%) | 0.25 (92%) | 1 (91%) | 0.25 (21%) | 0.03 (50%) | 1 (9%) |
All four drugs | 0.25 (71%) | 1 (89%) | 1 (91%) | 0.5 (20%) | 0.03 (63%) | 0.5 (12%) |
(a) | (b) | |||||
---|---|---|---|---|---|---|
MIC | MIC in mg/L (% Inhibition) in Planktonic Growth [and Biofilm-Forming Cultures] in the Presence of CSC | MIC in mg/L (% Decrease in Density of Preformed Biofilm Cultures in the Presence of CSC) | ||||
Strain | WT CSC | DS CSC | MDR CSC | WT CSC | DS CSC | MDR CSC |
Clarithromycin | 125 (54%) | 125 (53%) | 125 (54%) | 125 (18%) | >250 (no inhibition) | >250 (no inhibition) |
Amikacin | 1 (59%) | 1 (80%) | 64 (63%) | 32 (51%) | 64 (51%) | 64 (60%) |
Cefepime | 0.5 (59%) | 1 (62%) | 32 (75%) | 64 (17%) | 64 (29%) | >64 (no inhibition) |
Ciprofloxacin | 0.25 (51%) | 0.125 (70%) | 16 (65%) | 64 (37%) | 64 (44%) | 128 (42%) |
(a) | (b) | |||||
---|---|---|---|---|---|---|
FICI | FICI Values (% Inhibition) in Planktonic Growth [Biofilm-Forming Cultures] in the Presence of CSC | FICI Values (% Inhibition) in Preformed Biofilm Cultures in the Presence of CSC | ||||
Strains | WT CSC | DS CSC | MDR CSC | WT CSC | DS CSC | MDR CSC |
CLA + AMI | 0.5 (73%) | 1 (72%) | 1 (65%) | >1 (no inhibition) | 1 (58%) | >1 (no inhibition) |
CLA + CEF | 0.25 (68%) | 0.5 (91%) | 0.5 (76%) | >1 (no inhibition) | >1 (no inhibition) | >1 (no inhibition) |
CLA + CIP | 0.5 (69%) | 0.5 (91%) | 0.5 (76%) | 0.5 (33%) | 0.5 (33%) | 0.25 (10%) |
AMI + CEF | 0.25 (73%) | 0.25 (91%) | 0.5 (92%) | 0.125 (12%) | >1 | 1 (14%) |
AMI + CIP | 0.5 (72) | 0.25 (73%) | 1 (88%) | 0.5 (30%) | 1 (24%) | 1 (7%) |
CEF + CIP | 0.5 (74%) | 0.25 (90%) | 1 (91%) | 1 (20%) | 1 (12%) | 1 (12%) |
CLA + AMI + CEF | 0.5 (75%) | 0.5 (91%) | 1 (90%) | >1 (no inhibition) | >1 (no inhibition) | >1 (no inhibition) |
CLA + AMI + CIP | 0.5 (74%) | 0.5 (92%) | 0.5 (66%) | 1 (23%) | 0.015 (61%) | 0.25 (17%) |
CLA + CEF + CIP | 0.25 (68%) | 0.5 (68%) | 0.5 (72%) | >1 (no inhibition) | 1 (13%) | >1 (no inhibition) |
AMI + CEF + CIP | 0.25 (73%) | 0.25 (91%) | 1 (92%) | 0.5 (21%) | 0.03 (57%) | 1 (7%) |
4 DRUGS | 0.25 (72%) | 1 (89%) | 1 (90%) | 1 (18%) | 0.03 (58%) | >1 (no inhibition) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cholo, M.C.; Feldman, C.; Anderson, R.; Sekalo, L.; Moloko, N.; Richards, G.A. Effects of Anti-Pseudomonal Agents, Individually and in Combination, With or Without Clarithromycin, on Growth and Biofilm Formation by Antibiotic-Susceptible and -Resistant Strains of Pseudomonas aeruginosa, and the Impact of Exposure to Cigarette Smoke Condensate. Antibiotics 2025, 14, 325. https://doi.org/10.3390/antibiotics14030325
Cholo MC, Feldman C, Anderson R, Sekalo L, Moloko N, Richards GA. Effects of Anti-Pseudomonal Agents, Individually and in Combination, With or Without Clarithromycin, on Growth and Biofilm Formation by Antibiotic-Susceptible and -Resistant Strains of Pseudomonas aeruginosa, and the Impact of Exposure to Cigarette Smoke Condensate. Antibiotics. 2025; 14(3):325. https://doi.org/10.3390/antibiotics14030325
Chicago/Turabian StyleCholo, Moloko C., Charles Feldman, Ronald Anderson, Lebogang Sekalo, Naledi Moloko, and Guy A. Richards. 2025. "Effects of Anti-Pseudomonal Agents, Individually and in Combination, With or Without Clarithromycin, on Growth and Biofilm Formation by Antibiotic-Susceptible and -Resistant Strains of Pseudomonas aeruginosa, and the Impact of Exposure to Cigarette Smoke Condensate" Antibiotics 14, no. 3: 325. https://doi.org/10.3390/antibiotics14030325
APA StyleCholo, M. C., Feldman, C., Anderson, R., Sekalo, L., Moloko, N., & Richards, G. A. (2025). Effects of Anti-Pseudomonal Agents, Individually and in Combination, With or Without Clarithromycin, on Growth and Biofilm Formation by Antibiotic-Susceptible and -Resistant Strains of Pseudomonas aeruginosa, and the Impact of Exposure to Cigarette Smoke Condensate. Antibiotics, 14(3), 325. https://doi.org/10.3390/antibiotics14030325