Searching for Antimicrobial-Producing Bacteria from Soils through an Educational Project and Their Evaluation as Potential Biocontrol Agents
Abstract
:1. Introduction
2. Results
2.1. Evaluation of the Antibacterial Activity in the First Screening
2.2. Verification of Antibacterial Activity in the Second Screening
2.3. Evaluation of the Antifungal Activity
2.4. Safety Assessment of the Antimicrobial-Producing Isolates
2.4.1. Antibiotic Susceptibility Testing of the APB
2.4.2. β-Hemolytic Activity of the Antimicrobial-Producing Isolates
3. Material and Methods
3.1. Study Area and Sampling
3.2. First School-Level Screening during the MicroMundo Project
3.3. Bacterial Identification
3.4. Evaluation of Antibacterial Activity
Second Screening of Antibacterial Activity Using the Spot-on-Lawn Method
3.5. Evaluation of Antifungal Activity
3.5.1. Preparation of the Inoculum (Conidial Suspension)
3.5.2. Seeding of the Conidial Suspension
3.5.3. Inoculation of Antimicrobial-Producing Isolates
3.6. Safety Assessment of Antimicrobial-Producing Isolates
3.6.1. Antibiotic Susceptibility Testing
3.6.2. β-Hemolytic Activity Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hernando-Amado, S.; Coque, T.M.; Baquero, F.; Martínez, J.L. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat. Microbiol. 2019, 4, 1432–1442. [Google Scholar] [CrossRef]
- Baquero, F.; Martínez, J.L.; Lanza, V.F.; Rodríguez-Beltrán, J.; Galán, J.C.; San Millán, A.; Cantón, R.; Coque, T.M. Evolutionary Pathways and Trajectories in Antibiotic Resistance. Clin. Microbiol. Rev. 2021, 34, e0005019. [Google Scholar] [CrossRef]
- Van Bruggen, A.H.C.; He, M.M.; Shin, K.; Mai, V.; Jeong, K.C.; Finckh, M.R.; Morris, J.G. Environmental and health effects of the herbicide glyphosate. Sci. Total Environ. 2018, 616–617, 255–268. [Google Scholar] [CrossRef]
- Banerjee, S.; Van der Heijden, M.G.A. Soil microbiomes and One Health. Nat. Rev. Microbiol. 2023, 21, 6–20. [Google Scholar] [CrossRef]
- Schloss, P.D.; Handelsman, J. Toward a Census of Bacteria in Soil. PLoS Comput. Biol. 2006, 2, e92. [Google Scholar] [CrossRef]
- Fan, K.; Weisenhorn, P.; Gilbert, J.A.; Chu, H. Wheat rhizosphere harbors a less complex and more stable microbial co-occurrence pattern than bulk soil. Soil Biol. Biochem. 2018, 125, 51–260. [Google Scholar] [CrossRef]
- Klibi, N.; Ben Slimen, N.; Fhoula, I.; López, M.; Ben Slama, K.; Daffonchio, D.; Boudabous, A.; Torres, C.; Ouzari, H. Genotypic Diversity, Antibiotic Resistance and Bacteriocin Production of Enterococci Isolated from Rhizospheres. Microbes Environ. 2012, 27, 533–537. [Google Scholar] [CrossRef]
- Oburger, E.; Gruber, B.; Wanek, W.; Watzinger, A.; Stanetty, C.; Schindlegger, Y.; Hann, S.; Schenkeveld, W.D.C.; Kraemer, S.M.; Puschenreiter, M. Microbial decomposition of 13C- labeled phytosiderophores in the rhizosphere of wheat: Mineralization dynamics and key microbial groups involved. Soil Biol. Biochem. 2016, 98, 196–207. [Google Scholar] [CrossRef]
- Fanin, N.; Kardol, P.; Farrell, M.; Nilsson, M.C.; Gundale, M.J.; Wardle, D.A. The ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils. Soil Biol. Biochem. 2019, 128, 111–114. [Google Scholar] [CrossRef]
- Reddy, B.V.B.; Kallifidas, D.; Kim, J.H.; Charlop-Powers, Z.; Feng, Z.; Brady, S.F. Natural Product Biosynthetic Gene Diversity in Geographically Distinct Soil Microbiomes. Appl. Environ. Microbiol. 2012, 78, 3744–3752. [Google Scholar] [CrossRef]
- Riley, M.A.; Wertz, J.E. Bacteriocins: Evolution, Ecology, and Application. Annu. Rev. Microbiol. 2002, 56, 117–137. [Google Scholar] [CrossRef] [PubMed]
- Yount, N.Y.; Weaver, D.C.; de Anda, J.; Lee, E.Y.; Lee, M.W.; Wong, G.C.L.; Yeaman, M.R. Discovery of Novel Type II Bacteriocins Using a New High-Dimensional Bioinformatic Algorithm. Front. Immunol. 2020, 1, 1873. [Google Scholar] [CrossRef] [PubMed]
- Twomey, E.; Hill, C.; Field, D.; Begley, M. Recipe for Success: Suggestions and Recommendations for the Isolation and Characterisation of Bacteriocins. Int. J. Microbiol. 2021, 2021, 9990635. [Google Scholar] [CrossRef] [PubMed]
- Soltani, S.; Hammami, R.; Cotter, P.D.; Rebuffat, S.; Said, L.B.; Gaudreau, H.; Bédard, F.; Biron, E.; Drider, D.; Fliss, I. Bacteriocins as a new generation of antimicrobials: Toxicity aspects and regulations. FEMS Microbiol. Rev. 2021, 45, fuaa039. [Google Scholar] [CrossRef] [PubMed]
- Telhig, S.; Ben Said, L.; Torres, C.; Rebuffat, S.; Zirah, S.; Fliss, I. Evaluating the Potential and Synergetic Effects of Microcins against Multidrug-Resistant Enterobacteriaceae. Microbiol. Spectr. 2022, 10, e0275221. [Google Scholar] [CrossRef] [PubMed]
- Asaka, O.; Shoda, M. Biocontrol of Rhizoctonia solani Damping-Off of Tomato with Bacillus subtilis RB14. Appl. Environ. Microbiol. 1996, 62, 4081–4085. [Google Scholar] [CrossRef]
- Zhou, L.; Song, C.; Li, Z.; Kuipers, O.P. Antimicrobial activity screening of rhizosphere soil bacteria from tomato and genome-based analysis of their antimicrobial biosynthetic potential. BMC Genom. 2021, 22, 29. [Google Scholar] [CrossRef]
- Hibbing, M.E.; Fuqua, C.; Parsek, M.R.; Peterson, S.B. Bacterial competition: Surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 2010, 8, 15–25. [Google Scholar] [CrossRef]
- Fravel, D.R. Commercialization and Implementation of Biocontrol. Annu. Rev. Phytopathol. 2005, 43, 337–359. [Google Scholar] [CrossRef]
- Köhl, J.; Kolnaar, R.; Ravensberg, W.J. Mode of Action of Microbial Biological Control Agents Against Plant Diseases: Relevance Beyond Efficacy. Front. Plant Sci. 2019, 10, 845. [Google Scholar] [CrossRef]
- Valderrama, M.J.; González-Zorn, B.; Calvo de Pablo, P.; Díez-Orejas, R.; Fernández-Acero, T.; Gil-Serna, J.; de Juan, L.; Martín, H.; Molina, M.; Navarro-García, F.; et al. Educating in antimicrobial resistance awareness: Adaptation of the Small World Initiative program to service-learning. FEMS Microbiol. Lett. 2018, 365, fny161. [Google Scholar] [CrossRef]
- Tiny Earth. Available online: https://tinyearth.wisc.edu/ (accessed on 25 September 2023).
- Small World Initiative. Available online: http://www.smallworldinitiative.org/ (accessed on 25 September 2023).
- Singh, K.S.; Anand, S.; Dholpuria, S.; Sharma, J.K.; Blankenfeldt, W.; Shouche, Y. Antimicrobial resistance dynamics and the One-Health strategy: A review. Environ. Chem. Lett. 2021, 19, 2995–3007. [Google Scholar] [CrossRef]
- Davis, E.; Sloan, T.; Aurelius, K.; Barbour, A.; Bodey, E.; Clark, B.; Dennis, C.; Drown, R.; Fleming, M.; Humbert, A.; et al. Antibiotic discovery throughout the Small World Initiative: A molecular strategy to identify biosynthetic gene clusters involved in antagonistic activity. Microbiologyopen 2017, 6, 435. [Google Scholar] [CrossRef]
- Robredo, B.; Fernández-Fernández, R.; Torres, C. Antimicrobial resistance as a nexus between teaching and research. J. Biol. Educ. 2021, 57, 856–872. [Google Scholar] [CrossRef]
- Fernández-Fernández, R.; Robredo, B.; Navajas, E.; Torres, C. Citizen Contribution for Searching for Alternative Antimicrobial Activity Substances in Soil. Antibiotics 2022, 12, 57. [Google Scholar] [CrossRef]
- Whipps, J.M. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 2001, 52, 487–511. [Google Scholar] [CrossRef]
- Huang, B.; Jia, H.; Han, X.; Gou, J.; Huang, C.; Wang, J.; Wei, J.; Wang, J.; Zhang, C. Effects of biocontrol Bacillus and fermentation bacteria additions on the microbial community, functions and antibiotic resistance genes of prickly ash seed oil meal-biochar compost. Bioresour. Technol. 2021, 340, 125668. [Google Scholar] [CrossRef]
- Dimkić, I.; Janakiev, T.; Petrović, M.; Degrassi, G.; Fira, D. Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms—A review. Physiol. Mol. Plant Pathol. 2022, 117, 101754. [Google Scholar] [CrossRef]
- Silo-Suh, L.A.; Lethbridge, B.J.; Raffel, S.J.; He, H.; Clardy, J.; Handelsman, J. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl. Environ. Microbiol. 1994, 60, 2023–2030. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Jiang, L.; Thu Tran, T.N.; Muhammad, N.; Kim, S.-G.; Tran Pham, V.P.; Ng, Y.J.; Khoo, K.S.; Chew, K.W.; Phuong Nguyen, T.D. Whole-genome analysis and secondary metabolites production of a new strain Brevibacillus halotolerans 7WMA2: A potential biocontrol agent against fungal pathogens. Chemosphere 2022, 307, 136004. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Wang, X.; Xiao, C.; Wang, W.; Zhao, X.; Sui, J.; Sa, R.; Guo, T.L.; Liu, X. Antifungal activity of Brevibacillus laterosporus JX-5 and characterization of its antifungal components. World J. Microbiol. Biotechnol. 2015, 31, 1605–1618. [Google Scholar] [CrossRef] [PubMed]
- Balthazar, C.; Novinscak, A.; Cantin, G.; Joly, D.L.; Filion, M. Biocontrol Activity of Bacillus spp. and Pseudomonas spp. Against Botrytis cinerea and Other Cannabis Fungal Pathogens. Phytopathology 2022, 112, 549–560. [Google Scholar] [CrossRef]
- Cui, L.; Yang, C.; Wei, L.; Li, T.; Chen, X. Isolation and identification of an endophytic bacteria Bacillus velezensis 8-4 exhibiting biocontrol activity against potato scab. Biol. Control 2020, 141, 104156. [Google Scholar] [CrossRef]
- Abdallah, R.A.B.; Stedel, C.; Garagounis, C.; Nefzi, A.; Jabnoun-Khiareddine, H.; Papadopoulou, K.K.; Daami-Remadi, M. Involvement of lipopeptide antibiotics and chitinase genes and induction of host defense in suppression of Fusarium wilt by endophytic Bacillus spp. in tomato. Crop Prot. 2017, 99, 45–58. [Google Scholar] [CrossRef]
- Fu, L.; Penton, C.R.; Ruan, Y.; Shen, Z.; Xue, C.; Li, R.; Shen, Q. Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease. Soil Biol. Biochem. 2017, 104, 39–48. [Google Scholar] [CrossRef]
- Wu, B.; Wang, X.; Yang, L.; Yang, H.; Zeng, H.; Qiu, Y.; Wang, C.; Yu, J.; Li, J.; Xu, D.; et al. Effects of Bacillus amyloliquefaciens ZM9 on bacterial wilt and rhizosphere microbial communities of tobacco. Appl. Soil Ecol. 2016, 103, 2653. [Google Scholar] [CrossRef]
- Lian, L.; Xie, L.; Zheng, L.; Lin, Q. Induction of systemic resistance in tobacco against Tobacco mosaic virus by Bacillus spp. Biocontrol. Sci. Technol. 2011, 21, 281–292. [Google Scholar] [CrossRef]
- Ara, I. Antiviral activities of streptomycetes against tobacco mosaic virus (TMV) in Datura plant: Evaluation of different organic compounds in their metabolites. Afr. J. Biotechnol. 2012, 11, 2130–2138. [Google Scholar]
- Abdelkhalek, A.; Aseel, D.G.; Király, L.; Künstler, A.; Moawad, H.; Al-Askar, A.A. Induction of Systemic Resistance to Tobacco mosaic virus in Tomato through Foliar Application of Bacillus amyloliquefaciens Strain TBorg1 Culture Filtrate. Viruses 2022, 14, 1830. [Google Scholar] [CrossRef]
- Antil, S.; Kumar, R.; Pathak, D.V.; Kumari, A. Recent advances in utilizing bacteria as biocontrol agents against plant parasitic nematodes emphasizing Meloidogyne spp. Biol. Control 2023, 183, 105244. [Google Scholar] [CrossRef]
- Valtierra-de-Luis, D.; Villanueva, M.; Berry, C.; Caballero, P. Potential for Bacillus thuringiensis and Other Bacterial Toxins as Biological Control Agents to Combat Dipteran Pests of Medical and Agronomic Importance. Toxins 2020, 12, 773. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.; Yu, X.; Liang, X.; Liu, Y.; Borriss, R.; Liu, Y. Addition of plant-growth-promoting Bacillus subtilis PTS-394 on tomato rhizosphere has no durable impact on composition of root microbiome. BMC Microbiol. 2017, 17, 131. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.L.; Jiao, X.Y.; Fan, F.F.; Wang, J.S.; Guo, J.; Dong, E.W.; Wang, L.G.; Shen, X.M. Effect of continuous sorghum cropping on the rhizosphere microbial community and the role of Bacillus amyloliquefaciens in altering the microbial composition. Plant Growth Regul. 2019, 89, 299–308. [Google Scholar] [CrossRef]
- Hu, Y.; Li, Y.; Yang, X.; Li, C.; Wang, L.; Feng, J.; Chen, S.; Li, X.; Yang, Y. Effects of integrated biocontrol on bacterial wilt and rhizosphere bacterial community of tobacco. Sci. Rep. 2021, 11, 2653. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, M.; Wang, J.; Lv, D.; Ma, Y.; Zhou, B.; Wang, B. Biocontrol effects of Brevibacillus laterosporus AMCC100017 on potato common scab and its impact on rhizosphere bacterial communities. Biol. Control 2017, 106, 89–98. [Google Scholar] [CrossRef]
- Li, C.; Shi, W.; Wu, D.; Tian, R.; Wang, B.; Lin, R.; Zhou, B.; Gao, Z. Biocontrol of potato common scab by Brevibacillus laterosporus BL12 is related to the reduction of pathogen and changes in soil bacterial community. Biol. Control 2021, 153, 104496. [Google Scholar] [CrossRef]
- Wang, X.Q.; Zhao, D.L.; Shen, L.L.; Jing, C.L.; Zhang, C.S. Application and Mechanisms of Bacillus subtilis in Biological Control of Plant Disease. In Role of Rhizospheric Microbes in Soil; Springer: Singapore, 2018; pp. 225–250. [Google Scholar]
- Hashem, A.; Tabassum, B.; Fathi, E.; Allah, A. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J. Biol. Sci. 2019, 26, 1291–1297. [Google Scholar] [CrossRef]
- Lahlali, R.; Peng, G.; Gossen, B.D.; McGregor, L.; Yu, F.Q.; Hynes, R.K.; Hwang, S.F.; McDonald, M.R.; Boyetchko, S.M. Evidence that the Biofungicide Serenade (Bacillus subtilis) Suppresses Clubroot on Canola via Antibiosis and Induced Host Resistance. Phytopathology 2013, 103, 245–254. [Google Scholar] [CrossRef]
- Dai, Y.; Wu, X.Q.; Wang, Y.H.; Zhu, M.L. Biocontrol potential of Bacillus pumilus HR10 against Sphaeropsis shoot blight disease of pine. Biol. Control 2021, 152, 104458. [Google Scholar] [CrossRef]
- Eveno, M.; Belguesmia, Y.; Bazinet, L.; Gancel, F.; Fliss, I.; Drider, D. In silico analyses of the genomes of three new bacteriocin-producing bacteria isolated from animal’s faeces. Arch. Microbiol. 2021, 203, 205–217. [Google Scholar] [CrossRef]
- Yang, X.; Huang, E.; Yesil, M.; Xiaoli, L.; Dudley, E.G.; Yousef, A.E. Draft Genome Sequence of Brevibacillus laterosporus OSY-I1, a Strain That Produces Brevibacillin, Which Combats Drug-Resistant Gram-Positive Bacteria. Genome Announc. 2017, 5, e01093-17. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, X.; Shukla, R.; Kumar, R.; Weingarth, M.; Breukink, E.; Kuipers, O.P. Brevibacillin 2V, a Novel Antimicrobial Lipopeptide With an Exceptionally Low Hemolytic Activity. Front. Microbiol. 2021, 12, 693725. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Huang, E.; Yousef, A.E. Brevibacillin, a cationic lipopeptide that binds to lipoteichoic acid and subsequently disrupts cytoplasmic membrane of Staphylococcus aureus. Microbiol. Res. 2017, 195, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yousef, A.E. Antimicrobial peptides produced by Brevibacillus spp.: Structure, classification and bioactivity: A mini review. World J. Microbiol. Biotechnol. 2018, 34, 57. [Google Scholar] [CrossRef]
Antibacterial Activity on the Indicator Bacteria | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Indicator Bacteria | ||||||||||||||
Antimicrobial-Producing Isolates | E. coli | MRSE | MRSA | M. sciuri | S. delphini | MRSP | MSSP | E. faecium vanR b | E. cecorum | E. faecalis | M. luteus | L. monocytogenes | N (%) c | |
Species | ID Number | |||||||||||||
Advenella kashmirensis | X9471 | 6 (50) | ||||||||||||
Bacillus altitudinis | X9472 | 6 (50) | ||||||||||||
Bacillus mycoides | X9467 | 6 (50) | ||||||||||||
Bacillus pumilus | X9426 | 6 (50) | ||||||||||||
Bacillus pumilus | X9427 | 6 (50) | ||||||||||||
Bacillus pumilus | X9428 | 6 (50) | ||||||||||||
Bacillus pumilus | X9430 | 7 (58) | ||||||||||||
Bacillus pumilus | X9431 | 5 (42) | ||||||||||||
Bacillus pumilus | X9469 | 7 (58) | ||||||||||||
Bacillus pumilus | X9475 | 7 (58) | ||||||||||||
Bacillus subtilis | X9429 | 4 (33) | ||||||||||||
Bacillus thuringiensis | X9468 | 7 (58) | ||||||||||||
Bacillus thuringiensis | X9470 | 7 (58) | ||||||||||||
Brevibacillus laterosporus | X9433 | 10 (83) | ||||||||||||
Lysinibacillus fusiformis | X9474 | 1 (8) | ||||||||||||
Peribacillus muralis | X9434 | 1 (8) | ||||||||||||
Streptomyces prasinus | X9432 | 1 (8) | ||||||||||||
NI a | X9473 | 2 (16) | ||||||||||||
Indicator Bacteria Inhibited (%) d | 5 (28) | 11 (61) | 13 (72) | 7 (39) | 14 (78) | 14 (78) | 13 (72) | 1 (6) | 1 (6) | 14 (78) | 1 (6) | 1 (6) |
Species a | ID Number | Antibiotic Tested | ||||
---|---|---|---|---|---|---|
IPM10 | ERY15 | CLI2 | CIP5 | LZD10 | ||
Bacillus altitudinis | X9472 | 40 | 29 | 24 | 26 | 27 |
Bacillus mycoides | X9467 | 36 | 32 | 24 | 30 | 34 |
Bacillus pumilus | X9426 | 36 | 30 | 22 | 30 | 28 |
Bacillus pumilus | X9427 | 40 | 28 | 28 | 26 | 28 |
Bacillus pumilus | X9428 | 40 | 28 | 28 | 26 | 30 |
Bacillus pumilus | X9430 | 38 | 28 | 14 | 28 | 16 |
Bacillus pumilus | X9431 | 36 | 30 | 20 | 30 | 28 |
Bacillus pumilus | X9469 | 17 | 22 | 18 | 22 | 26 |
Bacillus pumilus | X9475 | 30 | 20 | 18 | 24 | 28 |
Bacillus subtilis | X9429 | 38 | 40 | 38 | 30 | 38 |
Bacillus thuringiensis | X9468 | 30 | 34 | 28 | 25 | 25 |
Bacillus thuringiensis | X9470 | 28 | 28 | 22 | 32 | 30 |
Brevibacillus laterosporus | X9433 | 40 | 16 | 30 | 20 | 28 |
Lysinibacillus fusiformis | X9474 | 30 | 28 | 28 | 24 | 29 |
Peribacillus muralis | X9434 | 38 | 35 | 36 | 32 | 34 |
Species | ID Number | β-Hemolytic Activity |
---|---|---|
Advenella kashmirensis | X9471 | - |
Bacillus altitudinis | X9472 | - |
Bacillus mycoides | X9467 | ++ |
Bacillus pumilus | X9426 | - |
Bacillus pumilus | X9427 | + |
Bacillus pumilus | X9428 | + |
Bacillus pumilus | X9430 | - |
Bacillus pumilus | X9431 | - |
Bacillus pumilus | X9469 | ++ |
Bacillus pumilus | X9475 | + |
Bacillus subtilis | X9429 | + |
Bacillus thuringiensis | X9468 | ++ |
Bacillus thuringiensis | X9470 | + |
Brevibacillus laterosporus | X9433 | - |
Lysinibacillus fusiformis | X9474 | ++ |
Peribacillus muralis | X9434 | - |
Streptomyces prasinus | X9432 | - |
NI* | X9473 | ++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pino-Hurtado, M.S.; Fernández-Fernández, R.; Torres, C.; Robredo, B. Searching for Antimicrobial-Producing Bacteria from Soils through an Educational Project and Their Evaluation as Potential Biocontrol Agents. Antibiotics 2024, 13, 29. https://doi.org/10.3390/antibiotics13010029
Pino-Hurtado MS, Fernández-Fernández R, Torres C, Robredo B. Searching for Antimicrobial-Producing Bacteria from Soils through an Educational Project and Their Evaluation as Potential Biocontrol Agents. Antibiotics. 2024; 13(1):29. https://doi.org/10.3390/antibiotics13010029
Chicago/Turabian StylePino-Hurtado, Mario Sergio, Rosa Fernández-Fernández, Carmen Torres, and Beatriz Robredo. 2024. "Searching for Antimicrobial-Producing Bacteria from Soils through an Educational Project and Their Evaluation as Potential Biocontrol Agents" Antibiotics 13, no. 1: 29. https://doi.org/10.3390/antibiotics13010029
APA StylePino-Hurtado, M. S., Fernández-Fernández, R., Torres, C., & Robredo, B. (2024). Searching for Antimicrobial-Producing Bacteria from Soils through an Educational Project and Their Evaluation as Potential Biocontrol Agents. Antibiotics, 13(1), 29. https://doi.org/10.3390/antibiotics13010029