Multidrug-Resistant Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli in a Dairy Herd: Distribution and Antimicrobial Resistance Profiles
Abstract
:1. Introduction
2. Results
2.1. Bacteriological Culture Results
2.2. Antimicrobial Susceptibility Testing of ESBL E. coli
2.3. Hierarchical Clustering of E. coli Isolates Based on the MIC Results
2.4. Results of the Biosecurity Questionnaire
3. Discussion
4. Materials and Methods
4.1. Farm Description and Ethics Statement
4.2. Questionnaire
4.3. Animals and Sample Collection
4.4. Isolation and Characterization of ESBL-Producing E. coli
4.5. Antimicrobial Susceptibility Testing
4.6. Hierarchical Clustering
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Antimicrobial Resistance Surveillance in Europe 2022—2020 Data. Available online: https://www.ecdc.europa.eu/en/publications-data/antimicrobial-resistance-surveillance-europe-2022-2020-data (accessed on 29 January 2024).
- Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report: 2022. Available online: https://www.who.int/publications-detail-redirect/9789240062702 (accessed on 29 January 2024).
- Ma, Z.; Lee, S.; Jeong, K.C. Mitigating Antibiotic Resistance at the Livestock-Environment Interface: A Review. J. Microbiol. Biotechnol. 2019, 29, 1683–1692. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control; European Food Safety Authority; European Medicines Agency. Third Joint Inter-Agency Report on Integrated Analysis of Consumption of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria from Humans and Food-Producing Animals in the EU/EEA. EFSA J. 2021, 19, e06712. [Google Scholar] [CrossRef]
- Cuong, N.V.; Padungtod, P.; Thwaites, G.; Carrique-Mas, J.J. Antimicrobial Usage in Animal Production: A Review of the Literature with a Focus on Low- and Middle-Income Countries. Antibiotics 2018, 7, 75. [Google Scholar] [CrossRef] [PubMed]
- Reygaert, W.C. An Overview of the Antimicrobial Resistance Mechanisms of Bacteria. AIMS Microbiol. 2018, 4, 482–501. [Google Scholar] [CrossRef] [PubMed]
- Rawat, D.; Nair, D. Extended-Spectrum β-Lactamases in Gram Negative Bacteria. J. Glob. Infect. Dis. 2010, 2, 263–274. [Google Scholar] [CrossRef]
- Tetens, J.L.; Billerbeck, S.; Schwenker, J.A.; Hölzel, C.S. Short Communication: Selection of Extended-Spectrum β-Lactamase-Producing Escherichia coli in Dairy Calves Associated with Antibiotic Dry Cow Therapy—A Cohort Study. J. Dairy. Sci. 2019, 102, 11449–11452. [Google Scholar] [CrossRef]
- Gonggrijp, M.A.; Santman-Berends, I.M.G.A.; Heuvelink, A.E.; Buter, G.J.; van Schaik, G.; Hage, J.J.; Lam, T.J.G.M. Prevalence and Risk Factors for Extended-Spectrum β-Lactamase- and AmpC-Producing Escherichia coli in Dairy Farms. J. Dairy. Sci. 2016, 99, 9001–9013. [Google Scholar] [CrossRef]
- Prandi, I.; Bellato, A.; Nebbia, P.; Stella, M.C.; Ala, U.; von Degerfeld, M.M.; Quaranta, G.; Robino, P. Antibiotic Resistant Escherichia coli in Wild Birds Hospitalised in a Wildlife Rescue Centre. Comp. Immunol. Microbiol. Infect. Dis. 2023, 93, 101945. [Google Scholar] [CrossRef] [PubMed]
- Musa, L.; Stefanetti, V.; Casagrande Proietti, P.; Grilli, G.; Gobbi, M.; Toppi, V.; Brustenga, L.; Magistrali, C.F.; Franciosini, M.P. Antimicrobial Susceptibility of Commensal E. coli Isolated from Wild Birds in Umbria (Central Italy). Animals 2023, 13, 1776. [Google Scholar] [CrossRef]
- Collignon, P.J.; McEwen, S.A. One Health-Its Importance in Helping to Better Control Antimicrobial Resistance. Trop. Med. Infect. Dis. 2019, 4, 22. [Google Scholar] [CrossRef]
- Ramatla, T.; Mafokwane, T.; Lekota, K.; Monyama, M.; Khasapane, G.; Serage, N.; Nkhebenyane, J.; Bezuidenhout, C.; Thekisoe, O. “One Health” Perspective on Prevalence of Co-Existing Extended-Spectrum β-Lactamase (ESBL)-Producing Escherichia coli and Klebsiella Pneumoniae: A Comprehensive Systematic Review and Meta-Analysis. Ann. Clin. Microbiol. Antimicrob. 2023, 22, 88. [Google Scholar] [CrossRef]
- Massé, J.; Lardé, H.; Fairbrother, J.M.; Roy, J.-P.; Francoz, D.; Dufour, S.; Archambault, M. Prevalence of Antimicrobial Resistance and Characteristics of Escherichia coli Isolates From Fecal and Manure Pit Samples on Dairy Farms in the Province of Québec, Canada. Front. Vet. Sci. 2021, 8, 654125. [Google Scholar] [CrossRef]
- Cho, S.; Jackson, C.R.; Frye, J.G. Freshwater Environment as a Reservoir of Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae. J. Appl. Microbiol. 2023, 134, lxad034. [Google Scholar] [CrossRef]
- Homeier-Bachmann, T.; Kleist, J.F.; Schütz, A.K.; Bachmann, L. Distribution of ESBL/AmpC-Escherichia coli on a Dairy Farm. Antibiotics 2022, 11, 940. [Google Scholar] [CrossRef]
- Weber, L.P.; Dreyer, S.; Heppelmann, M.; Schaufler, K.; Homeier-Bachmann, T.; Bachmann, L. Prevalence and Risk Factors for ESBL/AmpC-E. coli in Pre-Weaned Dairy Calves on Dairy Farms in Germany. Microorganisms 2021, 9, 2135. [Google Scholar] [CrossRef]
- Elizondo-Salazar, J.; Jones, C.; Heinrichs, A. Evaluation of Calf Milk Pasteurization Systems on 6 Pennsylvania Dairy Farms. J. Dairy. Sci. 2010, 93, 5509–5513. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Biological Hazards (BIOHAZ); Koutsoumanis, K.; Allende, A.; Álvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; de Cesare, A.; Hilbert, F.; Lindqvist, R.; et al. Update of the List of Qualified Presumption of Safety (QPS) Recommended Microorganisms Intentionally Added to Food or Feed as Notified to EFSA. EFSA J. 2023, 21, e07747. [Google Scholar] [CrossRef]
- Munns, K.D.; Selinger, L.B.; Stanford, K.; Guan, L.; Callaway, T.R.; McAllister, T.A. Perspectives on Super-Shedding of Escherichia coli O157:H7 by Cattle. Foodborne Pathog. Dis. 2015, 12, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Power, G.M.; Renaud, D.L.; Miltenburg, C.; Spence, K.L.; Hagen, B.N.M.; Winder, C.B. Perceptions of Biosecurity in a Canadian Dairy Context. J. Dairy. Sci. 2024. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, D.R.; Dodd, C.E.R.; Stekel, D.J.; Meshioye, R.T.; Diggle, M.; Lister, M.; Hobman, J.L. Multidrug-Resistant ESBL-Producing E. coli in Clinical Samples from the UK. Antibiotics 2023, 12, 169. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Categorisation of Antibiotics for Use in Animals, 2020. Available online: https://www.ema.europa.eu/en/documents/report/categorisation-antibiotics-european-union-answer-request-european-commission-updating-scientific-advice-impact-public-health-and-animal-health-use-antibiotics-animals_en.pdf (accessed on 25 February 2024).
- Waade, J.; Seibt, U.; Honscha, W.; Rachidi, F.; Starke, A.; Speck, S.; Truyen, U. Multidrug-Resistant Enterobacteria in Newborn Dairy Calves in Germany. PLoS ONE 2021, 16, e0248291. [Google Scholar] [CrossRef] [PubMed]
- Home|Biocheck.UGent. Available online: https://biocheckgent.com/en (accessed on 29 January 2024).
- Santman-Berends, I.M.G.A.; Gonggrijp, M.A.; Hage, J.J.; Heuvelink, A.E.; Velthuis, A.; Lam, T.J.G.M.; van Schaik, G. Prevalence and Risk Factors for Extended-Spectrum β-Lactamase or AmpC-Producing Escherichia coli in Organic Dairy Herds in the Netherlands. J. Dairy. Sci. 2017, 100, 562–571. [Google Scholar] [CrossRef] [PubMed]
- Achá, S.J.; Kühn, I.; Mbazima, G.; Colque-Navarro, P.; Möllby, R. Changes of Viability and Composition of the Escherichia coli Flora in Faecal Samples during Long Time Storage. J. Microbiol. Methods 2005, 63, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Rosa, N.M.; Penati, M.; Fusar-Poli, S.; Addis, M.F.; Tola, S. Species Identification by MALDI-TOF MS and gap PCR–RFLP of Non-aureus Staphylococcus, Mammaliicoccus, and Streptococcus spp. Associated with Sheep and Goat Mastitis. Vet. Res. 2022, 53, 84. [Google Scholar] [CrossRef]
- Clinical & Laboratory Standards Institute: CLSI Guidelines. Available online: https://clsi.org/ (accessed on 13 February 2023).
- Lubbers, B.V.; Clinical and Laboratory Standards Institute (Eds.) Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 4th ed.; VET08; Clinical and Laboratory Standards Institute, CLSI: Wayne, PA, USA, 2018; ISBN 978-1-68440-010-2. [Google Scholar]
- Traczewski, M.M.; Clinical and Laboratory Standards Institute (Eds.) Methods for Antimicrobial Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria Isolated from Animals, 1st ed.; VET06; Clinical and Laboratory Standards Institute, CLSI: Wayne, PA, USA, 2017; ISBN 978-1-56238-810-2. [Google Scholar]
- Weinstein, M.P.; Ii, J.S.L. Performance Standards for Antimicrobial Susceptibility Testing, 34th ed.; M100; Clinical and Laboratory Standards Institute, CLSI: Wayne, PA, USA, 2024; ISBN 978-1-68440-221-2. [Google Scholar]
- Eucast: Clinical Breakpoints and Dosing of Antibiotics. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 13 February 2023).
- Comité de l’antibiogramme de la Société Francaise de Microbiologie (CASFM)2019_V1.0.Pdf. Break Point Suggested by the French Society of Microbiology in Veterinary Medicine. Available online: https://www.sfm-microbiologie.org/wp-content/uploads/2019/01/CASFM_VET2018.pdf (accessed on 25 February 2024).
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Berrazeg, M.; Drissi, M.; Medjahed, L.; Rolain, J.M. Hierarchical Clustering as a Rapid Tool for Surveillance of Emerging Antibiotic-Resistance Phenotypes in Klebsiella pneumoniae Strains. J. Med. Microbiol. 2013, 62, 864–874. [Google Scholar] [CrossRef]
- Ward, J.H., Jr. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
Sample Type | n | ESBL E. coli (%) |
---|---|---|
Female calf feces | 18 | 15 (83.3%) |
Male calf feces | 19 | 13 (68.4%) |
Treated cow feces | 3 | 2 (66%) |
Dam feces | 26 | 0 |
Waste milk | 1 | 1 (100%) |
Male calf pens | 1 | 1 (100%) |
Female calf pens | 1 | 1 (100%) |
Mixed-use calf pens | 1 | 0 |
Calf feeding bucket | 2 | 1 (50%) |
Calf drinking water | 2 | 1 (50%) |
Cow alleys | 3 | 3 (100%) |
Cow’s berth tube | 1 | 0 |
Cow water trough | 1 | 0 |
Cow feeding rack | 2 | 1 (50%) |
Resistance Profile | Number of Isolates | Aminosidine | Amoxicillin/Clavulanic Acid | Ampicillin | Cefazolin | Cefotaxime | Colistin | Enrofloxacin | Florfenicol | Flumequine | Gentamicin | Kanamycin | Sulfisoxazole | Tetracycline | Trimethoprim/Sulfamethoxazole | MDR (Class Number) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 10 | R | S | R | R | R | S | S | R | S | S | R | R | R | R | (5) |
2 | 8 | R | S | R | R | R | S | S | S | S | S | R | R | R | S | (4) |
3 | 6 | R | S | R | R | R | S | S | S | S | S | R | S | R | S | (3) |
4 | 4 | R | S | R | R | R | S | S | R | S | S | R | R | R | S | (5) |
5 | 3 | R | S | R | R | R | S | R | S | R | S | R | R | S | R | (4) |
6 | 2 | R | S | R | R | R | S | S | R | S | R | R | R | R | R | (5) |
7 | 1 | R | S | R | R | R | S | S | S | R | R | R | R | R | S | (5) |
8 | 1 | S | S | R | R | R | S | S | S | S | S | S | R | R | R | (3) |
9 | 1 | R | S | R | R | R | S | S | S | R | R | R | R | S | R | (4) |
10 | 1 | R | S | R | R | R | S | R | S | R | S | R | R | R | R | (5) |
11 | 1 | R | S | R | R | R | S | S | R | S | R | R | R | R | S | (5) |
12 | 1 | R | R | R | R | R | S | R | R | R | R | R | R | R | R | (6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Penati, M.; Musa, L.; Filippone Pavesi, L.; Guaraglia, A.; Ulloa, F.; Moroni, P.; Piccinini, R.; Addis, M.F. Multidrug-Resistant Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli in a Dairy Herd: Distribution and Antimicrobial Resistance Profiles. Antibiotics 2024, 13, 241. https://doi.org/10.3390/antibiotics13030241
Penati M, Musa L, Filippone Pavesi L, Guaraglia A, Ulloa F, Moroni P, Piccinini R, Addis MF. Multidrug-Resistant Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli in a Dairy Herd: Distribution and Antimicrobial Resistance Profiles. Antibiotics. 2024; 13(3):241. https://doi.org/10.3390/antibiotics13030241
Chicago/Turabian StylePenati, Martina, Laura Musa, Laura Filippone Pavesi, Alessandro Guaraglia, Fernando Ulloa, Paolo Moroni, Renata Piccinini, and Maria Filippa Addis. 2024. "Multidrug-Resistant Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli in a Dairy Herd: Distribution and Antimicrobial Resistance Profiles" Antibiotics 13, no. 3: 241. https://doi.org/10.3390/antibiotics13030241
APA StylePenati, M., Musa, L., Filippone Pavesi, L., Guaraglia, A., Ulloa, F., Moroni, P., Piccinini, R., & Addis, M. F. (2024). Multidrug-Resistant Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli in a Dairy Herd: Distribution and Antimicrobial Resistance Profiles. Antibiotics, 13(3), 241. https://doi.org/10.3390/antibiotics13030241