Do Microorganisms in Bathing Water in Guadeloupe (French West Indies) Have Resistance Genes?
Abstract
:1. Introduction
2. Results
2.1. Enumeration of E. coli in Water Samples
2.2. Characterisation of Bacterial Isolates from River Water, Antibiotic Susceptibility of E. coli, and Resistance in Biofilms
2.3. Composition of Bacterial Communities in Biofilms
2.4. Analysis of Alpha Diversity
2.5. Analysis of Beta Diversity
3. Discussion
4. Materials and Methods
4.1. Sampling of River Water and Biofilms
4.2. Enumeration of Escherichia coli in Water
4.3. Isolation, Identification, and Susceptibility of E. coli in Water
4.4. Biofilm Collection, DNA Extraction, and Resistome Analysis
4.5. Molecular Identification of Bacteria by 16S rRNA Gene Sequencing and Metagenomic Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global Trends in Antimicrobial Use in Food Animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [PubMed]
- Paterson, D.L.; Bonomo, R.A. Extended-Spectrum Beta-Lactamases: A Clinical Update. Clin. Microbiol. Rev. 2005, 18, 657–686. [Google Scholar] [CrossRef] [PubMed]
- Pal, C.; Asiani, K.; Arya, S.; Rensing, C.; Stekel, D.J.; Larsson, D.G.J.; Hobman, J.L. Chapter Seven—Metal Resistance and Its Association with Antibiotic Resistance. In Advances in Microbial Physiology; Poole, R.K., Ed.; Microbiology of Metal Ions; Academic Press: Cambridge, MA, USA, 2017; Volume 70, pp. 261–313. [Google Scholar]
- Zheng, W.; Huyan, J.; Tian, Z.; Zhang, Y.; Wen, X. Clinical Class 1 Integron-Integrase Gene—A Promising Indicator to Monitor the Abundance and Elimination of Antibiotic Resistance Genes in an Urban Wastewater Treatment Plant. Environ. Int. 2020, 135, 105372. [Google Scholar] [CrossRef]
- Gootz, T.D. The Global Problem of Antibiotic Resistance. Crit. Rev. Immunol. 2010, 30, 79–93. [Google Scholar] [CrossRef]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial Resistance: A Global Multifaceted Phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.R.; Gales, A.C.; Laxminarayan, R.; Dodd, P.C. Antimicrobial Resistance: Addressing a Global Threat to Humanity. PLOS Med. 2023, 20, e1004264. [Google Scholar] [CrossRef] [PubMed]
- Dereeper, A.; Gruel, G.; Pot, M.; Couvin, D.; Barbier, E.; Bastian, S.; Bambou, J.-C.; Gelu-Simeon, M.; Ferdinand, S.; Guyomard-Rabenirina, S.; et al. Limited Transmission of Klebsiella Pneumoniae among Humans, Animals, and the Environment in a Caribbean Island, Guadeloupe (French West Indies). Microbiol. Spectr. 2022, 10, e0124222. [Google Scholar] [CrossRef]
- Bastian, S.; Nordmann, P.; Creton, E.; Malpote, E.; Thiery, G.; Martino, F.; Breurec, S.; Dortet, L. First Case of NDM-1 Producing Klebsiella Pneumoniae in Caribbean Islands. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2015, 34, 53–54. [Google Scholar] [CrossRef]
- Breurec, S.; Bastian, S.; Cuzon, G.; Bernabeu, S.; Foucan, T.; Galanth, S.; Naas, T.; Dortet, L. Emergence of OXA-48-Producing Escherichia Coli in the Caribbean Islands. J. Glob. Antimicrob. Resist. 2015, 3, 217–218. [Google Scholar] [CrossRef]
- Le Terrier, C.; Vinetti, M.; Bonjean, P.; Richard, R.; Jarrige, B.; Pons, B.; Madeux, B.; Piednoir, P.; Ardisson, F.; Elie, E.; et al. Impact of a Restrictive Antibiotic Policy on the Acquisition of Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae in an Endemic Region: A before-and-after, Propensity-Matched Cohort Study in a Caribbean Intensive Care Unit. Crit. Care 2021, 25, 261. [Google Scholar] [CrossRef]
- Pot, M.; Reynaud, Y.; Couvin, D.; Dereeper, A.; Ferdinand, S.; Bastian, S.; Foucan, T.; Pommier, J.-D.; Valette, M.; Talarmin, A.; et al. Emergence of a Novel Lineage and Wide Spread of a blaCTX-M-15/IncHI2/ST1 Plasmid among Nosocomial Enterobacter in Guadeloupe. Antibiotics 2022, 11, 1443. [Google Scholar] [CrossRef]
- Gruel, G.; Couvin, D.; Guyomard-Rabenirina, S.; Arlet, G.; Bambou, J.-C.; Pot, M.; Roy, X.; Talarmin, A.; Tressieres, B.; Ferdinand, S.; et al. High Prevalence of Bla CTXM-1/IncI1-Iγ/ST3 Plasmids in Extended-Spectrum β-Lactamase-Producing Escherichia Coli Isolates Collected From Domestic Animals in Guadeloupe (French West Indies). Front. Microbiol. 2022, 13, 882422. [Google Scholar] [CrossRef] [PubMed]
- Sadikalay, S.; Reynaud, Y.; Guyomard-Rabenirina, S.; Falord, M.; Ducat, C.; Fabre, L.; Le Hello, S.; Talarmin, A.; Ferdinand, S. High Genetic Diversity of Extended-Spectrum β-Lactamases Producing Escherichia coli in Feces of Horses. Vet. Microbiol. 2018, 219, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Gruel, G.; Sellin, A.; Riveiro, H.; Pot, M.; Breurec, S.; Guyomard-Rabenirina, S.; Talarmin, A.; Ferdinand, S. Antimicrobial Use and Resistance in Escherichia Coli from Healthy Food-Producing Animals in Guadeloupe. BMC Vet. Res. 2021, 17, 116. [Google Scholar] [CrossRef] [PubMed]
- Guyomard-Rabenirina, S.; Reynaud, Y.; Pot, M.; Albina, E.; Couvin, D.; Ducat, C.; Gruel, G.; Ferdinand, S.; Legreneur, P.; Le Hello, S.; et al. Antimicrobial Resistance in Wildlife in Guadeloupe (French West Indies): Distribution of a Single blaCTX–M–1/IncI1/ST3 Plasmid Among Humans and Wild Animals. Front. Microbiol. 2020, 11, 1524. [Google Scholar] [CrossRef] [PubMed]
- Pot, M.; Reynaud, Y.; Couvin, D.; Ducat, C.; Ferdinand, S.; Gravey, F.; Gruel, G.; Guérin, F.; Malpote, E.; Breurec, S.; et al. Wide Distribution and Specific Resistance Pattern to Third-Generation Cephalosporins of Enterobacter Cloacae Complex Members in Humans and in the Environment in Guadeloupe (French West Indies). Front. Microbiol. 2021, 12, 628058. [Google Scholar] [CrossRef] [PubMed]
- Pot, M.; Guyomard-Rabenirina, S.; Couvin, D.; Ducat, C.; Enouf, V.; Ferdinand, S.; Gruel, G.; Malpote, E.; Talarmin, A.; Breurec, S.; et al. Dissemination of Extended-Spectrum-β-Lactamase-Producing Enterobacter Cloacae Complex from a Hospital to the Nearby Environment in Guadeloupe (French West Indies): ST114 Lineage Coding for a Successful IncHI2/ST1 Plasmid. Antimicrob. Agents Chemother. 2021, 65, e02146-20. [Google Scholar] [CrossRef]
- Guyomard-Rabenirina, S.; Dartron, C.; Falord, M.; Sadikalay, S.; Ducat, C.; Richard, V.; Breurec, S.; Gros, O.; Talarmin, A. Resistance to Antimicrobial Drugs in Different Surface Waters and Wastewaters of Guadeloupe. PLoS ONE 2017, 12, e0173155. [Google Scholar] [CrossRef]
- Rapport d’Activité 2019 de La Guadeloupe. 2020. Available online: https://www.Iedom.Fr/IMG/Pdf/Ra2019_guadeloupe_1_.Pdf (accessed on 24 July 2023).
- Ministère Chargé de la Santé Normes de Qualité Des Eaux et Classement Des Zones de Baignade. Available online: https://baignades.sante.gouv.fr/baignades/editorial/fr/controle/exemple.html (accessed on 28 December 2023).
- Qualité Des Eaux de Baignade: Les Cartes 2020 de La Guadeloupe et Des Iles Du Nord—Qualité Des Eaux de Baignade En Guadeloupe—Sécurité Sanitaire—Protection Du Consommateur et Sécurité Alimentaire—Actions de l’État—Les Services de l’État En Guadeloupe. Available online: https://www.guadeloupe.gouv.fr/Actions-de-l-Etat/Protection-du-consommateur-et-securite-alimentaire/Securite-sanitaire/Qualite-des-eaux-de-baignade-en-Guadeloupe/Qualite-des-eaux-de-baignade-les-cartes-2020-de-la-Guadeloupe-et-des-Iles-du-Nord (accessed on 24 March 2023).
- Servais, P.; Passerat, J. Antimicrobial Resistance of Fecal Bacteria in Waters of the Seine River Watershed (France). Sci. Total Environ. 2009, 408, 365–372. [Google Scholar] [CrossRef]
- Watkinson, A.J.; Micalizzi, G.R.; Bates, J.R.; Costanzo, S.D. Novel Method for Rapid Assessment of Antibiotic Resistance in Escherichia Coli Isolates from Environmental Waters by Use of a Modified Chromogenic Agar. Appl. Environ. Microbiol. 2007, 73, 2224–2229. [Google Scholar] [CrossRef]
- Hamelin, K.; Bruant, G.; El-Shaarawi, A.; Hill, S.; Edge, T.A.; Fairbrother, J.; Harel, J.; Maynard, C.; Masson, L.; Brousseau, R. Occurrence of Virulence and Antimicrobial Resistance Genes in Escherichia coli Isolates from Different Aquatic Ecosystems within the St. Clair River and Detroit River Areas. Appl. Environ. Microbiol. 2007, 73, 477–484. [Google Scholar] [CrossRef]
- Liguori, K.; Keenum, I.; Davis, B.C.; Calarco, J.; Milligan, E.; Harwood, V.J.; Pruden, A. Antimicrobial Resistance Monitoring of Water Environments: A Framework for Standardized Methods and Quality Control. Environ. Sci. Technol. 2022, 56, 9149–9160. [Google Scholar] [CrossRef]
- Proia, L.; von Schiller, D.; Sànchez-Melsió, A.; Sabater, S.; Borrego, C.M.; Rodríguez-Mozaz, S.; Balcázar, J.L. Occurrence and Persistence of Antibiotic Resistance Genes in River Biofilms after Wastewater Inputs in Small Rivers. Environ. Pollut. 2016, 210, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Donlan, R.M.; Costerton, J.W. Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms. Clin. Microbiol. Rev. 2002, 15, 167–193. [Google Scholar] [CrossRef] [PubMed]
- Engemann, C.A.; Keen, P.L.; Knapp, C.W.; Hall, K.J.; Graham, D.W. Fate of Tetracycline Resistance Genes in Aquatic Systems: Migration from the Water Column to Peripheral Biofilms. Environ. Sci. Technol. 2008, 42, 5131–5136. [Google Scholar] [CrossRef]
- Marti, E.; Jofre, J.; Balcazar, J.L. Prevalence of Antibiotic Resistance Genes and Bacterial Community Composition in a River Influenced by a Wastewater Treatment Plant. PLoS ONE 2013, 8, e78906. [Google Scholar] [CrossRef] [PubMed]
- Pruden, A.; Pei, R.; Storteboom, H.; Carlson, K.H. Antibiotic Resistance Genes as Emerging Contaminants: Studies in Northern Colorado. Environ. Sci. Technol. 2006, 40, 7445–7450. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Mozaz, S.; Chamorro, S.; Marti, E.; Huerta, B.; Gros, M.; Sànchez-Melsió, A.; Borrego, C.M.; Barceló, D.; Balcázar, J.L. Occurrence of Antibiotics and Antibiotic Resistance Genes in Hospital and Urban Wastewaters and Their Impact on the Receiving River. Water Res. 2015, 69, 234–242. [Google Scholar] [CrossRef]
- Anjum, M.F.; Schmitt, H.; Börjesson, S.; Berendonk, T.U.; Donner, E.; Stehling, E.G.; Boerlin, P.; Topp, E.; Jardine, C.; Li, X.; et al. The Potential of Using E. coli as an Indicator for the Surveillance of Antimicrobial Resistance (AMR) in the Environment. Curr. Opin. Microbiol. 2021, 64, 152–158. [Google Scholar] [CrossRef]
- WHO. Integrated Global Surveillance on ESBL-Producing E. coli Using a “One Health” Approach: Implementation and Opportunities. Available online: https://www.who.int/publications-detail-redirect/9789240021402 (accessed on 16 September 2023).
- Tornevi, A.; Bergstedt, O.; Forsberg, B. Precipitation Effects on Microbial Pollution in a River: Lag Structures and Seasonal Effect Modification. PLoS ONE 2014, 9, e98546. [Google Scholar] [CrossRef]
- Baudart, J.; Paniel, N. Sources et Devenir Des Micro-Organismes Pathogènes Dans Les Environnements Aquatiques. Rev. Francoph. Lab. 2014, 2014, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Ebmeyer, S.; Kristiansson, E.; Larsson, D.G.J. A Framework for Identifying the Recent Origins of Mobile Antibiotic Resistance Genes. Commun. Biol. 2021, 4, 8. [Google Scholar] [CrossRef] [PubMed]
- Yashiro, E.; McManus, P.S. Effect of Streptomycin Treatment on Bacterial Community Structure in the Apple Phyllosphere. PLoS ONE 2012, 7, e37131. [Google Scholar] [CrossRef] [PubMed]
- Blaak, H.; van Hoek, A.H.A.M.; Hamidjaja, R.A.; van der Plaats, R.Q.J.; Kerkhof-de Heer, L.; de Roda Husman, A.M.; Schets, F.M. Distribution, Numbers, and Diversity of ESBL-Producing E. coli in the Poultry Farm Environment. PLoS ONE 2015, 10, e0135402. [Google Scholar] [CrossRef]
- Daly, S.M.; Sturge, C.R.; Felder-Scott, C.F.; Geller, B.L.; Greenberg, D.E. MCR-1 Inhibition with Peptide-Conjugated Phosphorodiamidate Morpholino Oligomers Restores Sensitivity to Polymyxin in Escherichia coli. mBio 2017, 8, e01315-17. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Xu, Y.; Gao, R.; Lin, J.; Wei, W.; Srinivas, S.; Li, D.; Yang, R.-S.; Li, X.-P.; Liao, X.-P.; et al. Deciphering MCR-2 Colistin Resistance. mBio 2017, 8, e00625-17. [Google Scholar] [CrossRef]
- Deng, Y.; Bao, X.; Ji, L.; Chen, L.; Liu, J.; Miao, J.; Chen, D.; Bian, H.; Li, Y.; Yu, G. Resistance Integrons: Class 1, 2 and 3 Integrons. Ann. Clin. Microbiol. Antimicrob. 2015, 14, 45. [Google Scholar] [CrossRef]
- Uyaguari-Díaz, M.I.; Croxen, M.A.; Luo, Z.; Cronin, K.I.; Chan, M.; Baticados, W.N.; Nesbitt, M.J.; Li, S.; Miller, K.M.; Dooley, D.; et al. Human Activity Determines the Presence of Integron-Associated and Antibiotic Resistance Genes in Southwestern British Columbia. Front. Microbiol. 2018, 9, 852. [Google Scholar] [CrossRef]
- Bourdonnais, E.; Colcanap, D.; Le Bris, C.; Brauge, T.; Midelet, G. Occurrence of Indicator Genes of Antimicrobial Resistance Contamination in the English Channel and North Sea Sectors and Interactions with Environmental Variables. Front. Microbiol. 2022, 13, 883081. [Google Scholar] [CrossRef]
- Baker-Austin, C.; Wright, M.S.; Stepanauskas, R.; McArthur, J.V. Co-Selection of Antibiotic and Metal Resistance. Trends Microbiol. 2006, 14, 176–182. [Google Scholar] [CrossRef]
- Larsson, D.G.J.; Flach, C.-F. Antibiotic Resistance in the Environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Seiler, C.; Berendonk, T. Heavy Metal Driven Co-Selection of Antibiotic Resistance in Soil and Water Bodies Impacted by Agriculture and Aquaculture. Front. Microbiol. 2012, 3, 399. [Google Scholar] [CrossRef] [PubMed]
- Siedlecka, A.; Wolf-Baca, M.J.; Piekarska, K. Antibiotic and Disinfectant Resistance in Tap Water Strains—Insight into the Resistance of Environmental Bacteria. Pol. J. Microbiol. 2021, 70, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Yang, B.; Jia, Y.; Yu, F.; Wang, Z.; Liu, Y. Comprehensive Analysis of Disinfectants on the Horizontal Transfer of Antibiotic Resistance Genes. J. Hazard. Mater. 2023, 453, 131428. [Google Scholar] [CrossRef] [PubMed]
- Barberán, A.; Casamayor, E. Global Phylogenetic Community Structure and β-Diversity Patterns in Surface Bacterioplankton Metacommunities. Aquat. Microb. Ecol. 2010, 59, 1–10. [Google Scholar] [CrossRef]
- Bartrons, M.; Catalan, J.; Casamayor, E.O. High Bacterial Diversity in Epilithic Biofilms of Oligotrophic Mountain Lakes. Microb. Ecol. 2012, 64, 860–869. [Google Scholar] [CrossRef] [PubMed]
- Battin, T.J.; Besemer, K.; Bengtsson, M.M.; Romani, A.M.; Packmann, A.I. The Ecology and Biogeochemistry of Stream Biofilms. Nat. Rev. Microbiol. 2016, 14, 251–263. [Google Scholar] [CrossRef]
- Newton A Guide to the Natural History of Freshwater Lake Bacteria. Available online: https://journals.asm.org/doi/epdf/10.1128/mmbr.00028-10?src=getftr (accessed on 24 July 2023).
- Pineda-Mora, D.; Juárez-López, A.L.; Toribio-Jiménez, J.; Leal-Ascencio, M.T.; Ruvalcaba-Ledezma, J.C.; Castelán-Sánchez, H.G.; Aguirre-Noyola, J.L.; Arp, P.A. Diversity and Functions of Epilithic Riverine Biofilms. Water. Air. Soil Pollut. 2020, 231, 391. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Li, H.; Yang, H.; Peng, C.; Peng, Z.; Lu, L. Shift in the Microbial Community Composition of Surface Water and Sediment along an Urban River. Sci. Total Environ. 2018, 627, 600–612. [Google Scholar] [CrossRef]
- Araya, R.; Tani, K.; Takagi, T.; Yamaguchi, N.; Nasu, M. Bacterial Activity and Community Composition in Stream Water and Biofilm from an Urban River Determined by Fluorescent in Situ Hybridization and DGGE Analysis. FEMS Microbiol. Ecol. 2003, 43, 111–119. [Google Scholar] [CrossRef]
- Betiku, O.C.; Sarjeant, K.C.; Ngatia, L.W.; Aghimien, M.O.; Odewumi, C.O.; Latinwo, L.M. Evaluation of Microbial Diversity of Three Recreational Water Bodies Using 16S rRNA Metagenomic Approach. Sci. Total Environ. 2021, 771, 144773. [Google Scholar] [CrossRef] [PubMed]
- Burkert, U.; Warnecke, F.; Babenzien, D.; Zwirnmann, E.; Pernthaler, J. Members of a Readily Enriched Beta-Proteobacterial Clade Are Common in Surface Waters of a Humic Lake. Appl. Environ. Microbiol. 2003, 69, 6550–6559. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.; Kong, X.; Cui, B.; Jin, S.; Xie, Y.; Wang, X.; Deng, Y. Bacterial Communities and Potential Waterborne Pathogens within the Typical Urban Surface Waters. Sci. Rep. 2018, 8, 13368. [Google Scholar] [CrossRef] [PubMed]
- Vega, L.; Jaimes, J.; Morales, D.; Martínez, D.; Cruz-Saavedra, L.; Muñoz, M.; Ramírez, J.D. Microbial Communities’ Characterization in Urban Recreational Surface Waters Using Next Generation Sequencing. Microb. Ecol. 2021, 81, 847–863. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Y.; Zhao, L.; Li, Y.; Xie, S.; Liu, Y. Distribution of Sediment Bacterial and Archaeal Communities in Plateau Freshwater Lakes. Appl. Microbiol. Biotechnol. 2015, 99, 3291–3302. [Google Scholar] [CrossRef]
- Andrzejak, T.; Raje, H.; LaFleur, G.; Willis, J.; Boopathy, R. Water Quality and Antibiotic Resistance in the Recreational Waters. Bioresour. Technol. 2023, 370, 128546. [Google Scholar] [CrossRef] [PubMed]
- Ragon, M.; Fontaine, M.C.; Moreira, D.; López-García, P. Different Biogeographic Patterns of Prokaryotes and Microbial Eukaryotes in Epilithic Biofilms. Mol. Ecol. 2012, 21, 3852–3868. [Google Scholar] [CrossRef] [PubMed]
- Antunes, J.T.; Sousa, A.G.G.; Azevedo, J.; Rego, A.; Leão, P.N.; Vasconcelos, V. Distinct Temporal Succession of Bacterial Communities in Early Marine Biofilms in a Portuguese Atlantic Port. Front. Microbiol. 2020, 11, 1938. [Google Scholar] [CrossRef]
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an Ecological Classification of Soil Bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef]
- Ponsatí, L.; Corcoll, N.; Petrović, M.; Picó, Y.; Ginebreda, A.; Tornés, E.; Guasch, H.; Barceló, D.; Sabater, S. Multiple-Stressor Effects on River Biofilms under Different Hydrological Conditions. Freshw. Biol. 2016, 61, 2102–2115. [Google Scholar] [CrossRef]
- Zoppini, A.; Amalfitano, S.; Fazi, S.; Puddu, A. Dynamics of a Benthic Microbial Community in a Riverine Environment Subject to Hydrological Fluctuations (Mulargia River, Italy). In Global Change and River Ecosystems—Implications for Structure, Function and EcosystemServices; Stevenson, R.J., Sabater, S., Eds.; Developments in Hydrobiology 215; Springer: Dordrecht, The Netherlands, 2010; pp. 37–51. ISBN 978-94-007-0608-8. [Google Scholar]
- Bauer, M.; Kube, M.; Teeling, H.; Richter, M.; Lombardot, T.; Allers, E.; Würdemann, C.A.; Quast, C.; Kuhl, H.; Knaust, F.; et al. Whole Genome Analysis of the Marine Bacteroidetes‘Gramella Forsetii’ Reveals Adaptations to Degradation of Polymeric Organic Matter. Environ. Microbiol. 2006, 8, 2201–2213. [Google Scholar] [CrossRef]
- Wang, J.; Jenkins, C.; Webb, R.I.; Fuerst, J.A. Isolation of Gemmata-Like and Isosphaera-Like Planctomycete Bacteria from Soil and Freshwater. Appl. Environ. Microbiol. 2002, 68, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Paerl, H.W.; Hall, N.S.; Calandrino, E.S. Controlling Harmful Cyanobacterial Blooms in a World Experiencing Anthropogenic and Climatic-Induced Change. Sci. Total Environ. 2011, 409, 1739–1745. [Google Scholar] [CrossRef]
- Garrido-Oter, R.; Nakano, R.T.; Dombrowski, N.; Ma, K.-W.; AgBiome Team; McHardy, A.C.; Schulze-Lefert, P. Modular Traits of the Rhizobiales Root Microbiota and Their Evolutionary Relationship with Symbiotic Rhizobia. Cell Host Microbe 2018, 24, 155–167.e5. [Google Scholar] [CrossRef]
- Lepleux, C.; Turpault, M.P.; Oger, P.; Frey-Klett, P.; Uroz, S. Correlation of the Abundance of Betaproteobacteria on Mineral Surfaces with Mineral Weathering in Forest Soils. Appl. Environ. Microbiol. 2012, 78, 7114–7119. [Google Scholar] [CrossRef]
- Kondrotaite, Z.; Valk, L.C.; Petriglieri, F.; Singleton, C.; Nierychlo, M.; Dueholm, M.K.D.; Nielsen, P.H. Diversity and Ecophysiology of the Genus OLB8 and Other Abundant Uncultured Saprospiraceae Genera in Global Wastewater Treatment Systems. Front. Microbiol. 2022, 13, 917553. [Google Scholar] [CrossRef] [PubMed]
- McIlroy, S.J.; Nielsen, P.H. The Family Saprospiraceae. In The Prokaryotes: Other Major Lineages of Bacteria and The Archaea; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 863–889. ISBN 978-3-642-38954-2. [Google Scholar]
- Marín, A.; Feijoo, P.; de Llanos, R.; Carbonetto, B.; González-Torres, P.; Tena-Medialdea, J.; García-March, J.R.; Gámez-Pérez, J.; Cabedo, L. Microbiological Characterization of the Biofilms Colonizing Bioplastics in Natural Marine Conditions: A Comparison between PHBV and PLA. Microorganisms 2023, 11, 1461. [Google Scholar] [CrossRef] [PubMed]
- Lyautey, E.; Jackson, C.R.; Cayrou, J.; Rols, J.-L.; Garabétian, F. Bacterial Community Succession in Natural River Biofilm Assemblages. Microb. Ecol. 2005, 50, 589–601. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, S.; Lv, X.; Guo, S.; Ma, Y.; Han, B.; Hu, X. Interactions between Suspended Sediments and Submerged Macrophytes-Epiphytic Biofilms under Water Flow in Shallow Lakes. Water Res. 2022, 222, 118911. [Google Scholar] [CrossRef]
- Ge, Z.; Ma, Z.; Hong, W.; Liu, K.; Yan, S.; Song, W.; Zhang, J. Temporal Variations in Reactive Oxygen Species in Biofilms of Submerged Macrophytes: The Key Role of Microbial Metabolism Mediated by Oxygen Fluctuations. J. Hazard. Mater. 2024, 461, 132542. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Price, O.R.; van der Gast, C.J.; Finnegan, C.J.; van Egmond, R.A.; Schäfer, H.; Bending, G.D. Spatial and Temporal Variability in the Potential of River Water Biofilms to Degrade P-Nitrophenol. Chemosphere 2016, 164, 355–362. [Google Scholar] [CrossRef]
- Kelly, J.J.; Minalt, N.; Culotti, A.; Pryor, M.; Packman, A. Temporal Variations in the Abundance and Composition of Biofilm Communities Colonizing Drinking Water Distribution Pipes. PLoS ONE 2014, 9, e98542. [Google Scholar] [CrossRef]
- Zancarini, A.; Echenique-Subiabre, I.; Debroas, D.; Taïb, N.; Quiblier, C.; Humbert, J.-F. Deciphering Biodiversity and Interactions between Bacteria and Microeukaryotes within Epilithic Biofilms from the Loue River, France. Sci. Rep. 2017, 7, 4344. [Google Scholar] [CrossRef]
- Kaevska, M.; Videnska, P.; Sedlar, K.; Slana, I. Seasonal Changes in Microbial Community Composition in River Water Studied Using 454-Pyrosequencing. Springer Plus 2016, 5, 409. [Google Scholar] [CrossRef]
- Wang, J.; Fan, H.; He, X.; Zhang, F.; Xiao, J.; Yan, Z.; Feng, J.; Li, R. Response of Bacterial Communities to Variation in Water Quality and Physicochemical Conditions in a River-Reservoir System. Glob. Ecol. Conserv. 2021, 27, e01541. [Google Scholar] [CrossRef]
- Matviichuk, O.; Mondamert, L.; Geffroy, C.; Gaschet, M.; Dagot, C.; Labanowski, J. River Biofilms Microbiome and Resistome Responses to Wastewater Treatment Plant Effluents Containing Antibiotics. Front. Microbiol. 2022, 13, 795206. [Google Scholar] [CrossRef] [PubMed]
- Aubertheau, E.; Stalder, T.; Mondamert, L.; Ploy, M.-C.; Dagot, C.; Labanowski, J. Impact of Wastewater Treatment Plant Discharge on the Contamination of River Biofilms by Pharmaceuticals and Antibiotic Resistance. Sci. Total Environ. 2017, 579, 1387–1398. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Sekar, R.; Marrs, R.; Zhang, Y. Effect of River Ecological Restoration on Biofilm Microbial Community Composition. Water 2019, 11, 1244. [Google Scholar] [CrossRef]
- Harnisz, M.; Kiedrzyńska, E.; Kiedrzyński, M.; Korzeniewska, E.; Czatzkowska, M.; Koniuszewska, I.; Jóźwik, A.; Szklarek, S.; Niestępski, S.; Zalewski, M. The Impact of WWTP Size and Sampling Season on the Prevalence of Antibiotic Resistance Genes in Wastewater and the River System. Sci. Total Environ. 2020, 741, 140466. [Google Scholar] [CrossRef]
- ISO 9308-3:1998(Fr); Qualité de l’eau—Recherche et Dénombrement Des Escherichia coli et Des Bactéries Coliformes—Partie 3: Méthode Miniaturisée (Nombre Le plus Probable) Pour La Recherche et Le Dénombrement Des E. coli Dans Les Eaux de Surface et Résiduaires. Plateforme de consultation en ligne (OBP). Available online: https://www.iso.org/obp/ui/fr/#iso:std:iso:9308:-3:ed-1:v1:fr (accessed on 12 August 2023).
- European Parliament, Council of the European Union. Directive 2006/7/EC of the European Parliament and of the Council of 15 February 2006 Concerning the Management of Bathing Water Quality and Repealing Directive 76/160/EEC. Off. J. Eur. Union 2006, 64, 37–51. [Google Scholar]
- Chapitre II: Piscines et Baignades. (Articles L1332-1 à L1332-9)—Légifrance. Available online: https://www.legifrance.gouv.fr/codes/id/LEGISCTA000006171063 (accessed on 12 September 2023).
- Section 2: Règles Sanitaires Applicables Aux Eaux de Baignade (Articles D1332-14 à D1332-38-1)—Légifrance. Available online: https://www.legifrance.gouv.fr/codes/id/LEGISCTA000019506596 (accessed on 12 September 2023).
- La Société Française de Microbiologie. CASFM/EUCAST AVRIL 2021 V1.0. 2021. Available online: https://www.sfm-microbiologie.org/2021/04/23/casfm-avril-2021-v1-0/ (accessed on 12 September 2023).
- Buelow, E.; Bayjanov, J.R.; Majoor, E.; Willems, R.J.; Bonten, M.J.; Schmitt, H.; van Schaik, W. Limited Influence of Hospital Wastewater on the Microbiome and Resistome of Wastewater in a Community Sewerage System. FEMS Microbiol. Ecol. 2018, 94, fiy087. [Google Scholar] [CrossRef]
- Buelow, E.; Rico, A.; Gaschet, M.; Lourenço, J.; Kennedy, S.P.; Wiest, L.; Ploy, M.-C.; Dagot, C. Hospital Discharges in Urban Sanitation Systems: Long-Term Monitoring of Wastewater Resistome and Microbiota in Relationship to Their Eco-Exposome. Water Res. X 2020, 7, 100045. [Google Scholar] [CrossRef] [PubMed]
- Beckers, B.; Op De Beeck, M.; Thijs, S.; Truyens, S.; Weyens, N.; Boerjan, W.; Vangronsveld, J. Performance of 16s rDNA Primer Pairs in the Study of Rhizosphere and Endosphere Bacterial Microbiomes in Metabarcoding Studies. Front. Microbiol. 2016, 7, 650. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Ihaka, R.; Gentleman, R. R: A Language for Data Analysis and Graphics. J. Comput. Graph. Stat. 1996, 5, 299–314. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H. Ggplot2; Use R! Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-24275-0. [Google Scholar]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Oksanen, J.; Kindt, R.; Legendre, P.; O’Hara, B.; Stevens, M.H.H.; Oksanen, M.J.; Suggests, M. The Vegan Package. Community Ecol. Package 2007, 10, 719. [Google Scholar]
Most Probable Number (CFU/100 mL) | ||||||
---|---|---|---|---|---|---|
Municipality | Site | Campaign 1 | Campaign 2 | Campaign 3 | Campaign 4 | Campaign 5 |
Deshaies | Fond Helliot | 30 | 49 | 144 | 77 | 347 |
Gourbeyre | Bain des Amours | 0 | 15 | 61 | 61 | 30 |
Gourbeyre | Bassin Bleu | – | 75 | 61 | 15 | 46 |
Gourbeyre | Bain de Dole | 46 | 0 | 46 | 30 | 160 |
Lamentin | Grande Rivière du Lamentin | 110 | 2213 | 179 | 144 | 127 |
Petit Bourg | Bras David | 15 | 15 | 1336 | 15 | – |
Petit Bourg | Cascade aux Ecrevisses | 15 | 15 | 30 | 46 | 61 |
Petit Bourg | Corossol | 0 | – | 2508 | 0 | 46 |
Petit Bourg | Diane | 15 | 46 | 77 | 77 | – |
Petit Bourg | Duquerry | 0 | 15 | 15 | 15 | – |
St Claude | Bain Jaune | – | – | 30 | 0 | 0 |
St Claude | Rivière Rouge | – | 15 | 94 | 0 | 0 |
St Rose | Sofaïa | – | 0 | – | 0 | 0 |
Vieux Habitants | Vallée Verte | – | 0 | 1071 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batantou Mabandza, D.; Colletin, E.; Dagot, C.; Quétel, I.; Breurec, S.; Guyomard-Rabenirina, S. Do Microorganisms in Bathing Water in Guadeloupe (French West Indies) Have Resistance Genes? Antibiotics 2024, 13, 87. https://doi.org/10.3390/antibiotics13010087
Batantou Mabandza D, Colletin E, Dagot C, Quétel I, Breurec S, Guyomard-Rabenirina S. Do Microorganisms in Bathing Water in Guadeloupe (French West Indies) Have Resistance Genes? Antibiotics. 2024; 13(1):87. https://doi.org/10.3390/antibiotics13010087
Chicago/Turabian StyleBatantou Mabandza, Degrâce, Edlyne Colletin, Christophe Dagot, Isaure Quétel, Sébastien Breurec, and Stéphanie Guyomard-Rabenirina. 2024. "Do Microorganisms in Bathing Water in Guadeloupe (French West Indies) Have Resistance Genes?" Antibiotics 13, no. 1: 87. https://doi.org/10.3390/antibiotics13010087
APA StyleBatantou Mabandza, D., Colletin, E., Dagot, C., Quétel, I., Breurec, S., & Guyomard-Rabenirina, S. (2024). Do Microorganisms in Bathing Water in Guadeloupe (French West Indies) Have Resistance Genes? Antibiotics, 13(1), 87. https://doi.org/10.3390/antibiotics13010087