Phenotypic Detection of Carbapenemase and AmpC-β-Lactamase Production among Extended Spectrum β-Lactamase (ESBL)-Producing Escherichia coli and Klebsiella spp. Isolated from Clinical Specimens
Abstract
:1. Introduction
2. Results
2.1. Bacterial Strains
2.2. Prevalence of Carbapenemase-Producing Enterobacterales
2.3. Types of Carbapenemase Produced
2.4. Prevalence and Distribution of AmpC-β-Lactamase Production
2.5. Antimicrobial Resistance Patterns
3. Discussion
4. Material and Methods
4.1. Study Design and Period
4.2. Sampling and Site Description
4.3. Bacterial Isolation and Species Identification
4.4. ESBL Production Test
4.5. Carbapenemase Production Test
4.6. AmpC-β-Lactamase Production
4.7. Antimicrobial Susceptibility Testing
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655, Erratum in Lancet 2022, 400, 1102. [Google Scholar] [CrossRef]
- World Bank. Drug-Resistant Infections: A Threat to Our Economic Future; World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). Vital Signs: Carbapenem-resistant Enterobacteriaceae. MMWR Morb. Mortal. Wkly. Rep. 2013, 62, 165–170. [Google Scholar]
- Armstrong, T.; Fenn, S.J.; Hardie, K.R. JMM Profile: Carbapenems: A broad-spectrum antibiotic. J. Med. Microbiol. 2021, 70, 001462. [Google Scholar] [CrossRef]
- Zhou, R.; Fang, X.; Zhang, J.; Zheng, X.; Shangguan, S.; Chen, S.; Shen, Y.; Liu, Z.; Li, J.; Zhang, R.; et al. Impact of carbapenem resistance on mortality in patients infected with Enterobacteriaceae: A systematic review and meta-analysis. BMJ Open 2021, 11, e054971. [Google Scholar] [CrossRef]
- Hu, Q.; Chen, J.; Sun, S.; Deng, S. Mortality-related risk factors and novel antimicrobial regimens for carbapenem-resistant Enterobacteriaceae infections: A systematic review. Infect. Drug Resist. 2022, 15, 6907–6926. [Google Scholar] [CrossRef]
- Garbati, M.A.; Sakkijha, H.; Abushaheen, A. Infections due to carbapenem resistant Enterobacteriaceae among Saudi Arabian hospitalized patients: A matched case-control study. BioMed Res. Int. 2016, 2016, 3961684. [Google Scholar] [CrossRef]
- Tompkins, K.; van Duin, D. Treatment for carbapenem-resistant Enterobacterales infections: Recent advances and future directions. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2053–2068. [Google Scholar] [CrossRef]
- Iovleva, A.; Doi, Y. Carbapenem-resistant Enterobacteriaceae. Clin. Lab. Med. 2017, 37, 303–315. [Google Scholar] [CrossRef]
- Hirsch, E.B.; Tam, V.H. Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): An emerging cause of multidrug-resistant infection. J. Antimicrob. Chemother. 2010, 65, 1119–1125. [Google Scholar] [CrossRef]
- Iskandar, K.; Molinier, L.; Hallit, S.; Sartelli, M.; Hardcastle, T.C.; Haque, M.; Lugova, H.; Dhingra, S.; Sharma, P.; Islam, S.; et al. Surveillance of antimicrobial resistance in low- and middle-income countries: A scattered picture. Antimicrob. Resist. Infect. Control 2021, 10, 63. [Google Scholar] [CrossRef]
- Rodriguez-Baño, J.; Gutiérrez-Gutiérrez, B.; Machuca, I.; Pascual, A. Treatment of Infections Caused by Extended-Spectrum-Beta-lactamase-, AmpC-, and carbapenemase-producing Enterobacteriaceae. Clin. Microbiol. Rev. 2018, 31, 1–42. [Google Scholar] [CrossRef]
- Logan, L.K.; Weinstein, R.A. The epidemiology of carbapenem-resistant enterobacteriaceae: The impact and evolution of a global menace. J. Infect. Dis. 2017, 215 (Suppl. S1), S28–S36. [Google Scholar] [CrossRef]
- Yehouenou, C.L.; Soleimani, R.; Kpangon, A.A.; Simon, A.; Dossou, F.M.; Dalleur, O. Carbapenem-resistant organisms isolated in surgical site infections in Benin: A public health problem. Trop. Med. Infect. Dis. 2022, 7, 200. [Google Scholar] [CrossRef]
- Ibrahim, Y.; Sani, Y.; Saleh, Q.; Saleh, A.; Hakeem, G. Phenotypic detection of extended spectrum beta lactamase and carbapenemase co-producing clinical isolates from two tertiary hospitals in Kano, north west Nigeria. Ethiop. J. Health Sci. 2017, 27, 3–10. [Google Scholar] [CrossRef]
- Walkty, A.; Gilmour, M.; Simner, P.; Embil, J.M.; Boyd, D.; Mulvey, M.; Karlowsky, J. Isolation of multiple carbapenemase-producing Gram-negative bacilli from a patient recently hospitalized in Nigeria. Diagn. Microbiol. Infect. Dis. 2015, 81, 296–298. [Google Scholar] [CrossRef]
- Ssekatawa, K.; Byarugaba, D.K.; Nakavuma, J.L.; Kato, C.D.; Ejobi, F.; Tweyongyere, R.; Eddie, W.M. Prevalence of pathogenic Klebsiella pneumoniae based on PCR capsular typing harbouring carbapenemases encoding genes in Uganda tertiary hospitalsmodee. Antimicrob. Resist. Infect. Control 2021, 10, 1–10. [Google Scholar] [CrossRef]
- Nabti, L.Z.; Sahli, F.; Radji, N.; Mezaghcha, W.; Semara, L.; Aberkane, S.; Lounnas, M.; Solassol, J.; Didelot, M.-N.; Jean-Pierre, H.; et al. High prevalence of multidrug-resistant Escherichia coli in urine samples from inpatients and outpatients at a tertiary care hospital in sétif, Algeria. Microb. Drug Resist. 2019, 25, 386–393. [Google Scholar] [CrossRef]
- Sanou, S.; Ouedraogo, A.S.; Aberkane, S.; Vendrell, J.; Ouchar, O.; Bouzimbi, N.; Hema, A.; Poda, A.; Zoungrana, J.; Ouedraogo, G.A.; et al. Prevalence and molecular characterization of extended spectrum β-Lactamase, plasmid-mediated quinolone resistance, and carbapenemase-producing Gram-negative bacilli in Burkina Faso. Microb. Drug Resist. 2021, 27, 18–24. [Google Scholar] [CrossRef]
- Ballot, D.E.; Bandini, R.; Nana, T.; Bosman, N.; Thomas, T.; Davies, V.A.; Cooper, P.A.; Mer, M.; Lipman, J. A review of -multidrug-resistant Enterobacteriaceae in a neonatal unit in Johannesburg, South Africa. BMC Pediatr. 2019, 19, 320. [Google Scholar] [CrossRef]
- Dirar, M.; Bilal, N.; Ibrahim, M.E.; Hamid, M. Resistance patterns and phenotypic detection of β-lactamase enzymes among Enterobacteriaceae isolates from referral hospitals in Khartoum State, Sudan. Cureus 2020, 12, e7260. [Google Scholar] [CrossRef]
- Kaboré, B.; Ouédraogo, H.S.; Zongo, O.; Ouédraogo, G.A.; Tapsoba, F.; Bougma, S.; Zongo, K.J.; Zeba, B.; Traoré, Y.; Sanou, I.; et al. Emergence of New Delhi metallo- β -Lactamase (NDM) genes detected from clinical strains of Escherichia coli isolated in Ouagadougou, Burkina Faso. Int. J. Microbiol. 2023, 2023, 4813225. [Google Scholar] [CrossRef]
- Markkanen, M.A.; Haukka, K.; Pärnänen, K.M.M.; Dougnon, V.T.; Bonkoungou, I.J.O.; Garba, Z.; Tinto, H.; Sarekoski, A.; Karkman, A.; Kantele, A.; et al. Metagenomic analysis of the abundance and composition of antibiotic resistance genes in hospital wastewater in Benin, Burkina Faso, and Finland. mSphere 2023, 8, e0053822. [Google Scholar] [CrossRef]
- Kagambèga, A.B.; Dembélé, R.; Bientz, L.; M’Zali, F.; Mayonnove, L.; Mohamed, A.H.; Coulibaly, H.; Barro, N.; Dubois, V. Detection and characterization of carbapenemase-producing detection and characterization of carbapenemase-producing Escherichia coli and Klebsiella pneumoniae from Hospital effluents of Ouagadougou, Burkina Faso. Antibiotics 2023, 12, 1494. [Google Scholar] [CrossRef]
- Tekele, S.G.; Teklu, D.S.; Tullu, K.D.; Birru, S.K.; Legese, M.H. Extended-spectrum beta-lactamase and AmpC beta-lactamases producing gram negative bacilli isolated from clinical specimens at international clinical laboratories, Addis Ababa, Ethiopia. PLoS ONE 2020, 15, e0241984. [Google Scholar] [CrossRef]
- Kazemian, H.; Heidari, H.; Ghanavati, R.; Ghafourian, S.; Yazdani, F.; Sadeghifard, N.; Valadbeigi, H.; Maleki, A.; Pakzad, I. Phenotypic and genotypic characterization of ESBL-, AmpC-, and carbapenemase-producing Klebsiella pneumoniae and Escherichia coli isolates. Med. Princ. Pract. 2019, 28, 547–551. [Google Scholar] [CrossRef]
- Salvia, T.; Dolma, K.G.; Dhakal, O.P.; Khandelwal, B.; Singh, L.S. Phenotypic Detection of ESBL, AmpC, MBL, and Their Co-occurrence among MDR Enterobacteriaceae Isolates. J. Lab. Physicians 2022, 14, 329–335. [Google Scholar] [CrossRef]
- Khalifa, S.M.; Abd El-Aziz, A.M.; Hassan, R.; Abdelmegeed, E.S. β-lactam resistance associated with β-lactamase production and porin alteration in clinical isolates of E. coli and K. pneumoniae. PLoS ONE 2021, 16, e0251594. [Google Scholar] [CrossRef]
- Rubee Chanu, T.; Shah, P.K.; Soni, S.; Ghosh, A. Phenotypic detection of extended spectrum, AmpC, metallo beta-lactamases and their coexistence in clinical isolates of commonly isolated gram negativebacteria in GKGH hospital, Bhuj. IP Int. J. Med. Microbiol. Trop. Dis. 2019, 5, 52–56. [Google Scholar] [CrossRef]
- Ogefere, H.O.; Osikobia, J.G.; Omoregie, R. Prevalence of AmpC β-lactamase among Gram-negative bacteria recovered from clinical specimens in Benin City, Nigeria. Trop. J. Pharm. Res. 2016, 15, 1947–1953. [Google Scholar] [CrossRef]
- Manenzhe, R.I.; Zar, H.J.; Nicol, M.P.; Kaba, M. The spread of carbapenemase-producing bacteria in Africa: A systematic review. J. Antimicrob. Chemother. 2015, 70, 23–40. [Google Scholar] [CrossRef]
- Awoke, T.; Teka, B.; Aseffa, A.; Sebre, S.; Seman, A.; Yeshitela, B.; Abebe, T.; Mihret, A. Detection of blaKPC and blaNDM carbapenemase genes among Klebsiella pneumoniae isolates in Addis Ababa, Ethiopia: Dominance of blaNDM. PLoS ONE 2022, 17, e0267657. [Google Scholar] [CrossRef]
- Ouedraogo, A.S.; Jean-Pierre, H.; Banuls, A.L.; Ouedraogo, R.G.S. Émergence et diffusion de la résistance aux antibiotiques en Afrique de l’Ouest: Facteurs favorisants et évaluation de la menace. Med. Sante Trop. 2017, 27, 147–154. [Google Scholar]
- Michael, C.A.; Dominey-Howes, D.; Labbate, M. The antimicrobial resistance crisis: Causes, consequences, and management. Front. Public Health 2014, 2, 145. [Google Scholar] [CrossRef]
- Nakaye, M.; Bwanga, F.; Itabangi, H.; Stanley, I.J.; Bashir, M.; Bazira, J. AmpC-BETA Lactamases among Enterobacteriaceae isolated at a tertiary hospital, south western Uganda. Br. Biotechnol. J. 2014, 4, 1026–1036. [Google Scholar] [CrossRef]
- Asamoah, B.; Labi, A.K.; Gupte, H.A.; Davtyan, H.; Peprah, G.M.; Adu-Gyan, F.; Nair, D.; Muradyan, K.; Jessani, N.S.; Sekyere-Nyantakyi, P. High Resistance to Antibiotics Recommended in Standard Treatment Guidelines in Ghana: A Cross-Sectional Study of Antimicrobial Resistance Patterns in Patients with Urinary Tract Infections between 2017–2021. Int. J. Environ. Res. Public Health 2022, 19, 6556. [Google Scholar] [CrossRef]
- Silago, V.; Moremi, N.; Mtebe, M.; Komba, E.; Masoud, S.; Mgaya, F.X.; Mirambo, M.M.; Nyawale, H.A.; Mshana, S.E.; Matee, M.I. Multidrug-Resistant Uropathogens Causing Community Acquired Urinary Tract Infections among Patients Attending Health Facilities in Mwanza and Dar es Salaam, Tanzania. Antibiotics 2022, 11, 1718. [Google Scholar] [CrossRef]
- Bhaskar, T.; Lahon, K. The betalactam antibiotics as an empirical therapy in a eeveloping country: An update on their current status and recommendations to counter the resistance against them. J. Clin. Diagn. Res. 2013, 7, 1207–1214. [Google Scholar] [CrossRef]
- Yusuf, I.; Arzai, A.H.; Haruna, M.; Sharif, A.A.; Getso, M.I. Detection of multi drug resistant bacteria in major hospitals in Kano, North-West, Nigeria. Braz. J. Microbiol. 2014, 45, 791–798. [Google Scholar] [CrossRef]
- Salah, F.D.; Diagbouga, S.; Dabire, A.M. First detection of resistance genes encoding extended spectrum beta-lactamase producing Escherichia coli at Lome, Togo. Arch. Clin. Microbiol. 2016, 7, 1–7. [Google Scholar] [CrossRef]
- Koya, S.F.; Ganesh, S.; Selvaraj, S.; Wirtz, V.J.; Galea, S.; Rockers, P.C. Antimicrobial resistance antibiotic consumption in India: Geographical variations and temporal changes between 2011 and 2019. JAC-Antimicrobial Resist. 2022, 4, dlac112. [Google Scholar] [CrossRef]
- Dadgostar, P. Antimicrobial resistance: Implications and costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef] [PubMed]
- Khanna, D.A.; Khanna, D.M.; Sharma, D.S. Detection of various beta lactamases in gram negative bacteria and their resistance pattern in northern India. Trop. J. Pathol. Microbiol. 2016, 2, 70–75. [Google Scholar] [CrossRef]
- Obeng-Nkrumah, N.; Twum-Danso, K.; Krogfelt, K.A.; Newman, M.J. High levels of extended-spectrum beta-lactamases in a major teaching hospital in Ghana: The need for regular monitoring and evaluation of antibiotic resistance. Am. J. Trop. Med. Hyg. 2013, 89, 960–964. [Google Scholar] [CrossRef] [PubMed]
- Faso, F. The World Factbook; Central Intelligence Agency: Langley, VA, USA, 2023. [Google Scholar]
- International Monetary Fund. World Economic Outlook Database, October 2023 Edition. (BF). Available online: https://www.imf.org/en/Countries/BFA (accessed on 22 December 2023).
- Ministerie de la Santé, Burkina Faso. Annuaire Statistique. 2014. Available online: http://www.cns.bf/IMG/pdf/annuaire_2014_du_ms.pdf (accessed on 22 December 2023).
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
ESBL- E. coli N = 356 n/N (%) | ESBL- Klebsiella spp. N = 117 n/N (%) | All Isolates N = 473 n/N (%) | Prevalence (%) | p-Value | |
---|---|---|---|---|---|
Hospitals | 0.14 a | ||||
CHU-YO | 18/211 (8.5) | 4/82 (4.9) | 22/293 | 7.5 | |
CHR-KDG | 1/44 (2.3) | 0/13 (0) | 1/57 | 1.8 | |
El Fateh Suka medical clinic | 0/24 (0) | 0/0 (0) | 0/24 | 0 | |
CMA Saint Camille de Nanoro | 0/58 (0) | 2/14 (1.4) | 2/74 | 2.7 | |
CMA évangélique source de vie | 0 /19 (0) | 0/8 (0) | 0/27 | 0 | |
Sample Type | 0.20 b | ||||
Urine | 16/228 (7.0) | 4/71 (5.6) | 20/299 | 6.7 | |
Pus | 2/113 (1.8) | 2/30 (6.7) | 4/143 | 2.8 | |
Blood culture | 1/15 (6.7) | 0/16 (0) | 1/31 | 3.2 | |
Overall prevalence | 19/356 (5.3) | 6 /117(5.1) | 25/473 | 5.3 |
ESBL- E. coli N = 356 n (%) | ESBL- Klebsiella spp., N = 117 n (%) | All Isolates N = 473 n (%) | Isolates with Carbapenemase N = 25 n (%) | |
---|---|---|---|---|
Carbapenemases | ||||
NDM | 14 (3.9) | 5 (4.3) | 19 (4.0) | 19/25 (76) |
OXA-48-like | 3 (0.8) | 0 (0) | 3 (0.6) | 3/25 (12) |
OXA-48-like + NDM | 2 (0.6) | 0 (0) | 2 (0.4) | 2/25 (8) |
VIM | 0 (0) | 1 (0.9) | 1 (0.2) | 1/25 (4) |
Total | 19 (5.3) | 6 (5.1) | 25 (5.3) | 25 (100) |
ESBL- E. coli N = 356 n/N (%) | ESBL- Klebsiella spp. N = 117 n/N (%) | All Isolates N = 473 n/N (%) | Prevalence (%) | p-Value | |
---|---|---|---|---|---|
Hospitals | 0.12 a | ||||
CHU-YO | 13/211 (6.2) | 6 /82 (7.3) | 19/293 | 6.5 | |
CHR-KDG | 0/44 (0) | 0/13 (0) | 0/57 | 0 | |
El Fateh Suka medical clinic | 2 /24 (8.3) | 0/0 (0) | 2/24 | 8.3 | |
CMA Saint Camille de Nanoro | 1/58 (1.7) | 1/14 (7.1) | 2/74 | 2.7 | |
CMA évangélique Source de vie | 1/19 (5.3) | 1/8 (12.5) | 2/27 | 7.4 | |
Sample Type | 0.49 b | ||||
Urines | 8/228 (3.5) | 6/71 (8.5) | 14/299 | 4.7 | |
Pus | 7/113 (6.2) | 1/30 (3.3) | 8/143 | 5.6 | |
Bloodculture | 2/15 (13.3) | 1/16 (6.3) | 3/31 | 9.7 | |
Overall prevalence | 17/356 (4.8) | 8/117 (6.8) | 25/473 | 5.3 |
Antibiotics (Concentration in µg) | ESBL- E. coli N = 356 | ESBL-Klebsiella spp. N = 117 |
---|---|---|
Resistance | Resistance | |
n (%) | n (%) | |
Piperacillin + Tazobactam (110) | 242 (68.0) | 90 (76.9) |
Meropenem (10) | 22 (6.2) | 8 (6.8) |
Imipenem (10) | 21 (5.9) | 8 (6.8) |
Ertapenem (10) | 69 (19.4) | 15 (12.8) |
Gentamicin (10) | 153 (42.9) | 68 (58.1) |
Amikacin (30) | 65 (18.3) | 11 (9.4) |
Tobramycin (10) | 215 (60.4) | 69 (59.0) |
Kanamycin (30) | 303 (85.1) | 101 (86.3) |
Ciprofloxacin (5) | 335 (94.1) | 110 (94.0) |
Sulfamethoxazole + trimethoprim (25) | 297 (834) | 105 (89.7) |
Nitrofurantoin (300) | 118 (33.1) | 87 (74.4) |
Fosfomycin (200) | 20 (5.6) | 57 (48.7) |
Chloramphenicol | 71 (19.9) | 29 (24.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garba, Z.; Kaboré, B.; Bonkoungou, I.J.O.; Natama, M.H.; Rouamba, T.; Haukka, K.; Kirveskari, J.P.; Tinto, H.; Sangaré, L.; Barro, N.; et al. Phenotypic Detection of Carbapenemase and AmpC-β-Lactamase Production among Extended Spectrum β-Lactamase (ESBL)-Producing Escherichia coli and Klebsiella spp. Isolated from Clinical Specimens. Antibiotics 2024, 13, 31. https://doi.org/10.3390/antibiotics13010031
Garba Z, Kaboré B, Bonkoungou IJO, Natama MH, Rouamba T, Haukka K, Kirveskari JP, Tinto H, Sangaré L, Barro N, et al. Phenotypic Detection of Carbapenemase and AmpC-β-Lactamase Production among Extended Spectrum β-Lactamase (ESBL)-Producing Escherichia coli and Klebsiella spp. Isolated from Clinical Specimens. Antibiotics. 2024; 13(1):31. https://doi.org/10.3390/antibiotics13010031
Chicago/Turabian StyleGarba, Zakaria, Bérenger Kaboré, Isidore J. O. Bonkoungou, Magloire H. Natama, Toussaint Rouamba, Kaisa Haukka, Juha P. Kirveskari, Halidou Tinto, Lassana Sangaré, Nicolas Barro, and et al. 2024. "Phenotypic Detection of Carbapenemase and AmpC-β-Lactamase Production among Extended Spectrum β-Lactamase (ESBL)-Producing Escherichia coli and Klebsiella spp. Isolated from Clinical Specimens" Antibiotics 13, no. 1: 31. https://doi.org/10.3390/antibiotics13010031
APA StyleGarba, Z., Kaboré, B., Bonkoungou, I. J. O., Natama, M. H., Rouamba, T., Haukka, K., Kirveskari, J. P., Tinto, H., Sangaré, L., Barro, N., & Kantele, A. (2024). Phenotypic Detection of Carbapenemase and AmpC-β-Lactamase Production among Extended Spectrum β-Lactamase (ESBL)-Producing Escherichia coli and Klebsiella spp. Isolated from Clinical Specimens. Antibiotics, 13(1), 31. https://doi.org/10.3390/antibiotics13010031